Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 grudnia 2025 23:10
  • Data zakończenia: 10 grudnia 2025 23:32

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 1:1
B. 3:2
C. 2:3
D. 2:1
Odpowiedź 2:1 jest poprawna, ponieważ aby uzyskać roztwór CuSO4 o stężeniu 15% z roztworów 10% i 20%, musimy zastosować regułę mieszania stężeń. Mieszanie dwóch roztworów o różnych stężeniach polega na wykorzystaniu wzoru na stężenie końcowe: C1V1 + C2V2 = C3(V1 + V2), gdzie C1 i C2 to stężenia początkowe roztworów, C3 to stężenie roztworu końcowego, a V1 i V2 to objętości roztworów. W tym przypadku C1=10%, C2=20%, a C3=15%. Przy odpowiednich obliczeniach i zastosowaniu równości, otrzymujemy stosunek V1:V2 równy 1:1. W praktyce, takie mieszanie jest powszechnie stosowane w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów są kluczowe dla dalszych reakcji chemicznych czy produkcji. Przykład zastosowania może obejmować przygotowywanie materiałów do analizy chemicznej lub syntezę związków chemicznych, gdzie dokładność stężeń wpływa na wyniki eksperymentów.

Pytanie 2

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.
A. krystalizację.
B. sublimację.
C. destylację.
D. ekstrakcję.
Destylacja, ekstrakcja, sublimacja i krystalizacja to różne techniki separacji substancji, które często są mylone ze względu na ich podobieństwa, ale zasadniczo różnią się mechanizmem działania. Destylacja polega na wykorzystaniu różnicy temperatur wrzenia substancji, co pozwala na oddzielenie cieczy o różnych punktach wrzenia. W kontekście oczyszczania substancji, destylacja jest skuteczna, kiedy substancje mają znacznie różniące się temperatury wrzenia, co nie jest celem procesu opisanego w pytaniu. Ekstrakcja z kolei opiera się na rozpuszczalności różnych substancji w różnych rozpuszczalnikach, ale nie prowadzi do uzyskania czystych kryształów, jak w przypadku krystalizacji. Sublimacja, czyli przejście substancji ze stanu stałego w gazowy, a następnie z powrotem w stały, również nie jest odpowiednia w tym kontekście, ponieważ dotyczy tylko substancji, które mogą sublimować, a nie wszystkich substancji chemicznych. Typowym błędem myślowym jest założenie, że wszystkie procesy oczyszczania prowadzą do uzyskania czystych substancji w formie stałej, co nie jest prawdą. Znajomość różnic pomiędzy tymi procesami jest kluczowa dla skutecznego stosowania technik oczyszczania w laboratoriach i przemyśle chemicznym. Dlatego ważne jest, aby rozróżniać te metody i stosować je w odpowiednich sytuacjach.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 50 cm3
B. 10 cm3
C. 20 cm3
D. 25 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 5

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. matrycą
B. śladem
C. ultraśladem
D. domieszką
Odpowiedzi takie jak 'domieszka', 'matryca' i 'ultraślad' nie oddają właściwego znaczenia terminu 'ślad'. Domieszka odnosi się do dowolnego składnika, który jest obecny w próbce, ale niekoniecznie w tak niskich stężeniach, jak te opisane w pytaniu. Z kolei matryca to termin używany do opisu podstawowej substancji, w której zawarte są inne składniki. W kontekście analitycznym matryca ma ogromne znaczenie, ponieważ jej skład i właściwości mogą wpływać na dokładność i precyzję analizy. Ultraślad to termin, który jest rzadziej używany i może sugerować jeszcze niższe stężenia niż te określone dla 'śladu', ale nie jest to standardowa definicja, co może prowadzić do nieporozumień. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z niepełnego zrozumienia terminologii chemicznej oraz kontekstu analitycznego. Kluczowe jest, aby rozróżniać te pojęcia i wiedzieć, jak wpływają one na interpretację wyników analitycznych. Niepoprawne zrozumienie tych terminów może prowadzić do poważnych błędów w ocenie jakości próbek oraz ich składników, co jest niezbędne w wielu dziedzinach, takich jak kontrola jakości, badania środowiskowe czy bezpieczeństwo żywności.

Pytanie 6

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na mokro
B. na sucho
C. UV
D. mikrofalową
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 7

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu
A. Przechowywać w zamknięciu, z daleka od dzieci.
B. Przechowywać z dala od źródeł ciepła i ognia.
C. Przechowywać w zamkniętym, chłodnym miejscu.
D. Nie przechowywać w szczelnie zamkniętym pojemniku.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 8

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 75%
B. 20%
C. 2,5%
D. 25%
Stężenie procentowe roztworu obliczamy jako stosunek masy rozpuszczonej substancji (w tym przypadku jodku potasu) do całkowitej masy roztworu, wyrażony w procentach. W naszym przypadku mamy 25 g jodku potasu rozpuszczonego w 100 cm³ wody. Gęstość wody wynosi 1 g/cm³, co oznacza, że 100 cm³ wody ma masę 100 g. Całkowita masa roztworu wynosi więc 25 g (masy jodku potasu) + 100 g (masy wody) = 125 g. Stężenie procentowe obliczamy jako: (masa rozpuszczonej substancji / masa roztworu) × 100%, co daje (25 g / 125 g) × 100% = 20%. Takie obliczenia są niezwykle istotne w chemii analitycznej, gdzie dokładne stężenia roztworów są kluczowe w różnych zastosowaniach, takich jak przygotowywanie odczynników czy analiza jakościowa i ilościowa substancji chemicznych.

Pytanie 9

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. żółty
B. czerwony
C. niebieski
D. zielony
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 10

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. wykazują toksyczne działanie na organizmy żywe
B. prowadzą do zakwaszenia wód
C. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
D. powodują nadmierny wzrost roślinności w zbiornikach wodnych
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Odlanie cieczy z nad osadu to

A. destylacja
B. sedymentacja
C. dekantacja
D. filtracja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 13

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa
A. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
B. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
C. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
D. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
Próba zidentyfikowania substancji na podstawie tylko ogólnych kolorów wskaźników może prowadzić do poważnych nieporozumień. W przypadku roztworu wodorotlenku sodu, jak wskazuje poprawna odpowiedź, uniwersalny papier wskaźnikowy dostarcza wyraźnych informacji o pH, jednak w przypadku innych substancji, takich jak chlorek sodu czy kwas octowy, sytuacja jest znacznie bardziej skomplikowana. Chlorek sodu w roztworze nie wpływa na pH w sposób, który byłby widoczny za pomocą wskaźników pH, ponieważ jest to sól neutralna. Kwas octowy, będący słabym kwasem, również nie spowoduje odczuwalnego zmiany koloru wskaźnika w zasadowym środowisku, co jest często mylnie interpretowane. Błąd w rozumieniu zjawiska może prowadzić do fałszywych wniosków dotyczących obecności substancji w roztworach. W kontekście edukacyjnym, zrozumienie zasad działania wskaźników pH oraz ich ograniczeń jest kluczowe dla chemików i studentów chemii, aby uniknąć pułapek związanych z niewłaściwą interpretacją wyników. Dlatego istotne jest, aby zawsze stosować się do standardów analizy chemicznej i być świadomym ograniczeń używanych metod pomiarowych.

Pytanie 14

Aby przeprowadzić syntezę substancji organicznej w temperaturze 150°C, należy zastosować łaźnię

A. parową
B. wodną
C. powietrzną
D. olejową
Wybór łaźni powietrznej, parowej lub wodnej do syntezy organicznej w temperaturze 150°C jest niezbyt dobrym pomysłem. Łaźnie powietrzne, mimo że można ich używać w niższych temperaturach, nie są w stanie zapewnić odpowiedniej stabilności oraz precyzji, co może sprawić, że reakcje będą nieregularne. W sytuacji wysokotemperaturowych syntez, to nie wystarczy, bo powietrze ma niskie ciepło właściwe i słabo przewodzi ciepło. Łaźnie parowe są skuteczne tylko do około 100°C, a przy wyższych temperaturach mogą wystąpić kłopoty z wrzeniem i stratą cieczy, co w wielu reakcjach może być kłopotliwe. Z kolei łaźnie wodne mają swoją granicę, bo nie mogą obsłużyć 150°C ze względu na temperaturę wrzenia. Używanie wody w takich warunkach naraża nas na ryzyko kondensacji pary, co może zanieczyścić nasz produkt. W praktyce w laboratoriach starają się wybierać takie medium grzewcze, które będzie miało odpowiednie parametry temperaturowe i gwarantowało stabilność oraz czystość reakcji. Dlatego, do syntez organicznych w wysokich temperaturach, łaźnia olejowa to zdecydowanie najlepszy wybór, a inne metody są tu nieodpowiednie.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 100 g
B. 200 g
C. 400 g
D. 50 g
Aby uzyskać roztwór nasycony w temperaturze 20°C, należy rozpuścić w 200 gramach wody około 400 gramów cukru. Zjawisko nasycenia roztworu oznacza, że w danej temperaturze nie można już rozpuścić większej ilości substancji. W przypadku cukru rozpuszczalność w wodzie jest znaczna, a przy 20°C wynosi około 2000 g na 1 litr wody. Woda w tej temperaturze ma zatem zdolność rozpuszczenia znacznej ilości cukru, co sprawia, że 400 g w 200 g wody to zaledwie 20% maksymalnej ilości, jaką dałoby się rozpuścić. Praktyczne zastosowanie tej wiedzy można zauważyć w przemyśle spożywczym, gdzie dokładne parametry roztworu są kluczowe dla produkcji napojów słodzonych, syropów czy innych produktów zawierających cukier. Zrozumienie rozpuszczalności substancji jest niezbędne w wielu procesach chemicznych i technologicznych, co podkreśla znaczenie tej umiejętności w praktyce laboratoryjnej i przemysłowej.

Pytanie 17

Sporządzono 250 cm3 roztworu glicerolu o gęstości 1,05 g/cm3 w temperaturze 20°C. Korzystając z danych zamieszczonych w tabeli, określ stężenie procentowe sporządzonego roztworu glicerolu.

Glicerolu [%]10%20%30%50%
d20 [g/dm3]1023,701048,401073,951127,20
A. 30%
B. 10%
C. 40%
D. 20%
Stężenie procentowe roztworu glicerolu wynosi 20%, co jest zgodne z danymi dotyczącymi gęstości roztworów. Gęstość sporządzonego roztworu (1,05 g/cm3) jest bliska gęstości 20% roztworu glicerolu, wynoszącej 1,048 g/cm3. W praktyce, obliczanie stężeń procentowych jest kluczowe w chemii oraz w przemyśle farmaceutycznym i spożywczym, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie. W przypadku glicerolu, który jest powszechnie stosowany jako środek nawilżający i konserwujący, znajomość jego stężenia pozwala na odpowiednie dostosowanie formulacji produktów. Warto także pamiętać, że gęstość roztworów zmienia się w zależności od temperatury i stężenia, co powinno być brane pod uwagę przy przeprowadzaniu eksperymentów i kalkulacji. Używanie tabel gęstości oraz znajomość zasad przygotowywania roztworów są podstawowymi umiejętnościami, które powinien posiadać każdy chemik i technik laboratoryjny.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Który z wskaźników nie jest używany w alkacymetrii?

A. Błękit tymolowy
B. Oranż metylowy
C. Skrobia
D. Fenoloftaleina
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. rakotwórcza.
B. żrąca.
C. mutagenna.
D. nieszkodliwa.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Destylacja to metoda

A. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
B. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
C. syntezy substancji zachodząca w obecności katalizatora
D. transformacji ciała z formy ciekłej w stałą
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 25

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. 90,7% czystej substancji
B. bliżej nieokreśloną masę domieszek
C. około 50% czystej substancji
D. 100% czystej substancji
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO<sub>2</sub> prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. rok
B. miesiąc
C. tydzień
D. pół roku
Pobieranie próbek wody raz w roku, co pół roku lub co tydzień, nie spełnia odpowiednich wymogów w kontekście monitorowania zmienności składu wód płynących. Odpowiedź sugerująca pobieranie próbek raz w roku jest nieadekwatna, ponieważ ryzyka związane z jakością wody mogą zmieniać się w krótszym okresie, a roczne interwały są zbyt długie, by uchwycić te zmiany. Pojawiające się zjawiska, takie jak zakwit sinic czy nagłe zanieczyszczenia, mogą wystąpić i mieć poważne konsekwencje dla ekosystemu, a ich detekcja wymaga bardziej regularnego monitorowania. Podobnie, półroczne pobieranie próbek może być niewystarczające, zwłaszcza w systemach wodnych, które są silnie zróżnicowane sezonowo. Z drugiej strony, pobieranie próbek co tydzień może wydawać się rozsądne, ale może prowadzić do nieefektywnego wykorzystania zasobów, zwłaszcza w sytuacjach, gdzie zmiany w składzie wody są powolne i nie wymagają tak częstego monitorowania. Kluczowym błędem myślowym w tych odpowiedziach jest niedocenienie dynamiki zmian w środowisku wodnym oraz nieprzywiązywanie wagi do standardów, które zalecają częstsze badania, aby zapewnić rzetelną i aktualną ocenę jakości wód.

Pytanie 28

Oblicz, ile moli gazu można zebrać w pipecie gazowej o pojemności 500 cm3, jeśli gaz będzie gromadzony w warunkach normalnych. (W normalnych warunkach jeden mol gazu ma objętość 22,4 dm3)

A. 0,100 mola
B. 0,200 mola
C. 0,022 mola
D. 0,002 mola
Aby obliczyć liczbę moli gazu, który można zebrać w pipecie gazowej o pojemności 500 cm³ w warunkach normalnych, należy skorzystać z faktu, że w tych warunkach jeden mol gazu zajmuje objętość 22,4 dm³. Najpierw przekształcamy objętość pipecie z cm³ na dm³, co daje: 500 cm³ = 0,5 dm³. Następnie stosujemy wzór na obliczenie liczby moli: liczba moli = objętość gazu / objętość jednego mola. W naszym przypadku to będzie: liczba moli = 0,5 dm³ / 22,4 dm³/mol = 0,022 mól. To obliczenie jest zgodne z zasadami chemii gazów idealnych i przydatne w różnych zastosowaniach laboratoryjnych, takich jak przygotowywanie roztworów, gdzie precyzyjne dawkowanie reagentów jest kluczowe. Zrozumienie tego zagadnienia jest istotne nie tylko w chemii, ale również w dziedzinach pokrewnych, takich jak inżynieria chemiczna czy biotechnologia, gdzie kontrola warunków reakcji jest niezbędna dla uzyskania optymalnych wyników.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciało stałe – ciecz
B. Ciągłej ciecz – ciecz
C. Okresowej ciecz – ciecz
D. Ciągłej ciało stałe – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. składu biologicznego próbki.
B. przeprowadzonych analiz.
C. wiedzy i umiejętności próbobiorcy.
D. lokalizacji pobrania.
Skład biologiczny próbki jest kluczowym czynnikiem wpływającym na jakość i właściwości badanej próbki. Zmiany jakościowe w składzie próbki mogą być wynikiem różnorodnych procesów biologicznych, chemicznych czy fizycznych, które zachodzą w jej obrębie. Na przykład, mikroorganizmy obecne w próbce mogą wpływać na degradację substancji biologicznych, a ich działalność może prowadzić do powstawania metabolitów o różnej aktywności. W praktyce, zrozumienie składu biologicznego próbki pozwala na lepsze projektowanie eksperymentów i interpretację wyników badań. W dziedzinach takich jak biotechnologia czy analiza środowiskowa, istotne jest uwzględnienie takich czynników jak pH, temperatura czy obecność składników odżywczych, które mogą modyfikować skład biologiczny. Dobre praktyki laboratoryjne, takie jak odpowiednie przechowywanie próbek i unikanie kontaminacji, mają na celu minimalizowanie wpływu zmian jakościowych na wyniki badań. Wiedza na temat składu biologicznego próbki jest zatem fundamentem skutecznego przeprowadzania badań analitycznych oraz interpretacji ich rezultatów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na ilustracji oznaczono numery 1 i 4:

A. 1 - kolbę destylacyjną, 4 - ekstraktor
B. 1 - ekstraktor, 4 - chłodnicę zwrotną
C. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
D. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 38

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
B. Dodać soli buforowej do dowolnej ilości wody.
C. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
D. Przygotować bufor wyłącznie z wody kranowej.
Przygotowanie buforu do analizy pH wymaga rzetelności i trzymania się zaleceń metodycznych. Przypadkowe zmieszanie soli i kwasu, a następnie pomiar pH, nie daje żadnej gwarancji uzyskania roztworu o pożądanej wartości pH i odpowiedniej pojemności buforowej – to podejście całkowicie ignoruje zasady stechiometrii oraz zależności pomiędzy ilościami składników. To typowy błąd polegający na myśleniu, że 'jakoś to będzie', podczas gdy w praktyce każdy bufor wymaga obliczenia i odważenia dokładnych mas, szczególnie jeśli zależy nam na powtarzalności wyników. Dodawanie soli buforowej do dowolnej ilości wody jest równie błędne – objętość rozpuszczalnika ma ogromny wpływ na stężenie składników i skuteczność działania buforu. Praktyka pokazuje, że niewłaściwe rozcieńczenie powoduje całkowitą utratę właściwości buforujących i prowadzi do niekontrolowanego pH. Użycie wody kranowej z kolei niesie ryzyko wprowadzenia do roztworu różnych jonów, takich jak wapń, magnez czy żelazo, które mogą reagować z buforem lub zaburzać pomiar pH. Profesjonalne laboratoria zawsze stosują wodę destylowaną albo dejonizowaną, żeby wyeliminować te zmienne. W skrócie, brak precyzji oraz lekceważenie jakości użytej wody są najczęstszymi przyczynami niepowodzeń w pracy z buforami i prowadzą do nieprawidłowych wyników analizy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Stosunek masowy miedzi do siarki w siarczku miedzi(I) wynosi

16S
Siarka
32
29Cu
Miedź
63,55
A. 4:1
B. 2:1
C. 1:1
D. 3:1
Zrozumienie, jak obliczać stosunek masowy miedzi do siarki w Cu2S, jest naprawdę ważne. Często ludzie myślą, że ten stosunek wynosi 1:1 lub 2:1, bo nie rozumieją dobrze, jak to działa. Wybierając odpowiedź 1:1, zakładają, że miedź i siarka są w równych ilościach, co nie jest prawdą. Z kolei 2:1 też jest mylące, bo nie bierze pod uwagę masy molowej miedzi, a tylko liczbę atomów. Myślenie, że ilość atomów równa się masie, to częsty błąd, który prowadzi do nieporozumień. Odpowiedź 3:1 również nie jest poprawna, bo wynika z błędnego przyporządkowania mas do atomów. Ważne, żeby nauczyć się, że stosunek masowy opiera się na masas molowych, a nie tylko na liczbie atomów. To naprawdę kluczowe w nauce chemii, żeby dobrze to rozumieć i zwracać uwagę na szczegóły.