Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 15 grudnia 2025 11:23
  • Data zakończenia: 15 grudnia 2025 11:41

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Rozłącznik izolacyjny FRX400.
C. Wyłącznik nadprądowy S304.
D. Stycznik elektromagnetyczny.
Poprawna odpowiedź to stycznik elektromagnetyczny. Na zdjęciu widoczne są charakterystyczne cewki elektromagnetyczne, które aktywują styki przy pomocy pola magnetycznego. Styczniki są kluczowymi elementami w systemach automatyki, umożliwiając zdalne załączanie i wyłączanie obwodów elektrycznych, co jest niezwykle istotne w kontekście sterowania silnikami elektrycznymi w aplikacjach przemysłowych. Dzięki nim można bezpiecznie kontrolować duże obciążenia, co przekłada się na efektywność operacyjną. Styczniki są projektowane zgodnie z normami IEC 60947-4-1, które definiują wymagania dotyczące ich konstrukcji oraz poziomów bezpieczeństwa operacyjnego. Przykłady zastosowania to sterowanie silnikami w maszynach produkcyjnych, systemach wentylacyjnych oraz w instalacjach oświetleniowych, gdzie można zdalnie załączać i wyłączać obwody. Użycie styczników pozwala też na integrację z systemami automatyki budynkowej, co zwiększa komfort i efektywność energetyczną.

Pytanie 2

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
B. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
C. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
D. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
Analizując podane odpowiedzi, można zauważyć, że wiele z nich odnosi się do parametrów technicznych innych typów urządzeń, co prowadzi do zamieszania. Na przykład, odpowiedź dotycząca typów modułów, zakresu zliczania czy rodzajów wyjścia jest bardziej związana z licznikami elektronicznymi niż przekaźnikami bistabilnymi. Liczniki mają swoje unikalne funkcje, takie jak zliczanie impulsów, co nie ma zastosowania w kontekście przekaźnika bistabilnego. Wiele osób może mylić te dwa urządzenia, myśląc, że mają one podobne zastosowania, co jest błędne. Kolejny przykład to podanie parametrów takich jak prąd znamionowy czy liczba biegunów, które są bardziej związane z przekaźnikami jedno- lub wielobiegunowymi, a nie z bistabilnymi. Niezrozumienie różnicy między tymi typami przekaźników może prowadzić do błędnych decyzji przy doborze komponentów w projektach automatyzacji. Ponadto, niektóre odpowiedzi zawierają specyfikacje dotyczące obciążalności zwarciowej oraz częstotliwości znamionowej, co jest charakterystyczne dla urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. W kontekście przekaźników bistabilnych, te informacje są zbędne, ponieważ ich działanie opiera się na mechanizmie zatrzymaniu stanu, a nie na regularnym przełączaniu. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania systemów automatyki i unikania kosztownych błędów w doborze komponentów.

Pytanie 3

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NO stycznika Q2
B. NO stycznika Q1
C. NC stycznika Q1
D. NC stycznika Q2
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 4

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
B. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
C. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
D. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 5

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. obwód połączony jest prawidłowo.
B. nieprawidłowo odczytano wynik pomiaru.
C. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
D. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
Wygląda na to, że w odpowiedziach pojawiły się różne nieporozumienia, zwłaszcza w sprawie pomiarów rezystancji w kontekście oświetlenia. Mówić, że użyto żarówek na 24 V, to trochę nie tak, bo w domach stosuje się standardowo 230 V. To ważne, bo złe napięcie może uszkodzić urządzenia i stwarzać niebezpieczeństwo dla ludzi. A co do odczytu wyniku pomiaru, to w rzeczywistości nie ma podstaw do twierdzenia, że był on nieprawidłowy, bo obieg prądu był w porządku. Kiedy łączniki są zwarte, wtedy mamy możliwość prawidłowego pomiaru rezystancji. I ta sugestia o dodatkowych połączeniach, których nie ma w schemacie, może wprowadzać w błąd, bo schemat powinien pokazywać aktualny stan instalacji. Każda niezgodność z dokumentacją może prowadzić do różnych problemów, więc warto wszystko dokumentować i sprawdzać. Dobre zarządzanie elektryką opiera się na staranności i przestrzeganiu obowiązujących norm.

Pytanie 6

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 4,0 Ω
C. 3,8 Ω
D. 6,6 Ω
Wybór wartości impedancji pętli zwarcia, który jest za wysoki, prowadzi do problemów z zapewnieniem skutecznej ochrony przed porażeniem prądem. W przypadku większych wartości impedancji, takich jak 6,6 Ω, 3,8 Ω czy 4,0 Ω, istnieje ryzyko, że prąd zwarciowy nie osiągnie wystarczającej wartości, aby aktywować wyłącznik nadprądowy B20 w odpowiednim czasie. Przykładowo, zgodnie z normą PN-IEC 60364-4-41, aby zapewnić skuteczne wyłączenie zasilania przy prądzie zwarciowym, impedancja powinna być poniżej 2,3 Ω. Przy wyższych wartościach impedancji, prąd zwarciowy może być zbyt niski, co skutkuje opóźnieniem lub brakiem wyłączenia zasilania, a to z kolei zwiększa ryzyko porażenia prądem użytkowników. Warto zauważyć, że typowym błędem jest mylenie impedancji z innymi parametrami elektrycznymi, co prowadzi do nieprawidłowych wniosków. Analizując te wartości, ważne jest zrozumienie, że każdy system zabezpieczeń w instalacji elektrycznej musi być zaprojektowany z uwzględnieniem minimalnych wartości impedancji, aby zapewnić bezpieczeństwo użytkowników i skuteczność ochrony przeciwporażeniowej.

Pytanie 7

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. uzwojenia fazowego.
C. izolacji pomiędzy zaciskami uzwojeń silnika.
D. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 8

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 1,15 Ω
C. 2,30 Ω
D. 3,83 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 9

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego - klasy II.
B. przeważnie pośredniego - klasy IV.
C. bezpośredniego - klasy I.
D. pośredniego - klasy V.
Odpowiedź 'przeważnie pośredniego - klasy IV.' jest prawidłowa, ponieważ na przedstawionym rysunku widać, że światło jest emitowane głównie w sposób pośredni. Oprawy oświetleniowe, które emitują światło pośrednio, są projektowane w taki sposób, aby rozpraszać światło za pomocą elementów takich jak mleczne szkło czy matowe powierzchnie, co zapewnia równomierne oświetlenie przestrzeni. Takie podejście jest korzystne w zastosowaniach, gdzie niepożądane są silne cienie oraz oślepiające refleksy. W kontekście norm, oprawy oświetleniowe klasy IV mogą znaleźć zastosowanie w biurach, salach konferencyjnych oraz miejscach, gdzie zależy nam na komforcie wzrokowym użytkowników. Zgodnie z zasadami ergonomii oświetlenia, odpowiednia jakość światła pośredniego wpływa korzystnie na samopoczucie i wydajność pracy, co podkreślają standardy ISO 8995-1. Zrozumienie różnych klas opraw oraz ich sposobu emisji jest kluczowe dla projektowania efektywnych systemów oświetleniowych.

Pytanie 10

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa rtęciowa
B. Świetlówka tradycyjna
C. Lampa sodowa
D. Żarówka halogenowa
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 11

Który rodzaj osprzętu został użyty w instalacji elektrycznej przedstawionej na ilustracji?

Ilustracja do pytania
A. Podtynkowy.
B. Pyłoszczelny.
C. Natynkowy.
D. Wodoszczelny.
Wybór odpowiedzi innej niż "Podtynkowy" wynika z pewnych nieporozumień dotyczących różnych typów instalacji elektrycznych. Instalacja natynkowa polega na montowaniu osprzętu na powierzchni ściany, co jest widoczne i może być mniej estetyczne w porównaniu do systemu podtynkowego. Tego rodzaju instalacje są często stosowane w budynkach, gdzie nie ma możliwości prowadzenia przewodów w ścianach, co może być wynikiem braku odpowiedniej przestrzeni lub z innych przyczyn technicznych. Ponadto, odpowiedzi takie jak "wodoszczelny" oraz "pyłoszczelny" odnoszą się do cech specyficznych dla osprzętu, który jest przeznaczony do użytku w trudnych warunkach, takich jak łazienki, kuchnie czy pomieszczenia przemysłowe. W takich sytuacjach, wybór osprzętu musi być uzależniony od lokalizacji i warunków eksploatacji, co nie ma zastosowania w przypadku instalacji podtynkowej, gdzie elementy są głównie ukryte. Typowym błędem myślowym jest mylenie tych pojęć lub przypisywanie cech osprzętu bez zrozumienia kontekstu jego zastosowania. Kluczowe jest, aby przy ocenie instalacji elektrycznych zwracać uwagę na detal, a także znać zasady projektowania i montażu różnych systemów, co pozwala na właściwy dobór osprzętu do danej lokalizacji.

Pytanie 12

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 13

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa na zaciskach odbiornika Z2 lub Z3.
C. Zwarcie na zaciskach odbiornika Z2 lub Z3.
D. Przerwa w przewodzie neutralnym.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 14

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 4
B. 3
C. 1
D. 2
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 15

Na którym rysunku przedstawiono prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
W przypadku rysunków A, B i C, schematy nie spełniają wymogów dotyczących prawidłowego sterowania oświetleniem z dwóch miejsc. Wiele osób może błędnie zakładać, że wystarczy zastosować standardowe przełączniki w tych schematach, co prowadzi do niepoprawnej konfiguracji. Rysunek A może przedstawiać jedynie klasyczny przełącznik, który umożliwia włączanie i wyłączanie światła z jednego miejsca, co nie jest wystarczające w przypadku, gdy wymagane jest sterowanie z dwóch lokalizacji. Rysunek B może zawierać jedynie przełączniki pojedyncze, co nie pozwala na zdalne sterowanie oświetleniem z więcej niż jednego miejsca. Z kolei rysunek C może zawierać niewłaściwe połączenia elektryczne lub brak elementów, które umożliwiają prawidłowe funkcjonowanie systemu. Typowe błędy myślowe prowadzące do niepoprawnych wyborów obejmują brak zrozumienia podstawowych zasad działania przełączników krzyżowych oraz ignorowanie praktycznych aspektów związanych z ich zastosowaniem w instalacjach elektrycznych. Kluczowe jest zrozumienie, że tylko zastosowanie odpowiednich komponentów oraz prawidłowe ich połączenie w schemacie elektrycznym zapewnia efektywne i bezpieczne sterowanie oświetleniem z różnych miejsc.

Pytanie 16

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Temperaturę barwową światła.
B. Światłość.
C. Natężenie oświetlenia.
D. Luminancję.
Wybór odpowiedzi dotyczącej temperatury barwowej światła, luminancji lub światłości jest błędny, ponieważ każda z tych wielkości odnosi się do różnych aspektów światła, które nie są mierzone przez luksomierz. Temperatura barwowa, na przykład, to parametr określający kolor światła, który jest wyrażany w kelwinach (K). Jest ona kluczowa w kontekście oświetlenia, ponieważ wpływa na percepcję kolorów i atmosferę we wnętrzach, jednak nie jest to wartość, którą luksomierz może określić. Luminancja, z kolei, odnosi się do jasności źródła światła w danym kierunku i jest mierzona w kandela na metr kwadratowy (cd/m²). Luksomierz nie jest przystosowany do takich pomiarów, ponieważ jego głównym celem jest określenie intensywności oświetlenia bez uwzględniania kierunku. Światłość również nie jest mierzona przez luksomierz; jest to strumień świetlny przypadający na określoną powierzchnię, wyrażany w lumenach. Główną przyczyną błędów wynikających z wyboru błędnych odpowiedzi jest nieznajomość właściwych definicji i zastosowania poszczególnych wielkości fizycznych związanych ze światłem. Wiedza o różnicy między natężeniem oświetlenia a innymi formami pomiaru jest kluczowa w zakresie właściwego wykorzystania przyrządów pomiarowych w praktyce.

Pytanie 17

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 0,07%
B. 0,74%
C. 0,62%
D. 6,10%
Istnieje kilka kluczowych aspektów, które mogą prowadzić do błędnych wniosków przy obliczaniu względnego błędu pomiarowego. Przede wszystkim, jedna z powszechnych pułapek polega na nieprawidłowym dodaniu błędu stałego do błędu procentowego. Różne odpowiedzi wskazujące na niewłaściwe wartości mogą wynikać z nieuwzględnienia rzeczywistej wartości zmierzonej przy obliczeniach. Na przykład, korzystając z nieprawidłowego wzoru lub błędnych wartości, można dojść do mylnej konkluzji, że błąd wynosi 0,07% lub 0,74%, co jest dalekie od rzeczywistości. Kolejnym typowym błędem jest pomijanie kontekstu pomiarów, takich jak tolerancje urządzenia czy jego kalibracja, co prowadzi do nieprawidłowego oszacowania dokładności. Należy również pamiętać, że różne urządzenia pomiarowe mają swoje specyfikacje dotyczące błędów. Na przykład, jeśli nie uwzględnimy pełnych danych dotyczących błędu procentowego, nasza ocena pomiaru może być znacząco zaniżona lub zawyżona. Zrozumienie tych aspektów jest niezwykle istotne w kontekście uzyskiwania rzetelnych wyników pomiarowych i podejmowania właściwych decyzji inżynieryjnych. Bez tych umiejętności, można w łatwy sposób wprowadzić się w błąd, co może mieć poważne konsekwencje w praktycznych zastosowaniach elektrotechnicznych.

Pytanie 18

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Przecinania karbowanych rur winidurowych.
B. Zaciskania tulejek na końcówkach przewodów.
C. Mocowania przewodów wtynkowych do ściany.
D. Odizolowywania żył przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 19

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi A, B lub D wskazuje na nieporozumienie dotyczące symboliki stosowanej w dokumentacji instalacji elektrycznych. Odpowiedzi te nie reprezentują wyłącznika różnicowoprądowego, a ich analiza ujawnia częste błędy myślenia związane z interpretacją schematów. Na przykład, odpowiedź A może być mylnie zinterpretowana jako symbol innego urządzenia zabezpieczającego, takiego jak bezpiecznik, podczas gdy jego funkcje są zupełnie inne. Bezpieczniki działają na zasadzie przerywania obwodu w przypadku nadmiernego prądu, co jest innym mechanizmem ochrony niż działanie RCD. Wybór odpowiedzi B może sugerować pomyłkę w rozpoznaniu symboli stosowanych na schematach, co może prowadzić do poważnych konsekwencji w praktyce. Różnice w oznaczeniach mogą na przykład skutkować niewłaściwą instalacją urządzeń, co zagraża bezpieczeństwu użytkowników. Warto zwrócić uwagę, że poprawne rozumienie schematów elektrycznych opiera się na znajomości standardów branżowych, takich jak PN-EN 50010, które regulują sposób oznaczania i stosowania wyłączników RCD. Dlatego ważne jest, aby przed podjęciem decyzji w zakresie oznaczeń instalacyjnych dokładnie przestudiować właściwe dokumenty oraz szkolenia, które pozwolą na właściwe interpretowanie symboliki i unikanie niebezpiecznych błędów w instalacjach elektrycznych.

Pytanie 20

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. działa prawidłowo.
B. jest uszkodzone.
C. występuje zwarcie między zwojami.
D. izolacja jest uszkodzona.
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 21

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 6,6 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 3,8 Ω, 4,0 Ω czy 6,6 Ω, jest nieodpowiedni w kontekście ochrony przeciwporażeniowej w systemach elektrycznych. Wartości te są wyższe niż dopuszczalne limity określone w normach, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. W przypadku impedancji powyżej 2,3 Ω, czas reakcji wyłącznika nadprądowego może być wydłużony. Na przykład, wyłączniki o wyższych wartościach impedancji pętli zwarcia mogą zadziałać z opóźnieniem, co w sytuacji kontaktu z uszkodzoną instalacją stwarza ryzyko porażenia prądem. Powszechnym błędem myślowym jest założenie, że im wyższa impedancja, tym lepsza ochrona. W rzeczywistości, skuteczność ochrony przed porażeniem prądem elektrycznym jest ściśle związana z szybkością reakcji systemów zabezpieczających. W obwodach o napięciu 230/400 V zastosowanie wyłączników B20 bez odpowiedniego nadzoru nad wartością impedancji pętli zwarcia może prowadzić do sytuacji, w której użytkownik doświadczy porażenia prądem, zanim zasilanie zostanie odcięte. Dlatego ważne jest, aby regularnie przeprowadzać pomiary i poddawać instalacje elektryczne ocenie, co zgodne jest z wymaganiami normatywnymi, takimi jak PN-EN 61140, które jasno określają maksymalne wartości impedancji dla skutecznej ochrony przeciwporażeniowej.

Pytanie 22

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór odpowiedzi innej niż B może wynikać z nieporozumienia co do funkcji narzędzi przedstawionych na pozostałych rysunkach. Często ludzie mylą szczypce do zdejmowania izolacji z innymi narzędziami, takimi jak szczypce uniwersalne czy obcinaki, które nie są przeznaczone do precyzyjnego usuwania izolacji z przewodów. Szczypce uniwersalne mogą być używane do różnych zadań, ale nie są zoptymalizowane do formowania oczek, co może prowadzić do uszkodzenia rdzenia przewodu. Zastosowanie niewłaściwego narzędzia może skutkować nieodpowiednim przygotowaniem przewodów, co w konsekwencji wpływa na jakość połączenia elektrycznego i może prowadzić do awarii instalacji. Ponadto, istnieje ryzyko, że użycie takich narzędzi może naruszyć normy bezpieczeństwa, co jest niezgodne z praktykami branżowymi. Kluczowym błędem myślowym jest założenie, że każde narzędzie do cięcia lub obróbki przewodów może być stosowane zamiennie bez względu na jego specyfikę, co zdecydowanie nie jest zgodne z najlepszymi praktykami w dziedzinie elektryki.

Pytanie 23

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 24

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik kolejności faz.
D. Przekaźnik czasowy.
W przypadku niepoprawnych odpowiedzi, warto przyjrzeć się merytorycznym podstawom, które prowadzą do błędnych konkluzji. Czujnik kolejności faz, mimo że również znajduje zastosowanie w instalacjach elektrycznych, ma zupełnie inny cel niż lampka sygnalizacyjna. Jego zadaniem jest monitorowanie i zabezpieczanie urządzeń przed nieprawidłowym działaniem wynikającym z błędnej sekwencji zasilania. Dlatego, chociaż obydwa urządzenia są istotne dla prawidłowego funkcjonowania instalacji, to ich funkcjonalność i zastosowanie są różne. Przekaźnik czasowy z kolei służy do automatyzacji procesów załączania i wyłączania urządzeń w określonym czasie, co również nie ma związku z sygnalizowaniem stanu zasilania. Regulator temperatury, choć istotny w kontekście bezpieczeństwa urządzeń elektrycznych, nie ma żadnego związku z monitorowaniem napięcia w fazach. Typowym błędem myślowym jest mylenie funkcji różnych urządzeń w rozdzielnicach elektrycznych, co może prowadzić do niewłaściwego doboru sprzętu i w konsekwencji do awarii instalacji. Wiedza o funkcjonalności poszczególnych elementów wyposażenia rozdzielnicy jest kluczowa, aby stosować je w sposób efektywny i zgodny z obowiązującymi normami branżowymi.

Pytanie 25

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Założyć gumowy wężyk na uszkodzoną izolację przewodu
C. Pomalować uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 26

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 27

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
B. weryfikacja oznaczeń obwodów oraz zabezpieczeń
C. pomiar rezystancji uziemienia
D. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
W kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów pełni kluczową rolę w zapewnieniu jej prawidłowego funkcjonowania oraz bezpieczeństwa. Sprawdzanie oznaczeń obwodów i zabezpieczeń jest niezwykle istotne, ponieważ umożliwia właściwe zidentyfikowanie obwodów zasilających. Niewłaściwe oznaczenia mogą prowadzić do poważnych błędów w eksploatacji, takich jak przypadkowe wyłączenie zasilania czy trudności w identyfikacji obwodów w sytuacjach awaryjnych. Również ocena dostępu do urządzeń jest kluczowa, ponieważ instalacje elektryczne muszą być łatwo dostępne dla personelu serwisowego oraz użytkowników. Zbyt mała przestrzeń lub trudności w dostępie mogą uniemożliwić prawidłową konserwację, co zwiększa ryzyko awarii. Sprawdzanie poprawności oznaczenia przewodów neutralnych i ochronnych jest kolejnym elementem, który jest niezbędny w celu zapewnienia prawidłowego działania instalacji oraz ochrony przed porażeniem elektrycznym. Normy, takie jak PN-IEC 60364, kładą nacisk na znaczenie poprawnego oznakowania przewodów, co jest kluczowe dla prawidłowej identyfikacji ich funkcji oraz zapewnienia bezpieczeństwa użytkowników. Dlatego w kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów jest niezbędny i nie można ich pomijać.

Pytanie 28

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 29

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 30

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
B. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
D. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
Wybierając jedną z niepoprawnych odpowiedzi, można dostrzec kilka kluczowych nieporozumień związanych z kolejnością zamontowanych elementów w rozdzielnicy. Na przykład, w odpowiedzi, w której jako pierwszy wymieniony jest przekaźnik bistabilny, brakuje zrozumienia podstawowych zasad ochrony elektrycznej. Wyłącznik różnicowoprądowy powinien znajdować się na początku, ponieważ jego funkcją jest ochrona przed porażeniem prądem, a nie sterowanie obwodami. Umiejscowienie go na końcu systemu naraża użytkowników na niebezpieczeństwo. Kolejnym błędem jest pominięcie wyłącznika nadprądowego, który jest kluczowy w przypadku zwarcia. W odpowiedziach, w których pojawiają się automaty schodowe lub ochronniki przeciwprzepięciowe na początku listy, wprowadza się zamieszanie w hierarchii zabezpieczeń. Automaty schodowe pełnią inną funkcję, polegającą na sterowaniu oświetleniem w miejscach przejść, a nie na zabezpieczaniu instalacji. Ochronniki przeciwprzepięciowe powinny być umieszczane w późniejszej kolejności, jako dodatkowe zabezpieczenie, a nie jako pierwszy element w rozdzielnicy. Właściwe zrozumienie i kolejność tych urządzeń jest niezbędna do zapewnienia efektywności oraz bezpieczeństwa instalacji elektrycznych, zgodnie z normami branżowymi. Typowe błędy myślowe, takie jak niewłaściwe przypisanie funkcji poszczególnym elementom, mogą prowadzić do niebezpiecznych sytuacji oraz awarii w instalacjach, dlatego tak ważne jest przyswojenie sobie tej wiedzy.

Pytanie 31

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. prądu udarowego zwarciowego.
B. impedancji pętli zwarcia.
C. napięcia dotykowego.
D. rezystancji uziemienia.
Wybór odpowiedzi dotyczącej napięcia dotykowego, impedancji pętli zwarcia lub prądu udarowego zwarciowego wskazuje na pewne nieporozumienia w zakresie podstawowych zasad pomiarów w instalacjach elektrycznych. Napięcie dotykowe odnosi się do różnicy potencjałów, jaką może odczuć osoba dotykająca urządzenia, co nie jest bezpośrednio związane z pomiarem rezystancji uziemienia. Nieprawidłowe zrozumienie tej koncepcji może prowadzić do bagatelizowania ryzyka porażenia prądem, ponieważ nieprawidłowe uziemienie zwiększa napięcie dotykowe, a tym samym ryzyko dla użytkowników. Impedancja pętli zwarcia, z kolei, jest miarą oporu w obwodzie zwarciowym i jest używana do obliczeń zabezpieczeń, a nie do pomiaru wydolności uziemienia. Błędne interpretowanie tych pojęć może prowadzić do nieprawidłowego doboru zabezpieczeń oraz niewłaściwego reagowania w sytuacjach awaryjnych. Prąd udarowy zwarciowy odnosi się do zjawisk zachodzących w momencie zwarcia, a jego pomiar nie jest pierwszym krokiem w analizie bezpieczeństwa instalacji. Niezrozumienie tych zagadnień i ich wzajemnych relacji może prowadzić do krytycznych błędów w projektowaniu oraz konserwacji instalacji elektrycznych.

Pytanie 32

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnika termicznego.
B. Przekaźnika impulsowego.
C. Wyłącznika nadmiarowo-prądowego.
D. Wyłącznika różnicowoprądowego.
Pomimo że odpowiedzi sugerujące przekaźnik impulsowy, wyłącznik nadmiarowo-prądowy oraz przekaźnik termiczny mogą na pierwszy rzut oka wydawać się odpowiednie, każda z nich opiera się na mylnych założeniach dotyczących funkcji i zastosowania tych urządzeń. Przekaźnik impulsowy jest używany głównie do automatyzacji procesów, a nie do ochrony przed porażeniem prądem. Jego działanie opiera się na generowaniu impulsów elektrycznych w odpowiedzi na sygnały z innych urządzeń, co znacząco różni się od funkcji wyłącznika różnicowoprądowego. Z kolei wyłącznik nadmiarowo-prądowy jest zaprojektowany do ochrony obwodów przed przeciążeniem prądowym, co oznacza, że reaguje na nadmiar prądu, ale nie jest w stanie wychwycić niewielkich wycieków prądu, jak to czyni wyłącznik różnicowoprądowy. Przekaźnik termiczny również działa na zupełnie innych zasadach, monitorując temperaturę i chroniąc przed przegrzaniem silników i innego wyposażenia elektrycznego, nie mając nic wspólnego z ochrona przed porażeniem. Te podstawowe różnice pokazują, że zastosowanie każdego z tych urządzeń jest inne i dostosowane do specyficznych warunków operacyjnych, co może prowadzić do nieporozumień w zrozumieniu ich roli w systemie elektrycznym. Dlatego ważne jest, aby dobrze rozumieć funkcje i zastosowania każdego z tych urządzeń, aby uniknąć niebezpiecznych sytuacji oraz zapewnić odpowiedni poziom ochrony w instalacjach elektrycznych.

Pytanie 33

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. III
B. I
C. II
D. 0
Odpowiedź III jest prawidłowa, ponieważ oprawy oświetleniowe, które nie mają zacisku ochronnego i są zasilane źródłem napięcia SELV (Safety Extra Low Voltage), należą do klasy ochronności III. Klasa ta oznacza, że urządzenia są zbudowane w taki sposób, aby nie stwarzać zagrożenia dla użytkownika, nawet w przypadku awarii. Warto podkreślić, że napięcie SELV nie przekracza 50 V AC lub 120 V DC, co znacząco zwiększa bezpieczeństwo użytkowania. Przykładem zastosowania opraw oświetleniowych klasy III mogą być lampy LED w miejscach, gdzie istnieje ryzyko kontaktu z wodą, jak łazienki i baseny. Klasa III jest również zgodna z normami IEC 61140 oraz IEC 60598, które regulują aspekty bezpieczeństwa i projektowania opraw oświetleniowych. Integracja opraw tej klasy w instalacjach elektrycznych nie wymaga dodatkowych środków ochrony przed porażeniem prądem, co ułatwia ich stosowanie w obiektach publicznych oraz w budynkach mieszkalnych.

Pytanie 34

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. doboru oraz oznaczenia przewodów
C. układu tablic informacyjnych i ostrzegawczych
D. wartości natężenia oświetlenia w miejscach pracy
Wszystkie inne odpowiedzi są nieprawidłowe w kontekście wymagań dotyczących sprawdzania nowo wykonanych instalacji elektrycznych. Dobór i oznaczenie przewodów jest fundamentalnym aspektem, który zapewnia bezpieczeństwo oraz poprawność działania instalacji. Przewody muszą być odpowiednio dobrane do obciążenia, co jest zgodne z normą PN-IEC 60364, która określa zasady planowania, wykonania oraz odbioru instalacji elektrycznych. Podobnie, dobór zabezpieczeń i aparatury jest kluczowy, aby zapewnić odpowiednią ochronę przed przeciążeniem oraz zwarciem, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami. Niewłaściwy dobór zabezpieczeń może prowadzić do poważnych awarii i zagrożeń, dlatego tak ważne jest, aby ten aspekt został dokładnie skontrolowany. Rozmieszczenie tablic ostrzegawczych i informacyjnych jest także istotne, ponieważ dostępność i widoczność tych informacji mają kluczowe znaczenie dla bezpieczeństwa w przestrzeni roboczej. Niedostateczne oznakowanie może prowadzić do wypadków i nieporozumień, zwłaszcza w kontekście pracy w obiektach przemysłowych. Przykładowo, w obiektach, gdzie używa się substancji niebezpiecznych, obecność informacji o zagrożeniach jest nie tylko wymagana przepisami, ale również kluczowa dla ochrony zdrowia pracowników. Uznanie, że wartości natężenia oświetlenia są równie istotne jak inne elementy instalacji, może prowadzić do błędnego postrzegania priorytetów w zakresie bezpieczeństwa oraz funkcjonalności nowo wykonanych instalacji elektrycznych.

Pytanie 35

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła A
B. żyła B
C. żyła D
D. żyła C
Wybór żyły A, B lub D jako przerwanej może wynikać z kilku błędnych założeń dotyczących pomiarów rezystancji w układzie. Żyła A, będąca częścią obwodu, wykazuje rezystancję 0 w połączeniu z żyłą B oraz D. Sugerowanie przerwy w tej żyły jest nieuzasadnione, ponieważ jej pełna przewodność wskazuje na prawidłowe połączenie. W przypadku żyły B, wynik R_B-C oznaczający nieskończoną rezystancję nie jest wystarczającym dowodem na jej uszkodzenie, ponieważ wymagałoby to dodatkowych pomiarów i analizy całego obwodu. W rzeczywistości, nie można stwierdzić, że żyła B jest uszkodzona na podstawie jednego pomiaru. Żyła D również wykazuje 0 rezystancji w połączeniu z żyłą A, co podważa tezę o jej przerwie. Kluczowym błędem myślowym jest nie dostrzeżenie, że wyniki pomiarów muszą być analizowane w kontekście całego układu, a nie pojedynczych żył. Dlatego ważne jest, aby pamiętać o całkowitej topologii obwodu podczas analizy pomiarów, aby uniknąć mylnych wniosków. W rzeczywistości takie błędy mogą prowadzić do nieprawidłowej diagnozy i kosztownych napraw, co podkreśla znaczenie precyzyjnego podejścia do analizy wyników w praktyce inżynieryjnej.

Pytanie 36

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. miedzianymi umieszczonymi na tynku
B. miedzianymi umieszczonymi pod tynkiem
C. aluminiowymi umieszczonymi na tynku
D. aluminiowymi umieszczonymi pod tynkiem
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 37

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. schodowego.
B. dwubiegunowego.
C. jednobiegunowego.
D. hotelowego.
Wybór odpowiedzi dotyczącej łącznika hotelowego jest nieprawidłowy ze względu na błędną interpretację schematu. Łącznik hotelowy służy do sterowania oświetleniem w sposób dostosowany do potrzeb gości, jednak jego charakterystyka różni się od łącznika schodowego. Odpowiedzi dotyczące łączników jednobiegunowych i dwubiegunowych również są błędne, ponieważ te typy łączników nie posiadają funkcji umożliwiającej sterowanie oświetleniem z wielu punktów. Łącznik jednobiegunowy jest przeznaczony do włączania lub wyłączania obwodu z jednego miejsca, co wyklucza możliwość sterowania z więcej niż jednego punktu. Z kolei łącznik dwubiegunowy, mimo że może kontrolować dwa różne obwody, nie jest zaprojektowany do wspólnej obsługi jednego źródła światła z różnych lokalizacji. Typowym błędem jest mylenie funkcji i zastosowań różnych typów łączników. Prawidłowe podejście do analizy schematów łączników elektrycznych wymaga znajomości ich funkcji oraz kontekstu, w jakim są stosowane. Ważne jest, aby przy wyborze odpowiedniego rozwiązania brać pod uwagę specyfikę instalacji oraz potrzeby użytkowników. Zgodnie z praktykami inżynieryjnymi, właściwe rozróżnienie typów łączników oraz ich zastosowań jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 38

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 39

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. B.
B. A.
C. D.
D. C.
Wybór innego zestawu przyrządów niż amperomierz i woltomierz prowadzi do niepoprawnych wniosków dotyczących pomiaru mocy czynnej silnika. Na przykład, zastosowanie jedynie amperomierza lub woltomierza jest niewystarczające, ponieważ nie dostarcza pełnych informacji niezbędnych do obliczenia mocy czynnej. Amperomierz samodzielnie mierzy tylko natężenie prądu, co nie pozwala na określenie wartości napięcia, a tym samym na obliczenie mocy. Z kolei woltomierz bez amperomierza dostarcza jedynie informacji o napięciu, co również uniemożliwia obliczenie mocy czynnej. Często popełnianym błędem jest ignorowanie współczynnika mocy, który ma kluczowe znaczenie dla obliczeń w obwodach prądu zmiennego. W przypadku zasilania jednofazowego, brak pomiarów obu parametrów oznacza, że nie mamy pełnego obrazu działania urządzenia. Również niektóre odpowiedzi mogą sugerować użycie przyrządów, które mierzą inne parametry, takie jak rezystancja lub pojemność, które nie mają zastosowania w obliczaniu mocy czynnej w kontekście silników elektrycznych. W praktyce, aby uzyskać dokładny pomiar mocy czynnej, konieczne jest stosowanie standardowych metod pomiarowych z użyciem odpowiednich przyrządów, co jest zgodne z normami branżowymi i zapewnia bezpieczeństwo oraz dokładność analiz.

Pytanie 40

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 2,50 Ω
B. 2,75 Ω
C. 1,50 Ω
D. 1,25 Ω
Problemy związane z błędnymi odpowiedziami najczęściej wynikają z nieprawidłowego zrozumienia zasad działania obwodów elektrycznych oraz błędnych obliczeń związanych z prawem Ohma. Użytkownicy mogą mylić jednostki miary lub źle interpretować różnice napięć w obwodzie. Na przykład, jeśli ktoś obliczał impedancję, wykorzystując różne wartości napięcia bez uwzględnienia spadku napięcia, mógłby uzyskać błędne wyniki, takie jak 1,50 Ω czy 1,25 Ω. Takie odpowiedzi mogą wynikać z przeoczenia, że do obliczeń należy używać jedynie różnicy napięcia przy zamkniętym i otwartym wyłączniku, a nie pojedynczych pomiarów. Z kolei wybór 2,75 Ω jako wartości impedancji może oznaczać, że osoba ta nie zrozumiała, jak funkcjonują obwody prądu przemiennego lub nie doceniła wpływu prądu na pomiar. Błędy te mogą również wynikać z braku znajomości praktycznych zastosowań i norm dotyczących instalacji elektrycznych, takich jak PN-IEC 60364. Właściwe obliczenia i zrozumienie wpływu impedancji pętli zwarcia na bezpieczeństwo instalacji elektrycznych są kluczowe dla każdego inżyniera elektryka. Ignorując te zasady, można stworzyć potencjalnie niebezpieczne warunki w obwodach elektrycznych, dlatego dokładność obliczeń i znajomość podstawowej teorii jest niezbędna w tej dziedzinie.