Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 grudnia 2025 00:12
  • Data zakończenia: 20 grudnia 2025 00:15

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. LD
B. FBD
C. SFC
D. IL
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 2

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. pojemnościowy.
B. indukcyjny.
C. ultradźwiękowy.
D. magnetyczny.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 3

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. Ex-NOR
B. Ex-OR
C. NOR
D. OR
Funkcja Ex-OR, znana także jako XOR, jest jedną z podstawowych operacji logicznych wykorzystywanych w systemach cyfrowych i automatyce. Charakteryzuje się tym, że zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jedno z wejść jest prawdziwe. W kontekście drabinki logicznej przedstawionej na rysunku, widzimy, że układ realizuje sumę logiczną wykluczającej lub (o czym świadczy połączenie szeregowe i równoległe styczników). Praktycznie, Ex-OR jest szeroko stosowany w aplikacjach, gdzie istotne jest wykrycie różnicy pomiędzy sygnałami, np. w układach zabezpieczeń, gdzie różne stany wejściowe mogą odpowiadać za różne tryby pracy. W standardach automatyki przemysłowej, takich jak IEC 61131, Ex-OR jest często używany do realizacji zaawansowanych funkcji kontrolnych. Moim zdaniem, zrozumienie tej funkcji jest kluczowe dla każdego automatyka, ponieważ pozwala na projektowanie elastycznych i funkcjonalnych systemów sterowania.

Pytanie 4

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Twoja odpowiedź jest prawidłowa, ponieważ wykres nr 2 doskonale oddaje zasadę działania regulatora z histerezą. W momencie, gdy temperatura spada poniżej dolnej granicy histerezy (89°C), wyjście przekaźnikowe zostaje włączone, co uruchamia element grzewczy. Dzięki temu temperatura znowu wzrasta do poziomu górnej granicy histerezy (91°C), po czym przekaźnik zostaje wyłączony. Takie działanie zapewnia stabilność pracy systemu, unikając zbyt częstych przełączeń, co mogłoby prowadzić do zużycia elementów mechanicznych. W praktycznych zastosowaniach, takich jak ogrzewanie pomieszczeń czy procesy przemysłowe, takie podejście zapewnia efektywność energetyczną i dłuższą żywotność urządzeń. Dobór odpowiedniej histerezy jest kluczowy, aby zbalansować komfort i oszczędność energii. Standardy w branży automatyki, jak np. normy IEC, podkreślają znaczenie tego typu rozwiązań, szczególnie gdy mowa o sterownikach PLC. Warto również pamiętać, że histereza może być różna w zależności od specyficznych wymagań systemu. Moim zdaniem, zrozumienie tej koncepcji to podstawa w pracy z systemami sterowania, gdyż pozwala unikać nadmiernego zużycia energii i przedłuża żywotność urządzeń.

Pytanie 5

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TOF
B. TON
C. TP
D. TONR
Zastosowanie bloku czasowego TON w programowaniu PLC jest kluczowe, gdy chcemy opóźnić włączenie sygnału o określony czas. Na rysunku widać, że sygnał wyjściowy pojawia się z opóźnieniem po aktywacji sygnału wejściowego. TON, czyli Timer On-Delay, idealnie nadaje się do takich zadań. Działa on na zasadzie odliczania czasu od momentu wykrycia sygnału wejściowego, po czym aktywuje sygnał wyjściowy. Jest to standardowy blok czasowy w wielu systemach automatyki, zgodny z normami takimi jak IEC 61131-3. W praktyce, TON stosuje się często w aplikacjach, gdzie konieczne jest zapewnienie stabilności procesu poprzez eliminację chwilowych zakłóceń. Na przykład w systemach transportu taśmowego, gdzie ważne jest, aby taśma ruszyła dopiero po pełnym załadunku. Użycie TON minimalizuje ryzyko błędów związanych z niekontrolowanym uruchomieniem urządzeń. Dobre praktyki zalecają również uwzględnianie marginesu czasowego w programowaniu, by uwzględnić ewentualne opóźnienia w komunikacji między urządzeniami. Moim zdaniem, taki timer jest niezbędnym narzędziem w arsenale każdego automatyka, zapewniając zarówno bezpieczeństwo, jak i efektywność operacyjną systemu.

Pytanie 6

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NC
C. PNP NC
D. NPN NO
Czujnik z wyjściem typu NPN NC działa w taki sposób, że w stanie spoczynku (tzn. gdy nie jest aktywowany) jego wyjście jest zwarte do masy. To oznacza, że prąd płynie od wyjścia czujnika do masy, co jest kluczowe w wielu aplikacjach, gdzie trzeba sygnalizować stan nieaktywności urządzenia. Typ NPN jest popularny w branży przemysłowej, szczególnie w Europie, bo dobrze współpracuje z systemami PLC, które często wymagają sygnałów niskiego poziomu jako aktywnych. Konfiguracja NC (normalnie zamknięte) dodatkowo gwarantuje, że w razie awarii czujnika lub przerwania przewodu, system natychmiast otrzyma sygnał o błędzie, co jest zgodne z zasadami fail-safe. Przykładem zastosowania może być monitoring pozycji bram czy drzwi, gdzie brak przerwania obwodu oznacza ich zamknięcie i bezpieczeństwo. Moim zdaniem, warto zwrócić uwagę na ten typ czujników w aplikacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 7

Czujnik indukcyjny służy do detekcji elementów

A. plastikowych.
B. metalowych.
C. szklanych.
D. drewnianych.
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 8

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. XNOR
B. AND
C. NAND
D. OR
Na rysunku widzimy schemat, który realizuje funkcję logiczną NAND. To jest dość popularna operacja w logice cyfrowej, szczególnie w układach sterowania przemysłowego. Operacja NAND jest kombinacją operacji AND i NOT - daje wynik prawdziwy, jeżeli przynajmniej jeden z jej wejść jest fałszywy. W praktyce oznacza to, że wyjście będzie wyłączone tylko wtedy, gdy oba wejścia są w stanie wysokim (1). Ten rodzaj logiki jest często stosowany w projektowaniu zabezpieczeń, gdzie konieczne jest wyłączenie systemu w przypadku odczytu niepożądanych stanów na wejściach. W codziennej pracy inżynierskiej, bramka NAND jest uważana za jedną z najczęściej używanych, bo pozwala na realizację dowolnej funkcji logicznej przy użyciu odpowiednich kombinacji. Dodatkowo, z mojego doświadczenia, w układach sterowania PLC, stosowanie NAND jest efektywne i oszczędza miejsce oraz zasoby, co jest zgodne z dobrymi praktykami projektowania.

Pytanie 9

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 10

Wskaż oznaczenie literowe gwintu metrycznego.

A. W
B. S
C. Tr
D. M
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 11

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika synchronicznego RS z dominującym wejściem R
B. Blok przerzutnika synchronicznego RS z dominującym wejściem S
C. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
D. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
Wybór przerzutnika synchronicznego lub przerzutnika z dominującym wejściem S mógł wynikać z pewnych błędnych założeń. Przerzutniki synchroniczne działają w oparciu o sygnał zegarowy, co w tym kontekście nie ma zastosowania, ponieważ diagram wskazuje na działanie asynchroniczne, czyli niezależne od zegara. Z kolei wybór przerzutnika z dominującym wejściem S mógł sugerować, że priorytet jest przyznawany wejściu S, jednak na diagramie wyraźnie widać, że to wejście R ma przewagę, co widać po zmianie stanu wyjścia Q zgodnie z aktywnością wejścia R. Takie podejście jest mylące, szczególnie w sytuacjach, gdzie ważna jest natychmiastowa reakcja systemu na sygnały sterujące. Często spotykanym błędem jest przyjmowanie, że wszystkie przerzutniki RS działają na podobnych zasadach, jednak różnice w ich zachowaniu mogą być kluczowe dla poprawnego działania układu. Dlatego ważne jest zrozumienie ich specyfiki oraz praktyczne stosowanie się do standardów i zasad projektowania układów logicznych. Jeśli zrozumiesz te różnice, unikniesz błędów w projektowaniu i implementacji oprogramowania sterowników PLC, co jest kluczowe w świecie automatyzacji przemysłowej.

Pytanie 12

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

Lp.Zakres pracTermin wykonania
1Śruby mocująceSprawdzenie momentu dokręceniaPo pierwszej godzinie pracy
2ZbiornikOpróżnianie zbiornikaPo każdej pracy dłuższej niż 1 h
3Filtr ssawnyCzyszczenieCo 100 h
WymianaW razie konieczności
4OlejWymianaPo pierwszych 100 h
Co 300 h
Sprawdzanie stanuRaz w tygodniu
A. Co godzinę.
B. Co 100 godzin.
C. Raz w tygodniu.
D. Co 300 godzin.
To, że wybrałeś odpowiedź 'Co 100 godzin' jako prawidłową, świadczy o twojej umiejętności prawidłowego analizowania harmonogramów konserwacyjnych. W tabeli wyraźnie podano, że czyszczenie filtra ssawnego powinno się odbywać co 100 godzin pracy. To nie jest przypadkowy wybór; jest to część standardowych procedur konserwacyjnych, które pomagają w utrzymaniu optymalnej wydajności maszyn. Regularne czyszczenie filtra ssawnego co 100 godzin pozwala na uniknięcie problemów związanych z zanieczyszczeniem systemu, takich jak zmniejszenie mocy ssania czy awarie pompy. Z mojego doświadczenia wynika, że takie podejście znacząco wydłuża żywotność sprzętu i zmniejsza koszty związane z naprawami. W branży powszechnie stosuje się zasadę, że regularna konserwacja jest tańsza i bardziej efektywna niż naprawy awaryjne. Dlatego warto zawsze pamiętać o harmonogramie konserwacji i nie pomijać żadnych jego punktów. Filtry są kluczowym elementem systemów ssawnych i ich stan ma bezpośredni wpływ na wydajność całego układu. Stąd też, takie regularne czyszczenie jest nie tylko zalecane, ale wręcz konieczne dla zachowania pełnej funkcjonalności urządzeń. Odpowiednia konserwacja to również dbałość o bezpieczeństwo eksploatacji, co w dłuższej perspektywie przekłada się na lepsze wyniki finansowe i operacyjne.

Pytanie 13

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Sekcja przełącznika
1234
Sygnał sterujący0 ÷ 5 VOFFONOFFOFF
0 ÷ 10 VOFFOFFOFFOFF
0 ÷ 20 mAONOFFOFFOFF
4 ÷ 20 mAONONONON
Rodzaj odbiornikarezystancyjny----
rezystancyjno-indukcyjny
(0,7 ≤ cos φ ≤ 0,9)
----
A. 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF
B. 1 – OFF, 2 – ON, 3 – OFF, 4 – OFF
C. 1 – ON, 2 – ON, 3 – ON, 4 – ON
D. 1 – OFF, 2 – OFF, 3 – OFF, 4 – OFF
Odpowiedź 2 jest prawidłowa, ponieważ dla sygnału sterującego o zakresie 0 ÷ 20 mA ustawienie sekcji przełącznika powinno być w pozycji: 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF. Tabela jasno to wskazuje. Ta konkretna kombinacja ustawień przełącznika pozwala na poprawne odczytywanie i interpretację sygnału prądowego o podanym zakresie. W praktyce, sygnały 0–20 mA są szeroko stosowane w systemach automatyki przemysłowej, ponieważ są mniej podatne na zakłócenia i mogą być przesyłane na większe odległości bez znaczącej utraty jakości. Standard 0–20 mA, a także podobny 4–20 mA, jest jednym z najstarszych i najczęściej używanych protokołów w przemyśle. Przykładowo, w układach kontroli temperatury sygnał 0–20 mA może być użyty do sterowania zaworem regulacyjnym na podstawie odczytów z czujnika temperatury. Ważne jest również, aby pamiętać o odpowiednim kalibrowaniu czujników i urządzeń, aby zapewnić precyzyjne pomiary i sterowanie. Dobrą praktyką jest regularne sprawdzanie zgodności urządzeń z wymaganiami technicznymi i normami, co zapewnia niezawodność i bezpieczeństwo systemu.

Pytanie 14

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. parametrów ekonomicznych.
B. dopuszczalnego spadku napięcia.
C. skuteczności ochrony przeciwporażeniowej.
D. obciążalności prądowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 15

Element przedstawiony na rysunku to

Ilustracja do pytania
A. pirometr.
B. czujnik pojemnościowy.
C. czujnik rezystancyjny.
D. termometr rtęciowy.
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 16

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. położenie przełącznika trybu pracy sterownika PLC.
B. kolejność podłączeń elementów wyjściowych do sterownika.
C. kolejność podłączeń elementów wejściowych do sterownika.
D. prawidłowość podłączeń przewodów ochronnych w układzie.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest kluczowe dla zapewnienia bezpieczeństwa każdego systemu elektrycznego, w tym układów z sterownikami PLC. Przewody ochronne są częścią systemu zabezpieczającego przed porażeniem prądem elektrycznym. Ich głównym zadaniem jest odprowadzenie potencjalnie niebezpiecznego prądu do ziemi, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce oznacza to, że w przypadku wystąpienia awarii, np. przebicia izolacji przewodu fazowego, wszelkie niebezpieczne napięcia są natychmiastowo sprowadzone do ziemi. Z tego powodu, przed uruchomieniem układu regulacji opartego na PLC, ważne jest, aby upewnić się, że przewody ochronne są prawidłowo podłączone. Standardy branżowe, takie jak normy IEC czy EN, podkreślają wagę prawidłowego uziemienia i ochrony przed porażeniem. Moim zdaniem, ignorowanie tego kroku to jak chodzenie po linie bez siatki bezpieczeństwa. Pamiętajmy, że w dziedzinie elektryki bezpieczeństwo zawsze powinno być na pierwszym miejscu.

Pytanie 17

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, PE
B. L, N, PE
C. L, N
D. N, PE
Odpowiedź z przewodami L i N jest prawidłowa, ponieważ urządzenie 1-fazowe wymaga podłączenia do źródła zasilania obejmującego przewód fazowy (L) oraz neutralny (N). Symbol, który widzisz, to oznaczenie podwójnej izolacji, co oznacza, że urządzenie nie wymaga podłączenia przewodu ochronnego (PE). Dzięki temu, masz pewność, że urządzenie jest bezpieczne do użytku bez podłączenia do ziemi. Według standardów, takie urządzenia są konstruowane w taki sposób, by zapewnić ochronę nawet w przypadku awarii izolacji podstawowej. Praktyczne zastosowanie tego znajdziesz w wielu urządzeniach domowych, takich jak suszarki czy golarki elektryczne, które często korzystają z podwójnej izolacji. Takie rozwiązanie jest zgodne z normami IEC i jest szeroko stosowane w branży. Warto pamiętać, że podłączenie tylko przewodów L i N jest standardem w przypadku urządzeń o podwójnej izolacji, a ignorowanie tego mogłoby prowadzić do błędów w instalacji elektrycznej.

Pytanie 18

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. kluczy płaskich.
B. kluczy nasadowych.
C. szczypiec Segera.
D. wkrętaków płaskich.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 19

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 8,5 m
B. 2,2 m
C. 4,2 m
D. 6,4 m
Dobrze to rozgryzłeś. Wysokość podnoszenia cieczy przy prędkości obrotowej n = 1850 1/min i wydajności 550 m³/h to 4,2 m. Z wykresu widać, że dla tej wartości obrotów, krzywa charakterystyczna pompy przecina się w okolicach 4,2 m na osi wysokości podnoszenia. Takie oszacowanie jest zgodne z zasadami projektowania i doboru pomp w praktyce inżynierskiej. Ważne jest, aby zrozumieć, jak parametry takie jak prędkość obrotowa i wydajność wpływają na działanie pompy. W przypadku pomp, ich charakterystyki są kluczowym elementem pozwalającym określić, jak będą działały w różnych warunkach. Znajomość tej zależności jest istotna podczas projektowania systemów pompowych, gdzie należy dążyć do pracy w optymalnym punkcie charakterystyki. Dobrze dobrana pompa zapewnia nie tylko efektywne działanie, ale także mniejsze zużycie energii, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i oszczędności energii w przemyśle.

Pytanie 20

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. modułu wejściowego.
C. zasilacza sterownika PLC.
D. modułu wyjściowego.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 21

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. HDMI
C. USB
D. RS-232
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 22

Do pomiaru średnicy otworu φ 50 z dokładnością do 0,01 mm należy użyć

A. głębokościomierza.
B. czujnika zegarowego.
C. średnicówki mikrometrycznej.
D. przymiaru kreskowego.
Średnicówka mikrometryczna to narzędzie, które idealnie nadaje się do pomiaru średnicy otworu z wysoką precyzją, nawet do 0,01 mm. Dlaczego właśnie ten przyrząd? Średnicówki mikrometryczne są zaprojektowane do wykonywania niezwykle dokładnych pomiarów wewnętrznych, co czyni je nieocenionymi w przemyśle maszynowym, gdzie precyzja jest kluczowa. Dzięki swojej budowie, która obejmuje śrubę mikrometryczną, można uzyskać dokładność i powtarzalność pomiarów, co jest niezbędne w produkcji seryjnej czy przy kontroli jakości. Przykłady zastosowania średnicówki mikrometrycznej to choćby kontrola jakości otworów w elementach silników spalinowych czy w produkcji elementów hydraulicznych, gdzie każda odchyłka od normy może prowadzić do awarii całego systemu. Z mojego doświadczenia, posługiwanie się średnicówką wymaga pewnej wprawy, ale kiedy już opanujesz tę umiejętność, otwierają się przed tobą szerokie możliwości. Ważne jest również, by pamiętać o regularnej kalibracji tego instrumentu, zgodnie z wymaganiami norm ISO, co zapewnia zachowanie dokładności i niezawodności pomiarów.

Pytanie 23

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. pola magnetycznego.
C. naprężeń.
D. temperatury.
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 24

Na którym rysunku przedstawiono zawór odcinający z pokrętłem?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – przedstawiony zawór z pokrętłem to klasyczny zawór odcinający. Jego zadaniem jest całkowite zatrzymanie lub dopuszczenie przepływu medium, najczęściej powietrza lub cieczy technicznej, w układzie pneumatycznym lub hydraulicznym. Pokrętło umożliwia ręczne sterowanie – dzięki niemu operator może precyzyjnie zamknąć lub otworzyć przepływ. W praktyce przemysłowej takie zawory montuje się np. przy zasilaniu siłowników, przed filtrami, reduktorami czy elementami serwisowymi, aby móc bezpiecznie odciąć część instalacji do konserwacji lub naprawy. W konstrukcji zaworów odcinających istotne są szczelność i trwałość uszczelnień – często stosuje się teflonowe lub gumowe gniazda, które zapewniają pełne uszczelnienie nawet przy niskich ciśnieniach. Moim zdaniem warto zwrócić uwagę, że to jedno z podstawowych urządzeń w każdym układzie pneumatycznym – niby proste, ale bez niego trudno byłoby bezpiecznie serwisować maszynę.

Pytanie 25

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. sterującego.
B. pomiarowego.
C. wykonawczego.
D. regulującego.
Symbol przedstawiony na rysunku to symbol silnika elektrycznego, który w automatyce przemysłowej pełni funkcję elementu wykonawczego. Silniki elektryczne są kluczowe w układach automatyzacji, ponieważ przekształcają energię elektryczną w mechaniczną, co pozwala na napędzanie różnych maszyn i urządzeń. W praktyce, kiedy mówimy o elementach wykonawczych, mamy na myśli komponenty, które faktycznie wykonują zadanie, takie jak włączanie taśmy produkcyjnej, obracanie wałka czy podnoszenie ładunku. W układach sterowania, silniki są sterowane przez układy elektryczne, które regulują ich prędkość, kierunek obrotu oraz moment obrotowy. Standardowe praktyki w inżynierii obejmują użycie falowników do płynnej regulacji parametrów silnika. Ważne jest, aby odpowiednio dobrać silnik do aplikacji, biorąc pod uwagę jego moc, napięcie zasilania oraz charakterystykę obciążenia. W systemach automatyki, silniki są często używane w tandemach z przekładniami, co pozwala na zwiększenie momentu obrotowego przy niskiej prędkości, co jest pożądane w wielu aplikacjach przemysłowych. Moim zdaniem, zrozumienie roli elementów wykonawczych, takich jak silniki, jest kluczowe dla projektowania efektywnych i niezawodnych systemów automatyki.

Pytanie 26

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S0:2/WE1 0,1
B. S1:4/WE2 ∞
C. V0:A2/V1:A2 0,1
D. WY1/V0:A1 0,1
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 27

Na podstawie danych w tabeli, dobierz średnicę wiertła potrzebnego do wykonania otworu gwintowanego M5 w elemencie wykonanym z mosiądzu.

Średnice wierteł pod gwinty w różnych materiałach
Średnica gwintuŚrednica wiertła w mm
AluminiumŻeliwo, Brąz, MosiądzStal, Żeliwo ciągliwe, Stopy Zn,
32,32,42,5
3,52,72,82,9
43,13,23,3
4,53,53,63,7
54,04,14,2
5,54,34,44,5
64,74,85,0
75,75,86,0
86,46,56,7
108,18,28,4
............
A. 4,4 mm
B. 4,1 mm
C. 4,0 mm
D. 3,6 mm
Wybór średnicy wiertła na poziomie 4,1 mm dla gwintu M5 w mosiądzu jest idealny i zgodny z normami inżynierskimi. Dlaczego? Otóż, mosiądz, jako materiał o średniej twardości, wymaga odpowiedniej obróbki skrawaniem, by zapewnić trwałość i dokładność gwintu. Gwintowanie to proces, który powinien uwzględniać nie tylko średnicę gwintu nominalnego, ale także właściwości materiału, z którego jest wykonany element. Przy gwintowaniu w mosiądzu stosuje się wiertła o średnicy nieco większej niż w bardziej miękkich materiałach, takich jak aluminium. Wiertło 4,1 mm pozwala na uzyskanie odpowiedniego stosunku skrawania, co jest kluczowe, by uniknąć nadmiernego naprężenia gwintu oraz zapewnić płynność jego pracy. W praktyce, przy obróbce mosiądzu, ważne jest także chłodzenie oraz stosowanie odpowiednich płynów chłodzących, aby zminimalizować zużycie narzędzi i poprawić jakość powierzchni gwintu. Moim zdaniem, dobrze dobrane wiertło to podstawa, zarówno w amatorskiej, jak i profesjonalnej obróbce metali. Pamiętajmy, że wybór odpowiedniego narzędzia jest nie tylko kwestią precyzji, ale także efektywności i ekonomii pracy.

Pytanie 28

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe
B. termoelektryczne.
C. rezystancyjne półprzewodnikowe.
D. bimetalowe.
Pt100 to popularny typ rezystancyjnego czujnika temperatury, który wykonany jest z platyny (stąd oznaczenie Pt). Często używa się go w aplikacjach przemysłowych ze względu na jego precyzję i stabilność. Charakterystyczne dla czujników Pt100 jest to, że przy 0°C mają one rezystancję równo 100 Ω. Zmiana temperatury powoduje zmianę rezystancji, co pozwala na dokładne pomiary. W systemach automatyki, takich jak ten, używa się przetworników, które konwertują zmiany rezystancji na sygnał prądowy, standardowo 4-20 mA. Dlaczego 4-20 mA? Jest to standard przemysłowy, pozwalający na wykrycie awarii (np. złamany kabel daje prąd poniżej 4 mA). Pt100 są preferowane w wielu branżach, zwłaszcza tam, gdzie wymagana jest duża dokładność pomiaru temperatury, np. w przemyśle chemicznym, spożywczym czy farmaceutycznym. Dzięki zastosowaniu platyny, czujniki te charakteryzują się dużą liniowością i szerokim zakresem pomiaru, co czyni je uniwersalnym wyborem dla inżynierów.

Pytanie 29

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. multimetr cyfrowy.
B. opornik dekadowy.
C. autotransformator.
D. silnik prądu stałego.
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 30

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PID
B. P
C. PI
D. PD
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 31

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Omomierz.
B. Amperomierz.
C. Woltomierz.
D. Częstotliwościomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 32

Na ilustracji przedstawiono

Ilustracja do pytania
A. przetwornik PWM.
B. separator sygnałów USB.
C. zadajnik cyfrowo-analogowy.
D. elektroniczny czujnik ciśnienia.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 33

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód C
Ilustracja do odpowiedzi A
B. Przewód D
Ilustracja do odpowiedzi B
C. Przewód A
Ilustracja do odpowiedzi C
D. Przewód B
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 34

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. smarownicę.
B. zawór.
C. filtr.
D. manometr.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 35

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. dolnego i górnego na 1
B. górnego na 1
C. dolnego na 1
D. środkowego na 100
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 36

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. pojemnościowy.
B. indukcyjny.
C. optyczny.
D. magnetyczny.
Odpowiedź optyczny jest prawidłowa, ponieważ w systemach bezpieczeństwa często stosuje się bariery świetlne, które opierają się na technologii optycznej. Tego typu czujniki składają się z nadajnika i odbiornika, które tworzą niewidzialną linię światła, najczęściej podczerwonego. Kiedy coś lub ktoś przecina tę linię, system jest w stanie natychmiast zareagować, na przykład zatrzymać maszynę, co jest kluczowe dla zapewnienia bezpieczeństwa pracowników. W wielu zakładach przemysłowych bariery optyczne są standardem, ponieważ pozwalają na szybkie i skuteczne wykrywanie obecności osób w niebezpiecznych strefach. Co więcej, dzięki różnorodnym konfiguracjom, można je dostosować do specyficznych potrzeb danego stanowiska pracy. Moim zdaniem, zastosowanie technologii optycznej w takich rozwiązaniach jest jednym z najlepszych przykładów na to, jak nowoczesna technologia wpływa na poprawę warunków bezpieczeństwa w przemyśle. Nowoczesne standardy BHP często wymagają stosowania takich rozwiązań, co podkreśla ich znaczenie w dzisiejszym środowisku pracy.

Pytanie 37

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 01011010, OUTPUT - 1001
B. INPUT - 01001001, OUTPUT - 0000
C. INPUT - 01011010, OUTPUT - 0110
D. INPUT - 10001100, OUTPUT - 0000
Nieprawidłowe odpowiedzi wynikają z błędnego zrozumienia zasad konfiguracji separatorów sygnałów w technice automatyzacji. W przypadku, gdy czujnik pracuje w zakresie 0 ÷ 20 mA, zarówno na wejściu, jak i wyjściu sterownika PLC, wybór innych ustawień niż INPUT - 01001001, OUTPUT - 0000, jest niewłaściwy. Niektóre błędne odpowiedzi sugerują ustawienia, które mogłyby pasować do innych typów sygnałów, na przykład napięciowych, co prowadzi do niekompatybilności z zastosowaną topologią. Częstym błędem jest także pomylenie zakresów, co skutkuje błędnymi odczytami lub nawet uszkodzeniem sprzętu. Ponadto, wśród niepoprawnych odpowiedzi można zauważyć brak zrozumienia funkcji DIP switcha, który działa jako przełącznik konfigurujący urządzenie do pracy w określonym zakresie. W praktyce, błędne ustawienia mogą prowadzić do problemów z dokładnością pomiarów, co w systemach automatyki jest nieakceptowalne. Dlatego kluczowe jest świadome dokonywanie wyborów zgodnie ze specyfikacją urządzeń oraz zaleceniami producenta, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 38

Do odkręcania śrub przedstawionych na zdjęciu służy klucz z nasadką o nacięciu

Ilustracja do pytania
A. torx.
B. prostym.
C. krzyżowym.
D. trójkątnym.
Śruby przedstawione na zdjęciu mają charakterystyczne, sześcioramienne gniazdo w kształcie gwiazdy. Klucze torx oznaczane są symbolem T (np. T20, T30) i zostały zaprojektowane tak, aby przenosić większy moment obrotowy bez ryzyka uszkodzenia łba śruby. W przeciwieństwie do tradycyjnych śrub krzyżowych lub prostych, torx zapewnia znacznie lepszy kontakt narzędzia z gniazdem, co zmniejsza efekt tzw. wyślizgiwania się końcówki (cam-out). W praktyce technicznej śruby torx stosuje się w motoryzacji, elektronice, urządzeniach przemysłowych i meblarstwie – tam, gdzie wymagana jest precyzja i trwałość połączenia. Z mojego doświadczenia wynika, że warto mieć w warsztacie pełen zestaw torxów, bo coraz częściej zastępują one klasyczne krzyżaki. Dodatkowo istnieją wersje zabezpieczone (torx z bolcem w środku), które wymagają specjalnego klucza, co chroni przed nieautoryzowanym rozkręceniem urządzeń.

Pytanie 39

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 3
Ilustracja do odpowiedzi A
B. Ilustracja 2
Ilustracja do odpowiedzi B
C. Ilustracja 4
Ilustracja do odpowiedzi C
D. Ilustracja 1
Ilustracja do odpowiedzi D
Na zdjęciu numer 1 przedstawiono zawór szybkiego spustu. Jest to element stosowany w układach pneumatycznych do szybkiego opróżniania przewodów lub komór siłowników po zakończeniu cyklu pracy. Działa on w ten sposób, że po zaniku sygnału sterującego powietrze robocze zostaje natychmiast odprowadzone do atmosfery przez otwarty kanał zaworu, zamiast cofać się przez cały układ. W praktyce pozwala to skrócić czas powrotu tłoka i zwiększyć dynamikę działania systemu. Zawory te mają kompaktową budowę, najczęściej z gwintowanymi przyłączami i symbolem kierunku przepływu wytłoczonym na obudowie. Moim zdaniem to jeden z kluczowych elementów w automatyce pneumatycznej, bo wpływa bezpośrednio na wydajność układu. Stosuje się je m.in. w siłownikach dwustronnego działania, gdzie szybki spust umożliwia błyskawiczne odpowietrzenie komory powrotnej. Typowa konstrukcja zaworu szybkiego spustu wykorzystuje membranę lub kulkę, która reaguje na spadek ciśnienia po stronie sterującej. W instalacjach przemysłowych montuje się go bezpośrednio przy siłowniku, aby maksymalnie skrócić drogę odprowadzania powietrza.

Pytanie 40

Którego z wymienionych przyrządów pomiarowych należy użyć w celu oceny jakości istniejących połączeń elektrycznych w układzie automatyki?

A. megaomomierza.
B. watomierza.
C. omomierza.
D. woltomierza.
Omomierz to bardzo przydatne narzędzie w ocenie jakości połączeń elektrycznych. Dlaczego? Ponieważ mierzy rezystancję, czyli opór elektryczny. W praktyce, kiedy oceniamy połączenia elektryczne, chcemy upewnić się, że przewodzą prąd efektywnie, a to oznacza, że ich rezystancja powinna być jak najniższa. Wyższa rezystancja może wskazywać na słabe połączenia, korozję czy uszkodzenie. Omomierz ułatwia znalezienie problematycznych połączeń. Z mojego doświadczenia, w automatyce, gdzie precyzja i niezawodność są kluczowe, zawsze warto sprawdzić najpierw rezystancję. Standardy branżowe, takie jak IEC, wskazują na konieczność regularnej konserwacji i oceny połączeń elektrycznych właśnie przy użyciu takich mierników. Praktyczne zastosowanie omomierza obejmuje np. sprawdzanie ciągłości obwodu czy weryfikację poprawności montażu w rozdzielnicach. Korzystanie z omomierza to podstawa w diagnostyce i konserwacji sprzętu elektrycznego. Ostatecznie, dobry specjalista potrafi z jego pomocą unikać błędów, które mogłyby prowadzić do awarii systemu."