Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 19 grudnia 2025 17:38
  • Data zakończenia: 19 grudnia 2025 17:58

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm
A. JVR14N431K
B. B72210S0301K101
C. TSV07D471
D. JVRO7N431K
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 2

W skład urządzenia pomiarowego w automatycznym systemie regulacji wchodzi

A. przetwornik z członem wykonawczym
B. przetwornik oraz regulator
C. czujnik oraz przetwornik
D. wyłącznie czujnik
Urządzenie pomiarowe w automatyce to kluczowa sprawa! Składa się z czujnika i przetwornika. Czujnik to ten, który mierzy różne wartości, jak temperatura czy ciśnienie, i przekształca je na sygnał elektryczny. Na przykład, termopara to fajny czujnik, który właśnie tak działa – mierzy temperaturę i daje napięcie, które jest proporcjonalne do tej temperatury. Przetwornik z kolei zmienia ten sygnał elektryczny tak, żeby regulator mógł go zrozumieć. W praktyce to oznacza, że sygnał analogowy, jak na przykład napięcie z czujnika, zamienia się w sygnał cyfrowy, który komputery mogą analizować. Zintegrowany układ czujnika i przetwornika daje super możliwości, jeśli chodzi o monitorowanie i kontrolowanie różnych procesów, co jest mega istotne w wielu branżach, na przykład w przemyśle chemicznym czy automatyce budynkowej. Fajnie jest wiedzieć, że odpowiednie dobieranie czujników i przetworników w automatyzacji zapewnia precyzję i niezawodność systemów regulacji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W zwrotnicy głośnikowej trójdrożnej doszło do uszkodzenia (w jednym elemencie nastąpiła przerwa), w wyniku którego przestał odtwarzać dźwięk głośnik niskotonowy GN. Który element został uszkodzony?

Ilustracja do pytania
A. C1
B. L1
C. C2
D. L2
Cewka L1 w zwrotnicy głośnikowej trójdrożnej pełni kluczową rolę w kierowaniu sygnału niskotonowego do głośnika niskotonowego GN. Jej zadaniem jest filtrowanie wysokich częstotliwości, co pozwala na skuteczne oddzielenie pasma niskotonowego od średnio- i wysokotonowego. Uszkodzenie L1, wskutek przerwy w obwodzie, skutkuje całkowitym brakiem sygnału do głośnika niskotonowego, co prowadzi do jego milczenia. Przykładem praktycznego zastosowania tej wiedzy może być diagnozowanie problemów w systemach audio; jeśli zauważysz, że głośnik niskotonowy nie działa, pierwszym krokiem powinno być sprawdzenie stanu cewki L1. W kontekście standardów branżowych, ważne jest, aby projektowanie zwrotnic opierało się na właściwej analizie impedancji i charakterystyki częstotliwościowej, co znacząco wpływa na jakość dźwięku. Dobrze zaprojektowana zwrotnica nie tylko poprawia wydajność głośników, ale także zapewnia ich długotrwałą niezawodność.

Pytanie 6

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaki to rodzaj filtru?

Ilustracja do pytania
A. Górnoprzepustowy.
B. Pasmowo-zaporowy.
C. Pasmowo-przepustowy.
D. Dolnoprzepustowy.
Wybór odpowiedzi dotyczących filtrów górnoprzepustowych, pasmowo-zaporowych lub pasmowo-przepustowych opiera się na częstotliwościowym zachowaniu filtrów, które jednak w tym przypadku nie odpowiada przedstawionej charakterystyce. Filtr górnoprzepustowy, na przykład, charakteryzuje się obniżonym tłumieniem dla wysokich częstotliwości i znacznym tłumieniem dla niskich, co jest odwrotnością opisanego zachowania. W przypadku filtra pasmowo-zaporowego, jego zadaniem jest eliminacja sygnałów w określonym zakresie częstotliwości, co również nie ma zastosowania w tej sytuacji, gdyż wykres wskazuje na wzrost tłumienia przy wyższych częstotliwościach. Filtry pasmowo-przepustowe z kolei przepuszczają sygnały w określonym paśmie częstotliwości, a ich działanie nie jest zgodne z opisanym wykresem, który jednoznacznie wskazuje na przepuszczanie tylko niskich częstotliwości. Często błędem myślowym jest mylenie tych różnych rodzajów filtrów, zwłaszcza gdy nie analizuje się szczegółowo ich charakterystyk częstotliwościowych. Zrozumienie tych różnic jest kluczowe dla poprawnej realizacji projektów inżynieryjnych i przyczynia się do efektywnego projektowania systemów audio oraz komunikacyjnych.

Pytanie 7

Do jakiego celu wykorzystuje się komparator?

A. sumowania dwóch sygnałów
B. wzmacniania sygnału
C. porównania dwóch napięć
D. filtrowania napięć
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Wartość pojemności kondensatora przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 1 μF
B. 250 μF
C. 100 μF
D. 100 nF
Wybór odpowiedzi 1 μF, 250 μF czy nawet powtórzonej 100 μF może wynikać z pewnych niejasności w temacie kondensatorów. Kondensatory 1 μF są zazwyczaj używane w filtrach wysokoprzepustowych, gdzie mają za zadanie blokować niskie częstotliwości. Z kolei, gdy wybierasz 250 μF, to może być przydatne, ale zazwyczaj potrzebujesz ich do zastosowań, gdzie wymagana jest większa pojemność. To wszystko wiąże się z różnymi parametrami, jak maksymalne napięcie robocze, co jest dość istotne. Czasem takie pomyłki wynikają z nie do końca zrozumiałego oznaczenia pojemności, co jest kluczowe w projektowaniu układów. W praktyce, musisz rozumieć różnice między kondensatorami, żeby podejmować dobre decyzje. I pamiętaj, że te oznaczenia i konwencje mają znaczenie, bo pomagają w stabilności i niezawodności układów. Zrozumienie tych różnic to naprawdę ważna rzecz w elektronice.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Dioda LED w zakresie długości fali 940 nm generuje promieniowanie elektromagnetyczne

A. podczerwone
B. żółte
C. zielone
D. ultrafioletowe
Dioda LED emitująca promieniowanie elektromagnetyczne o długości fali 940 nm należy do zakresu promieniowania podczerwonego. Promieniowanie to jest niewidoczne dla ludzkiego oka, ale ma szerokie zastosowanie w technologii, w tym w telekomunikacji, czujnikach ruchu oraz w urządzeniach zdalnego sterowania. Na przykład, diody LED emitujące podczerwień są często wykorzystywane w pilotach do telewizorów oraz w systemach monitoringu, gdzie przesyłają dane bezprzewodowo. Warto zaznaczyć, że zakres podczerwieni rozciąga się od 700 nm do 1 mm, co czyni długość fali 940 nm idealnym kandydatem do zastosowań w technologii IR. Zrozumienie tego rodzaju promieniowania jest istotne dla projektowania systemów optycznych oraz elektronicznych, które wykorzystują detekcję na podczerwień, co ma kluczowe znaczenie w nowoczesnych rozwiązaniach technologicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W przypadku, gdy obraz na ekranie LCD laptopa jest słaby, mało widoczny, dostrzegalny jedynie po podświetleniu lub pod kątem, a obraz na zewnętrznym monitorze działa poprawnie, to przyczyną tej awarii z pewnością nie jest uszkodzenie

A. dysku twardego
B. taśmy matrycy
C. inwertera
D. świetlówki matrycy
Uszkodzenie świetlówki matrycy, taśmy matrycy czy inwertera może wywołać sytuację, w której obraz na matrycy LCD jest ciemny lub słabo widoczny, nawet jeśli zewnętrzny monitor działa prawidłowo. Świetlówki są kluczowe, gdyż odpowiadają za podświetlenie matrycy LCD, a ich uszkodzenie skutkuje brakiem odpowiedniego oświetlenia, co objawia się ciemnym ekranem. Inwerter z kolei przetwarza napięcie potrzebne do zasilania świetlówek; jego uszkodzenie również prowadzi do problemów z podświetleniem. Taśma matrycy, która łączy matrycę z płytą główną, jest podstawowym elementem komunikacyjnym, a jej uszkodzenie może skutkować brakiem sygnału wideo lub fragmentarycznym wyświetlaniem obrazu. Typowym błędem myślowym jest przypisanie problemu z wyświetlaniem obrazu do dysku twardego, podczas gdy w rzeczywistości to komponenty związane z wyświetlaniem są odpowiedzialne za jego jakość. W diagnostyce sprzętowej ważne jest, aby rozróżniać komponenty oraz ich funkcje, co pozwala na skuteczniejsze podejście do rozwiązywania problemów i efektywniejszą naprawę urządzeń.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Na podstawie przedstawionych pomiarów stanów logicznych można stwierdzić, że uszkodzeniu uległa bramka oznaczona cyfrą

Ilustracja do pytania
A. 4
B. 1
C. 3
D. 2
Odpowiedzi wskazujące na inne bramki są wynikiem błędnych założeń dotyczących analizy stanów logicznych. W przypadku bramki logicznej, kluczowe jest zrozumienie, jak działają różne typy bramek, takie jak AND, OR, czy NOT. W szczególności, bramka 1, 2 oraz 4 mogłyby być identyfikowane jako uszkodzone, gdyby analizowane pomiary były niewłaściwie interpretowane. Typowym błędem myślącym jest zakładanie, że każda bramka, która ma niezrozumiałe wyniki, musi być uszkodzona, zamiast dokonać oceny na podstawie rzeczywistych stanów logicznych. Dobrą praktyką przy diagnozowaniu uszkodzeń jest zawsze porównywanie wyników z oczekiwanym stanem, co w przypadku bramki NOT jest wyraźnie określone. Ważne jest również zrozumienie, że nieprawidłowości na wyjściu bramki nie zawsze są jednoznaczne z uszkodzeniem; mogą one wynikać z problemów z zasilaniem, błędów w połączeniach czy nawet uszkodzeń komponentów w okolicy. Stosowanie metodyki diagnostycznej, jak np. analiza schematów połączeń i wykorzystanie oscyloskopów, może znacznie ułatwić ten proces. Pamiętaj, że w elektronice cyfrowej precyzyjna diagnostyka jest kluczowa dla prawidłowego funkcjonowania układów.

Pytanie 16

Do zasilania urządzenia, którego dane techniczne podano w ramce, należy zastosować zasilacz o parametrach:

Dane techniczne:
  • zasilanie nominalne: 19 V/DC
  • pobór prądu: 3 A
  • zakres temperatur: od -20°C do +70°C
  • wilgotność względna bez kondensacji 5÷95%
  • wymiary: 160 x 46 x 19 mm
  • obudowa w wersji natynkowej IP55
  • wtyk 1.7/5.5
A. 19 V, 3,42 A
B. 12 V, 3,00 A
C. 24 V, 3,42 A
D. 19 V, 2,15 A
Dobór nieodpowiednich parametrów zasilacza może prowadzić do wielu niepożądanych skutków. W przypadku odpowiedzi 12 V, 3,00 A, napięcie jest zbyt niskie w porównaniu do wymaganego 19 V, co oznacza, że urządzenie może nie uruchomić się lub działać w sposób niestabilny. Zbyt niskie napięcie może prowadzić do uszkodzenia układów elektronicznych, które są dostosowane do pracy przy wyższym napięciu. Odpowiedź 24 V, 3,42 A, mimo że prąd jest odpowiedni, napięcie jest zbyt wysokie, co również może skutkować uszkodzeniem urządzenia. W przypadku zasilania elektronicznego, istnieje zasada, że napięcie zasilacza powinno być zgodne z wymaganiami urządzenia, a przekroczenie nominalnych wartości często prowadzi do awarii. Wreszcie, w przypadku 19 V, 2,15 A, choć napięcie spełnia wymogi, prąd jest zbyt niski w porównaniu do 3 A wymaganych przez urządzenie. Zasilacze, które nie dostarczają wystarczającej mocy, mogą skutkować niestabilnym działaniem, co jest szczególnie niebezpieczne w zastosowaniach krytycznych, gdzie urządzenia muszą działać bez zakłóceń. Dlatego kluczowe jest, aby przy wyborze zasilacza nie tylko zwracać uwagę na napięcie, ale także na prąd, aby zapewnić optymalne warunki pracy urządzenia oraz jego długowieczność.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Długość adresu IPv4 wynosi ile bitów?

A. 32 bity
B. 4 bity
C. 16 bitów
D. 8 bitów
Adres IPv4 ma długość 32 bitów, co oznacza, że składa się z czterech oktetów, z których każdy ma 8 bitów. Ta konstrukcja pozwala na reprezentację 2^32 (czyli 4 294 967 296) unikalnych adresów IP, co jest kluczowe dla działania Internetu. Przykładowo adresy takie jak 192.168.1.1 czy 10.0.0.255 są przykładami zapisu adresów IPv4. W praktyce adresy IPv4 są używane do identyfikacji urządzeń w sieciach komputerowych, co umożliwia komunikację oraz wymianę danych między nimi. Standardy określające format adresów IP, takie jak RFC 791, definiują zasady przydzielania adresów oraz ich struktury, co jest istotne w kontekście zarządzania sieciami. Wiedza o długości adresu IPv4 jest również ważna przy konfiguracji routerów, ustawieniach firewalla oraz w procesach diagnostyki sieci, gdzie zrozumienie adresacji IP jest kluczowe dla rozwiązywania problemów z łącznością.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
B. nie przekazuje składowej stałej sygnału
C. działa jak zwarcie dla sygnału stałego
D. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
Kiedy analizujemy odpowiedzi, które mogą wydawać się trafne na pierwszy rzut oka, łatwo jest popaść w pułapki myślowe, które prowadzą do błędnych wniosków. W przypadku pierwszej odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, musimy zrozumieć, że zwarcie oznacza, iż sygnał nie może przejść przez kondensator. W rzeczywistości, kondensator nie przepuszcza składowej stałej, a nie jest tożsame z zwarciem. Druga odpowiedź, twierdząca, że kondensator nie przenosi składowej stałej sygnału, jest zbliżona do prawdy, ale nie oddaje pełnego kontekstu, w jakim kondensatory są używane. Wyklucza to zrozumienie ich roli w obwodzie, jako urządzeń, które mogą być używane do separacji sygnałów. Trzecia odpowiedź, mówiąca o kondensatorze jako przerwie dla sygnału o dużej częstotliwości, jest myląca, ponieważ kondensatory w rzeczywistości przewodzą składowe zmienne, a ich reaktancja zmniejsza się wraz ze wzrostem częstotliwości. Ostatnia opcja, która porównuje kondensator do diody, jest nieprecyzyjna, ponieważ kondensatory nie przewodzą prądu w jednym kierunku, tylko przechowują ładunek, a ich działanie jest całkowicie odmienne. Dlatego ważne jest, aby zrozumieć zasady działania kondensatorów, ich zastosowanie w obwodach oraz jak mogą wpływać na różne składowe sygnału, aby unikać typowych błędów myślowych w analizie układów elektronicznych.

Pytanie 21

Do wejścia Z2 centrali alarmowej podłączono czujkę ruchu typu NC (patrz rysunek). Który typ linii należy ustawić przy programowaniu danego wejścia?

Ilustracja do pytania
A. 2EOL/NC
B. NC
C. 3EOL/NC
D. EOL
Wybór typów linii, takich jak EOL, NC czy 3EOL/NC, może prowadzić do nieprawidłowej konfiguracji systemu alarmowego, co z kolei wpływa na jego działanie. W przypadku czujek ruchu typu NC, użytkownicy mogą pomylić się, ustawiając typ linii tylko na NC, co nie uwzględnia monitorowania stanu linii. Typ linii EOL zazwyczaj stosuje się w systemach, które nie wymagają detekcji zarówno przerwy, jak i zwarcia, co czyni tę opcję niewłaściwą dla czujek NC, gdzie te aspekty są kluczowe. Natomiast 3EOL/NC, mimo że także obejmuje detekcję zwarcia, wprowadza dodatkową komplikację w postaci użycia trzech rezystorów, co może być zbędne i nieefektywne w prostszych instalacjach. Takie podejście może skutkować fałszywymi alarmami lub, co gorsza, brakiem reakcji systemu w momencie rzeczywistego zagrożenia. Kluczowe jest, aby na etapie projektowania i konfiguracji systemów alarmowych każdy element był dostosowany do specyficznych potrzeb oraz zasady działania zastosowanych czujników. Ignorowanie tych zasad może prowadzić do wielu problemów w eksploatacji systemu, a co za tym idzie, do niewłaściwego zabezpieczenia chronionego obiektu.

Pytanie 22

Dołączenie obciążenia R do przedstawionego na rysunku dzielnika napięcia

Ilustracja do pytania
A. spowoduje wzrost napięcia na rezystorze R2
B. nie zmieni wartości napięcia na R2
C. spowoduje spadek napięcia na rezystorze R2
D. spowoduje wzrost lub spadek napięcia na rezystorze R2, zależnie od wartości R
Dołączenie obciążenia R równolegle do rezystora R2 w dzielniku napięcia powoduje spadek napięcia na R2. Wynika to z faktu, że dodanie rezystora obniża całkowitą rezystancję układu, co prowadzi do zwiększenia przepływającego przez obwód prądu. Zgodnie z prawem Ohma, napięcie na rezystorze jest iloczynem prądu i jego rezystancji, stąd większy prąd wywołuje mniejsze napięcie na R2, które jest teraz dzielone z rezystorem R. W praktyce, taki układ jest często wykorzystywany w obwodach pomiarowych, gdzie zmieniające się obciążenie musi być uwzględnione w obliczeniach. Kluczowe jest, aby dobrze rozumieć zasady działania dzielników napięcia, co jest standardową praktyką w projektowaniu układów elektronicznych. Tego rodzaju analizy są niezbędne w kontekście inżynierii elektrycznej i elektroniki, gdzie precyzyjne zarządzanie napięciami i prądami jest kluczowe dla stabilności i wydajności systemu.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Parametry techniczne podane w tabeli określają czujkę PIR

Parametry techniczne:
• Metoda detekcji: PIR
• Zasięg detekcji: 24 m (po 12 m na każdą stronę)
• Ilość wiązek: 4 (po 2 na każdą stronę)
• Zasilanie: 10 ÷ 28 V
• Pobór prądu: 38 mA (maks.)
• Temperatura pracy [st. C]: -20 do +50
• Stopień ochrony obudowy: IP55
• Wysokość montażu: 0,8 ÷1,2 m
• Masa: 400 g
A. tylko wewnętrzna o napięciu zasilania 12 V
B. zewnętrzna o wysokości montażu 0,8-1,2 m
C. zewnętrzna o poborze prądu 50 mA
D. tylko wewnętrzna o wysokości montażu 0,8-1,2 m
Odpowiedź "zewnętrzna o wysokości montażu 0,8-1,2 m" jest prawidłowa, ponieważ parametry techniczne czujki PIR wskazują, że jej wysokość montażu mieści się w tym zakresie. Wysokość montażu czujek PIR jest kluczowa dla ich efektywności, ponieważ niewłaściwe umiejscowienie może prowadzić do ograniczonego zasięgu detekcji. Właściwy montaż czujki w zakresie od 0,8 do 1,2 m zapewnia optymalne pole widzenia oraz umożliwia efektywne wykrywanie ruchu w obszarze, który chcemy monitorować. Dodatkowo, parametry takie jak stopień ochrony IP55 oraz zakres temperatury pracy od -20 do +50°C wskazują, że czujka jest przystosowana do warunków zewnętrznych, co czyni ją odpowiednim wyborem do zastosowań na zewnątrz budynków. W praktyce, czujki PIR znajdują zastosowanie w systemach alarmowych, monitoringu obiektów oraz automatyzacji budynków, gdzie ich właściwe umiejscowienie jest kluczowe dla skuteczności działania systemu bezpieczeństwa.

Pytanie 28

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. CISC
B. DSP
C. AVR
D. RISC
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 29

W jakim urządzeniu wykorzystuje się przetwornik cyfrowo-analogowy?

A. W magnetowidzie VHS
B. W mierniku cyfrowym
C. W odtwarzaczu CD
D. W generatorze RC
Odtwarzacz CD wykorzystuje przetwornik cyfrowo-analogowy (DAC) do konwersji sygnału cyfrowego na analogowy, co jest niezbędne dla uzyskania dźwięku słyszalnego przez głośniki. Odtwarzacze CD zapisują muzykę w formacie cyfrowym, wykorzystując kodowanie PCM (Pulse Code Modulation), co oznacza, że dźwięk jest reprezentowany jako ciąg bitów. Przetwornik DAC odgrywa kluczową rolę w tym procesie, zamieniając te bity na sygnał analogowy, który następnie można wzmocnić i odtworzyć przez głośniki. To zastosowanie jest zgodne z najlepszymi praktykami w branży audio, gdzie jakość konwersji DAC wpływa bezpośrednio na jakość odtwarzanego dźwięku. Wysokiej jakości przetworniki DAC są często używane w sprzęcie audio wysokiej klasy, a ich znaczenie rośnie w kontekście nowoczesnych formatów audio, takich jak Hi-Res Audio. Przykładami zastosowania DAC w odtwarzaczach CD mogą być urządzenia z możliwością odtwarzania plików audio w formacie FLAC, które wymagają dokładnej konwersji w celu uzyskania pełnej jakości dźwięku.

Pytanie 30

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Maxwella
B. Thomsona
C. Wiena
D. Wheatstone’a
Mostek Thomsona jest zaawansowanym układem pomiarowym, który wykorzystywany jest do precyzyjnego pomiaru małych i bardzo małych rezystancji. Jego działanie opiera się na wykorzystaniu zjawiska odbicia prądu oraz równowagi w układzie, co pozwala na uzyskanie bardzo wysokiej dokładności pomiaru. W praktyce mostek Thomsona znajduje zastosowanie w laboratoriach badawczych, przemysłowych oraz w produkcji elektroniki, gdzie wymagana jest ocena materiałów o niskiej rezystancji, takich jak superprzewodniki czy czułe elementy elektroniczne. Jego konstrukcja umożliwia kompensację wpływu temperatury i innych czynników zewnętrznych, co jest kluczowe w kontekście pomiarów w trudnych warunkach. W praktycznych zastosowaniach, mostek Thomsona jest również wykorzystywany do kalibracji innych urządzeń pomiarowych, co podkreśla jego znaczenie w standardach branżowych oraz dobrych praktykach pomiarowych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby zweryfikować prawidłowe funkcjonowanie piezoelektrycznego przetwornika tensometrycznego w wadze elektronicznej, należy zastosować

A. omomierz
B. amperomierz
C. galwanometr
D. watomierz
Galwanometr jest przyrządem pomiarowym, który służy do wykrywania i pomiaru prądu elektrycznego, nawet w bardzo małych wartościach. W kontekście piezoelektrycznego przetwornika tensometrycznego, galwanometr jest idealnym narzędziem do oceny jego prawidłowego działania, ponieważ pozwala na dokładne pomiary zmian prądu, które są generowane w wyniku deformacji mechanicznej. Piezoelektryczne przetworniki tensometryczne są wykorzystywane w różnych aplikacjach, w tym w wagach elektronicznych, gdzie precyzyjne pomiary są kluczowe. Dobry przykład zastosowania galwanometru w praktyce to kalibracja wagi elektronicznej, gdzie przy pomocy tego urządzenia można określić, czy przetwornik działa w odpowiednich granicach tolerancji. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie dokładności pomiarów, co czyni galwanometr nieocenionym narzędziem w procesie zapewnienia jakości.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaka była moc uszkodzonego zasilacza komputerowego ATX, jeżeli na jego naklejce zawarte są przedstawione znamionowe dane techniczne?

+3,3 V+5 V+12 V-12 V-5 V+5 V
25 A30 A15 A0,8 A0,5 A2,0 A
A. 250 W
B. 400 W
C. 600 W
D. 300 W
Poprawna odpowiedź to 400 W, ponieważ moc zasilacza komputerowego oblicza się poprzez sumowanie iloczynów napięć i prądów na wszystkich jego wyjściach. Standardowe wartości zasilania w zasilaczach ATX obejmują napięcia 3.3 V, 5 V oraz 12 V. Obliczając moc, należy wziąć pod uwagę, jakie prądy są dostępne na poszczególnych liniach. W tym przypadku wartość obliczona wyniosła 410,4 W, co zaokrąglamy do najbliższej dostępnej opcji, czyli 400 W. W praktyce, dobranie odpowiedniego zasilacza jest kluczowe dla stabilności systemu komputerowego oraz bezpieczeństwa podzespołów. W branży IT przyjęto, że zasilacz powinien mieć pewien zapas mocy, aby uniknąć obciążenia jego maksymalnych możliwości, co może prowadzić do przegrzewania oraz skrócenia żywotności urządzenia. Z tego powodu, zasilacz o mocy 400 W jest odpowiedni dla średniej klasy komputera, umożliwiając jednocześnie pewną elastyczność w rozbudowie sprzętu.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaki układ wzmacniający z użyciem tranzystora bipolarnego odznacza się względnie wysokim wzmocnieniem napięciowym oraz znacznym wzmocnieniem prądowym?

A. OE
B. OG
C. OB
D. OC
Wybór odpowiedzi OB, OC lub OG wskazuje na nieporozumienie związane z charakterystyką układów wzmacniających. Układ OB (obrotnik bazy) jest stosunkowo rzadko używany w praktycznych zastosowaniach, ponieważ jego wzmocnienie napięciowe jest niskie, a głównym celem jest przekształcenie sygnału bez znaczącego wzmocnienia. Z kolei układ OC (obrotnik kolektora) charakteryzuje się wysokim wzmocnieniem prądowym, ale niskim wzmocnieniem napięciowym. Jest to konfiguracja, która jest wykorzystywana głównie w przypadku wzmacniaczy mocy, gdzie kluczowe jest dostarczenie dużych prądów do obciążenia, a niekoniecznie wzmocnienie sygnału. W przypadku OG (obrotnik górny) mamy do czynienia z układem, który nie jest standardowo używany w klasycznych układach wzmacniających, co może prowadzić do mylnego wniosku, że ma zastosowanie w kontekście dużego wzmocnienia zarówno napięciowego, jak i prądowego. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują mylenie typów wzmacniaczy i ich podstawowych właściwości. Kluczowe jest zrozumienie, że różne konfiguracje tranzystorów mają różne zastosowania i skutki dla wzmocnienia sygnałów, co jest fundamentalne w inżynierii elektronicznej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.