Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 21:10
  • Data zakończenia: 3 lutego 2026 21:46

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 2

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Nadtynkowych
B. Podtynkowych
C. Wtynkowych
D. Napowietrznych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 3

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Symbol B. oznacza oprawę oświetleniową, która może być montowana na powierzchniach normalnie palnych, co w kontekście zadania jest mylące. Odpowiedź właściwa to symbol D., który jednoznacznie wskazuje możliwość montażu jedynie na podłożu niepalnym. Prawo budowlane oraz normy dotyczące bezpieczeństwa pożarowego jasno określają, że oprawy oświetleniowe muszą być instalowane zgodnie z klasyfikacją materiałów budowlanych, co ma na celu minimalizację ryzyka pożaru. Montaż na podłożach niepalnych gwarantuje, że w przypadku awarii lub uszkodzenia oprawy, nie dojdzie do zapłonu materiałów palnych, co może prowadzić do poważnych incydentów. W praktyce, stosowanie opraw oświetleniowych na powierzchniach palnych jest przeciwwskazane, zwłaszcza w miejscach o dużym ryzyku pożaru, takich jak magazyny czy zakłady przemysłowe. Normy PN-EN 60598-1 oraz PN-EN 60598-2-1 definiują odpowiednie wymogi dotyczące bezpieczeństwa instalacji oświetleniowych, co czyni wybór symbolu D. kluczowym dla zapewnienia bezpieczeństwa.

Pytanie 4

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę III
B. Klasę II
C. Klasę 0
D. Klasę I
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 5

Na którym rysunku przedstawiono uchwyt izolacyjny, przeznaczony do wymiany bezpieczników mocy w złączu elektrycznym budynku?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Uchwyt izolacyjny do wymiany bezpieczników mocy, przedstawiony na zdjęciu B, jest narzędziem, które zapewnia bezpieczeństwo podczas pracy z instalacjami elektrycznymi. Jego konstrukcja jest dostosowana do wyjmowania i wkładania bezpieczników w złączach elektrycznych, co minimalizuje ryzyko porażenia prądem. Przykładowo, w przypadku instalacji, gdzie napięcia mogą być wysokie, stosowanie odpowiedniego uchwytu izolacyjnego jest niezbędne, aby zapewnić ochronę zarówno dla operatora, jak i dla samej instalacji. Użycie takiego narzędzia jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60900, które określają wymogi dotyczące narzędzi elektrycznych do pracy pod napięciem. Uchwyt izolacyjny powinien charakteryzować się również odpowiednią długością, co pozwala na bezpieczne operacje w głęboko osadzonych złączach. Dlatego odpowiedź B jest prawidłowa, gdyż odzwierciedla to, co jest wymagane w praktycznych zastosowaniach w branży elektrycznej.

Pytanie 6

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę neonową.
B. Żarówkę wolframową.
C. Świetlówkę kompaktową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 7

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H05V-U
B. H05V-K
C. H03W-F
D. H03VH-H
Analizując inne oznaczenia przewodów, warto zauważyć, że H03VH-H jest przeznaczone do pracy w warunkach, gdzie przewody są narażone na działanie wysokich temperatur i chemikaliów, jednak ich napięcie robocze wynosi jedynie 300/500 V, co powoduje, że nie spełniają one wymagań dla aplikacji, które wymagają większej odporności na obciążenia elektryczne. Oznaczenie H05V-K, z kolei, odnosi się do przewodów o mniejszej elastyczności, a ich konstrukcja nie jest przystosowana do zastosowań w trudnych warunkach, co ogranicza ich zastosowanie w porównaniu do H05V-U. Ostatnia z rozważanych opcji, H03W-F, również nie jest odpowiednia, ponieważ jest to typ przewodu wykorzystywanego głównie w instalacjach, gdzie odporność na działanie wilgoci lub substancji chemicznych jest priorytetowa. Wybór niewłaściwego oznaczenia często wynika z niepełnej wiedzy na temat specyfikacji technicznych lub mylenia cech przewodów z ich przeznaczeniem. Ważne jest, aby przy doborze przewodów kierować się nie tylko ich oznaczeniem, ale także specyfiką zastosowania, co pozwoli na długoterminową i bezpieczną eksploatację instalacji elektrycznych. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla osób zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych.

Pytanie 8

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Sprawdzenie kierunku obrotów wału silnika
B. Mierzenie prędkości obrotowej
C. Mierzenie temperatury stojana
D. Weryfikacja symetrii napięcia zasilającego
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 9

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Oczkowego.
C. Ampulowego.
D. Nasadowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 10

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Gniazdo typu B jest odpowiednie dla systemu TN-S, ponieważ zapewnia oddzielne zaciski dla przewodów ochronnego PE i neutralnego N. W systemie TN-S, kluczowym aspektem jest zachowanie separacji między tymi dwoma przewodami na całej długości instalacji, co minimalizuje ryzyko zakłóceń i zapewnia bezpieczeństwo użytkowników. Przykład zastosowania gniazda typu B można znaleźć w instalacjach elektrycznych w budynkach komercyjnych, gdzie stosowane są różnorodne odbiorniki elektryczne wymagające niezawodnego uziemienia oraz neutralnego przewodu. Dzięki oddzieleniu tych przewodów, osoby obsługujące gniazdo są lepiej chronione przed porażeniem elektrycznym. Zgodność z normami takimi jak PN-EN 60364-4-41, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym, jest kluczowa dla zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 11

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 12 obwodów.
B. 14 obwodów.
C. 7 obwodów.
D. 5 obwodów.
Wybór innej liczby obwodów gniazd wtyczkowych odzwierciedla typowe nieporozumienia, które mogą występować w procesie analizy schematów instalacyjnych. Często można spotkać się z nadinterpretacją liczby dostępnych gniazd, co prowadzi do błędnych wniosków. Na przykład, odpowiedzi takie jak "7 obwodów" czy "14 obwodów" mogą wynikać z założenia, że każde gniazdo zużywa oddzielny obwód, co nie jest zgodne z praktycznymi standardami instalacji elektrycznej. W rzeczywistości, projektując instalację, należy uwzględnić fakt, że kilka gniazd może być zasilanych z jednego obwodu, jednak to zawsze musi być zgodne z maksymalnymi obciążeniami, jakie przewidziano dla danego obwodu. Warto również wspomnieć, że nieprawidłowe wyrażenia liczby obwodów mogą prowadzić do zagrożeń związanych z przeciążeniem, co jest niezgodne z normami bezpieczeństwa elektrycznego. Podstawą obliczeń powinna być liczba wyłączników nadprądowych przypisanych do gniazd, co w tym przypadku jasno wskazuje na 5 obwodów. Dobrą praktyką w projektowaniu instalacji elektrycznych jest przestrzeganie zasad wynikających z norm, co zapewnia nie tylko bezpieczeństwo, ale również efektywność działania całego systemu. Dlatego ważne jest, aby nie opierać się na domysłach, ale na konkretnej analizie schematów instalacyjnych.

Pytanie 12

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy D
C. Klasy C
D. Klasy B
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 13

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. wielodrutowe
B. jednodrutowe
C. płaskie
D. sektorowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 14

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
B. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 15

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór innych odpowiedzi na to pytanie może wynikać z nieporozumień dotyczących różnicy między różnymi typami schematów elektrycznych. Odpowiedzi, które nie są zgodne z rysunkiem C, mogą sugerować, że użytkownik myli schemat zasadniczy z innymi formami dokumentacji, takimi jak schematy montażowe czy schematy połączeniowe. Schemat montażowy koncentruje się na fizycznej lokalizacji komponentów i ich rozmieszczeniu, natomiast schemat połączeniowy pokazuje konkretne połączenia kabli między elementami, co nie jest celem schematu zasadniczego. Niepoprawne odpowiedzi mogą również wskazywać na błędne zrozumienie koncepcji uproszczenia, które jest kluczowe w schematach ideowych. Użytkownicy mogą mieć tendencję do przeładowania schematu zbyt dużą ilością detali, co prowadzi do utraty jego funkcji jako narzędzia do szybkiego zrozumienia systemu. Ważne jest, aby pamiętać, że celem schematu zasadniczego jest przedstawienie jedynie niezbędnych informacji, które są kluczowe dla funkcjonowania układu. Dobre praktyki w dokumentacji technicznej zalecają, aby schematy były tworzone zgodnie z normami, co pozwala na ich lepsze zrozumienie i zastosowanie w różnych kontekstach inżynieryjnych. W przypadku schematu zasadniczego, odniesienie do norm IEC 61082 powinno być punktem wyjścia dla każdego, kto zajmuje się tworzeniem dokumentacji technicznej.

Pytanie 16

Którego z przedstawionych narzędzi należy użyć przy wymianie uszkodzonej wkładki bezpiecznika mocy typu NH?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór narzędzia C jest jak najbardziej trafiony. Uchwyt bezpiecznikowy, czy jak niektórzy mówią, klucz bezpiecznikowy, został stworzony z myślą o bezpiecznej wymianie wkładek bezpiecznikowych typu NH. To narzędzie daje możliwość precyzyjnego zamocowania wkładki, co zmniejsza ryzyko jakichś nieprzyjemnych sytuacji, gdybyśmy przypadkiem dotknęli czegoś pod napięciem. W elektryce naprawdę ważne są standardy bezpieczeństwa, jak chociażby normy IEC i krajowe przepisy BHP, które mówią, że musimy korzystać z odpowiednich narzędzi podczas pracy z energią. Używając uchwytu bezpiecznikowego, zachowujemy wszystkie procedury, co jest kluczowe, by nie narazić się na porażenie prądem. To narzędzie przydaje się zwłaszcza w instalacjach elektrycznych w budynkach, zarówno mieszkalnych, jak i przemysłowych, przy wymianie bezpieczników, co jest taką rutynową robotą. Dlatego ważne jest, by każdy elektryk znał się na tym narzędziu i umiał je używać.

Pytanie 17

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 10-20 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 18

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. brak podłączenia jednej fazy
C. zamiana miejscami dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 19

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Rysunek oznaczony literą B. przedstawia pierścienie ślizgowe, które pełnią kluczową rolę w silnikach elektrycznych. Są to elementy, które umożliwiają przekazywanie prądu elektrycznego do wirnika, co jest niezbędne do jego prawidłowego funkcjonowania. Pierścienie te są wykonane z materiałów o wysokiej przewodności elektrycznej oraz odporności na zużycie, co pozwala im działać w warunkach dynamicznych, gdzie występują znaczne siły mechaniczne i elektryczne. W zastosowaniach przemysłowych, pierścienie ślizgowe są wykorzystywane w takich urządzeniach jak silniki asynchroniczne, generatory oraz różnego rodzaju maszyny wirujące. Użycie pierścieni ślizgowych jest zgodne z normami międzynarodowymi, takimi jak IEC 60034, które określają wymogi dla silników elektrycznych. Dzięki zastosowaniu tych elementów, zapewniona jest nie tylko efektywność działania, ale także bezpieczeństwo operacyjne urządzeń, co jest szczególnie istotne w przemyśle energetycznym i automatyce przemysłowej.

Pytanie 20

Która z przedstawionych oprawek jest oprawką źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. Oprawka III.
B. Oprawka IV.
C. Oprawka I.
D. Oprawka II.
Poprawnie wskazana została oprawka IV, bo jest to ceramiczna oprawka gwintowa przystosowana do pracy z wysokotemperaturowymi źródłami światła dużej mocy. W praktyce chodzi głównie o klasyczne żarówki dużej mocy, halogeny z trzonkiem E27/E40 czy specjalne lampy przemysłowe, które podczas pracy nagrzewają się nawet do około 300°C w strefie trzonka. Korpus tej oprawki wykonany jest z ceramiki (najczęściej porcelany technicznej), która ma bardzo dobrą odporność cieplną, nie ulega deformacji jak tworzywo sztuczne i dobrze znosi długotrwałe nagrzewanie oraz cykle załącz/wyłącz. Zgodnie z dobrymi praktykami i wymaganiami norm PN-EN dotyczących opraw oświetleniowych, do źródeł wysokotemperaturowych nie stosuje się oprawek z tworzyw termoplastycznych, bo te przy takich temperaturach mogłyby się rozmiękczyć, zdeformować, a nawet zwęglić. Ceramiczna oprawka IV ma odpowiednio dobraną izolację, konstrukcję gwintu i styków, żeby zapewnić stabilne połączenie elektryczne oraz odpowiedni odstęp i pełzanie między częściami czynnymi a obudową. Z mojego doświadczenia takie oprawki spotyka się w oprawach warsztatowych, lampach przemysłowych, ogrzewaczach promiennikowych, a także w starych instalacjach z żarówkami 150–200 W, gdzie temperatura klosza i trzonka jest naprawdę spora. W praktyce przy doborze osprzętu zawsze patrzy się na maksymalną temperaturę pracy podaną przez producenta (np. 250°C, 300°C) oraz klasę temperaturową materiału izolacyjnego. Moim zdaniem warto zapamiętać prostą zasadę: tam, gdzie spodziewasz się dużego nagrzewania źródła światła – wybierasz oprawkę ceramiczną o odpowiedniej klasie temperaturowej, taką właśnie jak pokazana na zdjęciu jako oprawka IV.

Pytanie 21

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 22

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru pojemności
B. Amperomierza
C. Woltomierza
D. Miernika z funkcją pomiaru rezystancji
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 23

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi spoza opcji D wskazuje na brak zrozumienia podstawowych zasad dotyczących przenośnych uziemiaczy. Uziemiacze te są niezbędne w każdym środowisku, gdzie prowadzone są prace elektryczne, a ich właściwe zastosowanie może uchronić przed tragicznymi konsekwencjami. Odpowiedzi A, B i C mogą przedstawiać różne narzędzia, ale żadne z nich nie spełniają funkcji przenośnego uziemiacza. W praktyce, niektóre odpowiedzi mogą przedstawiać urządzenia, które są stosowane w inny sposób, na przykład narzędzia pomiarowe lub akcesoria, ale nie mają one zastosowania w kontekście tymczasowego uziemienia. Typowym błędem jest mylenie różnych narzędzi i ich funkcji, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu. Przykładami tego mogą być różne narzędzia elektryczne, które nie mają charakterystyki uziemiającej. Właściwe zrozumienie funkcji przenośnego uziemiacza jest kluczowe, aby uniknąć sytuacji potencjalnie zagrażających zdrowiu i życiu, a także zapewnić bezpieczeństwo podczas prowadzenia prac konserwacyjnych. Standardy branżowe, takie jak OSHA oraz IEC, jasno określają konieczność stosowania uziemiaczy w odpowiednich miejscach pracy, co powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 24

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP56 5x4 mm2
B. IP45 5x6 mm2
C. IP43 5x4 mm2
D. IP54 4x4 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 25

Podczas oględzin nowo wykonanej instalacji elektrycznej nie jest wymagane sprawdzenie

A. doboru zabezpieczeń i aparatury.
B. rozmieszczenia tablic ostrzegawczych i informacyjnych.
C. wartości natężenia oświetlenia na stanowiskach pracy.
D. doboru i oznaczenia przewodów.
Prawidłowo wskazana została odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy. Podczas oględzin nowo wykonanej instalacji elektrycznej koncentrujemy się przede wszystkim na samej instalacji: jej budowie, poprawności montażu, zgodności z dokumentacją oraz wymaganiami norm, np. PN-HD 60364. Oględziny mają potwierdzić, że instalacja jest wykonana bezpiecznie i zgodnie ze sztuką, zanim jeszcze zaczniemy robić szczegółowe pomiary czy eksploatować obiekt. Sprawdzanie natężenia oświetlenia na stanowiskach pracy to już inny zakres – to wchodzi bardziej w tematykę oceny warunków pracy, ergonomii i wymagań BHP, powiązanych np. z normą PN-EN 12464-1 dotyczącą oświetlenia miejsc pracy. Takie pomiary wykonuje się zwykle luksomierzem, ale nie są one elementem podstawowych oględzin instalacji elektrycznej jako takiej. Moim zdaniem warto to rozróżniać: co jest oceną instalacji, a co oceną środowiska pracy. Podczas oględzin instalacji elektrycznej elektryk sprawdza m.in. dobór i oznaczenie przewodów, przekroje, kolory żył, zgodność z dokumentacją techniczną, sprawdza dobór zabezpieczeń i aparatury (charakterystyki wyłączników nadprądowych, zastosowanie wyłączników różnicowoprądowych, dobór rozłączników, styczników itp.), a także obecność i rozmieszczenie tablic ostrzegawczych i informacyjnych, jak tablice „Uwaga! Urządzenie elektryczne”, oznaczenia rozdzielnic, pola, obwodów. To wszystko jest bezpośrednio związane z bezpieczeństwem eksploatacji instalacji i ochroną przeciwporażeniową. Natężenie oświetlenia oczywiście jest ważne, ale dotyczy głównie komfortu i bezpieczeństwa pracy od strony BHP, a nie samej poprawności wykonania instalacji elektrycznej jako układu przewodów, aparatów i ochrony. W praktyce w nowym budynku można mieć instalację wykonaną wzorowo, a jednocześnie zbyt słabe oświetlenie do danego rodzaju stanowiska – to będzie problem projektu oświetlenia, a nie oględzin instalacji elektrycznej w sensie stricte. Dlatego właśnie ta odpowiedź jest tutaj jedyną, która nie jest wymagana w ramach podstawowych oględzin nowej instalacji.

Pytanie 26

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 2.
C. Symbolem 4.
D. Symbolem 1.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 27

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P202 25-30-AC
B. P302 25-10-AC
C. P304 40-30-AC
D. P304 40-100-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 28

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 3.
B. Końcówki 2.
C. Końcówki 4.
D. Końcówki 1.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 29

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. otwornicy z segmentami diamentowymi
B. wyrzynarki do głębokich cięć
C. otwornicy z nasypem wolframowym
D. młotka z przecinakiem
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 30

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Krzyżowy
B. Schodowy
C. Dwubiegunowy
D. Świecznikowy
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 31

Na której ilustracji przedstawiono puszkę do montażu w ścianie gipsowo-kartonowej?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 3.
Prawidłowo – na ilustracji 4 pokazano typową puszkę instalacyjną do montażu w ścianie gipsowo‑kartonowej. Charakterystyczne jest tu kilka elementów konstrukcyjnych. Po pierwsze, korpus jest wykonany z tworzywa i ma wyraźny rant oporowy, który opiera się o zewnętrzną powierzchnię płyty GK. Po drugie, widać wkręty lub łapki rozporowe – po dokręceniu zaciskają się one od wewnętrznej strony płyty, dzięki czemu puszka stabilnie "wisi" w otworze wyciętym w karton‑gipsie, bez potrzeby osadzania w tynku. Po trzecie, głębokość i kształt są dostosowane do montażu osprzętu podtynkowego (gniazda, łączniki, ściemniacze), zgodnie z wymaganiami norm PN‑HD 60364 i ogólnymi zasadami montażu instalacji w lekkich ścianach szkieletowych. W praktyce takie puszki stosuje się wszędzie tam, gdzie ściana nie jest murowana, tylko wykonana z profili stalowych i płyt GK: w mieszkaniach deweloperskich, w biurach z systemowymi ściankami działowymi, na poddaszach. Ważne jest też właściwe przygotowanie otworu – używa się zwykle otwornicy 68 mm, żeby puszka dobrze przylegała i nie "latała". Moim zdaniem warto od razu pamiętać o doborze odpowiedniej głębokości puszki do ilości przewodów i osprzętu, żeby później nie męczyć się z upychaniem żył. Dobrą praktyką jest też stosowanie puszek z odpowiednimi przepustami do kabli i przewodów, zapewniającymi wymaganą ochronę izolacji oraz stabilne mocowanie żył wewnątrz puszki.

Pytanie 32

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 33

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. I
B. II
C. 0
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 34

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie V
B. Przerwa w uzwojeniu fazy V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 35

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 36

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 5 szt., Y - 5 szt.
B. X - 4 szt., Y - 5 szt.
C. X - 5 szt., Y - 4 szt.
D. X - 4 szt., Y - 4 szt.
Błędne odpowiedzi opierają się na nieprawidłowym zrozumieniu struktury połączeń w instalacjach oświetleniowych. Odpowiedzi, które proponują mniejszą liczbę przewodów, nie uwzględniają podstawowych zasad działania łączników schodowych i krzyżowych, co prowadzi do niewłaściwej koncepcji ich funkcji. W przypadku łączników schodowych, aby zapewnić prawidłowe działanie, zawsze należy zastosować odpowiednią ilość przewodów. W miejscu X, zbyt mała liczba przewodów, jak np. 3, znacznie ograniczyłaby możliwości sterowania oświetleniem, co jest kluczowe w instalacjach, gdzie oświetlenie jest zdalnie kontrolowane z różnych punktów. W miejscu Y, błędna liczba przewodów także zakłada, że można ograniczyć połączenia, co prowadzi do ryzyka awarii systemu lub jego całkowitego braku funkcjonalności. Wiele osób myli pojęcie liczby przewodów potrzebnych do połączeń z ilością łączników, co jest typowym błędem myślowym. Aby poprawnie zrozumieć, ile przewodów jest potrzebnych w danym układzie, należy uwzględnić nie tylko samą liczbę łączników, ale także rodzaj połączeń oraz ich role w instalacji. Zastosowanie nieodpowiedniej liczby przewodów może prowadzić do poważnych problemów, takich jak niemożność włączania lub wyłączania oświetlenia z różnych punktów, co jest sprzeczne z oczekiwaniami użytkowników oraz normami branżowymi, które nakładają obowiązki na projektantów instalacji elektrycznych.

Pytanie 37

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź C jest poprawna, ponieważ zgodnie z systemem TN-S, przewód ochronny PE (przewód uziemiający) i przewód neutralny N (przewód zerowy) muszą być rozdzielone na całej długości instalacji. W tym systemie przewód PE jest przeznaczony wyłącznie do celów ochronnych, co zapobiega ryzyku przypadkowego wprowadzenia prądu do obwodów neutralnych. Poprawne rozdzielenie tych przewodów ma kluczowe znaczenie dla bezpieczeństwa użytkowników, ponieważ zmniejsza ryzyko porażenia prądem. W praktyce oznacza to, że w rozdzielni elektrycznej przewody te powinny być traktowane jako odrębne, co jest zgodne z normami PN-IEC 60364 oraz PN-EN 50110, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W instalacjach TN-S, przewód PE powinien być odpowiednio uziemiony, co znacznie poprawia ochronę przed zwarciami i innymi awariami. Warto zauważyć, że standardy te są stosowane w wielu krajach, co podkreśla ich uniwersalność i znaczenie dla zachowania wysokiego poziomu bezpieczeństwa. Przykładem zastosowania tego rozwiązania są budynki użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 38

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. DYt
B. YADY
C. LgY
D. XzTKMXpw
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 39

Na podstawie przedstawionego planu instalacji określ, które z wymienionych elementów należy wytrasować w pokoju i na tarasie.

Ilustracja do pytania
A. 2 punkty oświetleniowe sufitowe, 3 gniazda wtyczkowe, 2 łączniki.
B. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo wtyczkowe bez uziemienia.
C. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 1 gniazdo pojedyncze bez uziemienia, 2 gniazda podwójne bez uziemienia, 1 łącznik.
D. 2 punkty oświetleniowe sufitowe, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo podwójne bez uziemienia.
Wybór, w którym jest jeden punkt oświetleniowy sufitowy, kinkiet i gniazda bez uziemienia, pokazuje, że może być mały problem z rozumieniem zasad projektowania elektryki. Tylko jeden punkt oświetlenia w pomieszczeniu może nie wystarczyć, zwłaszcza według normy PN-EN 12464-1, która mówi o odpowiednim rozmieszczeniu światła. Kinkiet, chociaż może wyglądać ładnie, nie zastąpi głównego oświetlenia. Jeśli dodasz gniazda bez uziemienia, to jest sporo ryzyka związanego z bezpieczeństwem – porażenie prądem to poważna sprawa. Gniazda z uziemieniem to norma i zapewniają większe bezpieczeństwo. Brak łączników w Twojej odpowiedzi to kolejny błąd; ich właściwe rozmieszczenie jest istotne dla komfortu użytkowania. Bez nich możesz mieć problem z dostępem do światła w różnych miejscach, co jest nie tylko niepraktyczne, ale też może być niebezpieczne. Więc tak ogólnie, warto lepiej zrozumieć te zasady, gdy planuje się instalacje elektryczne.

Pytanie 40

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. 0
B. II
C. I
D. III
Odpowiedź III jest prawidłowa, ponieważ oprawy oświetleniowe, które nie mają zacisku ochronnego i są zasilane źródłem napięcia SELV (Safety Extra Low Voltage), należą do klasy ochronności III. Klasa ta oznacza, że urządzenia są zbudowane w taki sposób, aby nie stwarzać zagrożenia dla użytkownika, nawet w przypadku awarii. Warto podkreślić, że napięcie SELV nie przekracza 50 V AC lub 120 V DC, co znacząco zwiększa bezpieczeństwo użytkowania. Przykładem zastosowania opraw oświetleniowych klasy III mogą być lampy LED w miejscach, gdzie istnieje ryzyko kontaktu z wodą, jak łazienki i baseny. Klasa III jest również zgodna z normami IEC 61140 oraz IEC 60598, które regulują aspekty bezpieczeństwa i projektowania opraw oświetleniowych. Integracja opraw tej klasy w instalacjach elektrycznych nie wymaga dodatkowych środków ochrony przed porażeniem prądem, co ułatwia ich stosowanie w obiektach publicznych oraz w budynkach mieszkalnych.