Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 26 grudnia 2025 21:40
  • Data zakończenia: 26 grudnia 2025 21:53

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 2

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. Ex-NOR
B. OR
C. Ex-OR
D. NOR
Funkcja Ex-OR, czyli exclusive OR, jest jedną z podstawowych funkcji logicznych używanych w automatyce i elektronice. To, co jest charakterystyczne dla Ex-OR, to jej zdolność do wykrywania różnic między dwoma sygnałami wejściowymi. W praktyce oznacza to, że wyjście będzie aktywne (czyli w stanie wysokim) tylko wtedy, gdy jeden z sygnałów wejściowych jest w stanie wysokim, a drugi w niskim. Taki mechanizm znajduje szerokie zastosowanie w systemach cyfrowych, gdzie konieczne jest porównywanie dwóch sygnałów lub wartości binarnych. W programowalnych sterownikach logicznych (PLC) Ex-OR używa się często do celów diagnostycznych, np. do wykrywania błędów w przesyłanych danych. W standardach przemysłowych, takich jak IEC 61131-3, Ex-OR jest jedną z kluczowych funkcji logicznych, które programiści muszą znać. Z mojego doświadczenia wynika, że opanowanie tej funkcji otwiera drogę do bardziej skomplikowanych aplikacji, gdzie liczy się precyzyjne sterowanie i analiza danych. To właśnie dzięki Ex-OR można tworzyć systemy, które reagują na konkretne różnice między stanami wejściowymi, co jest często wykorzystywane w systemach zabezpieczeń i kontroli jakości.

Pytanie 3

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nieprzekraczającym wartości 250 V AC?

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 004
B. 005
C. 003
D. 002
Wybór przekaźnika 002 to doskonała decyzja, ponieważ odpowiada on wymaganiom zadania. Zasilanie na poziomie 24 V DC to główna cecha tego przekaźnika, która idealnie pasuje do układu sterowania podanego w pytaniu. W przypadku automatyki, zgodność parametrów zasilania i obciążenia jest kluczowa. Przekaźnik 002 ma 4 wyjścia przekaźnikowe, które mogą dostarczyć obciążenie do 10 A przy napięciu do 250 V AC. To oznacza, że spełnia on wymagania, gdzie prądy obciążenia nie przekraczają 8 A. W praktyce, przekaźniki te są używane w wielu zastosowaniach automatyki przemysłowej, takich jak sterowanie silnikami czy systemami oświetleniowymi, gdzie wymagana jest wysoka niezawodność i precyzja. Dobór odpowiedniego przekaźnika jest istotny z punktu widzenia bezpieczeństwa i efektywności energetycznej, a przekaźnik 002, dzięki swoim parametrom, zapewnia obie te cechy. Wybierając taki przekaźnik, działamy zgodnie z najlepszymi praktykami w dziedzinie automatyki, gdzie kluczowe jest nie tylko odpowiednie napięcie zasilania, ale także dostosowanie obciążeń wyjściowych do realnych potrzeb systemu.

Pytanie 4

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 2 oraz L
B. O oraz L
C. 5 oraz L
D. H oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 5

Na rysunku przedstawiono

Ilustracja do pytania
A. zawór odcinający.
B. elektrozawór.
C. zespół przygotowania powietrza.
D. blok rozdzielający.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 6

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01001001, output SW2 - 0000.
B. input SW1 - 10001100, output SW2 - 0000.
C. input SW1 - 01011010, output SW2 - 0110.
D. input SW1 - 01011010, output SW2 - 1001.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 7

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NC
C. PNP NC
D. NPN NO
Czujnik z wyjściem typu NPN NC działa w taki sposób, że w stanie spoczynku (tzn. gdy nie jest aktywowany) jego wyjście jest zwarte do masy. To oznacza, że prąd płynie od wyjścia czujnika do masy, co jest kluczowe w wielu aplikacjach, gdzie trzeba sygnalizować stan nieaktywności urządzenia. Typ NPN jest popularny w branży przemysłowej, szczególnie w Europie, bo dobrze współpracuje z systemami PLC, które często wymagają sygnałów niskiego poziomu jako aktywnych. Konfiguracja NC (normalnie zamknięte) dodatkowo gwarantuje, że w razie awarii czujnika lub przerwania przewodu, system natychmiast otrzyma sygnał o błędzie, co jest zgodne z zasadami fail-safe. Przykładem zastosowania może być monitoring pozycji bram czy drzwi, gdzie brak przerwania obwodu oznacza ich zamknięcie i bezpieczeństwo. Moim zdaniem, warto zwrócić uwagę na ten typ czujników w aplikacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 8

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1
B. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
C. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
D. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
Odpowiedź jest poprawna, ponieważ timer TON w sterowniku PLC jest używany do opóźnienia załączenia wyjścia o określony czas po pojawieniu się sygnału wejściowego. W tym przypadku, gdy na wejściu %I0.1 pojawia się stan wysoki, timer zaczyna odliczać czas 5 sekund, co jest zdefiniowane w parametrach timera jako PT (preset time). Po upływie tego czasu wyjście %Q0.1 zostaje załączone. Timer TON jest jednym z najczęściej wykorzystywanych bloków w programowaniu PLC, szczególnie w automatyzacji procesów produkcyjnych, gdzie niezbędne jest precyzyjne sterowanie czasem. Typowymi zastosowaniami mogą być np. sterowanie oświetleniem w halach produkcyjnych, gdzie światło włącza się z opóźnieniem, aby zapewnić bezpieczeństwo pracowników opuszczających stanowiska pracy. Warto również pamiętać, że zgodnie ze standardami IEC 61131-3, timer TON jest jednym z elementów struktury programistycznej języka LD (Ladder Diagram), co czyni go uniwersalnym i powszechnie rozumianym w branży. Dzięki temu, że jest to rozwiązanie standardowe, można go łatwo zastosować w różnych systemach automatyki, co zwiększa elastyczność i kompatybilność projektów PLC.

Pytanie 9

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 1
Ilustracja do odpowiedzi A
B. Przewód 4
Ilustracja do odpowiedzi B
C. Przewód 3
Ilustracja do odpowiedzi C
D. Przewód 2
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 10

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-45.
B. zaciskania wtyków RJ-11.
C. zaciskania tulejek.
D. ściągania izolacji.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 11

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 10 mm
B. 20 mm
C. 30 mm
D. 60 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 12

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. autotransformator.
B. multimetr cyfrowy.
C. silnik prądu stałego.
D. opornik dekadowy.
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 13

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. USB
C. RS-232
D. HDMI
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 14

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. pola magnetycznego.
B. naprężeń.
C. temperatury.
D. ciśnienia.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 15

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 01011010, OUTPUT - 1001
B. INPUT - 01011010, OUTPUT - 0110
C. INPUT - 01001001, OUTPUT - 0000
D. INPUT - 10001100, OUTPUT - 0000
Wybór ustawienia INPUT - 01001001, OUTPUT - 0000 jest właściwy, ponieważ odpowiada on konfiguracji dla sygnału wejściowego 0 ÷ 20 mA, co jest idealne dla czujnika o zakresie 0 ÷ 100°C/0 ÷ 20 mA, oraz dla wyjścia sterownika PLC również ustawionego na 0 ÷ 20 mA. To ustawienie zapewnia poprawne skalowanie sygnałów, unikając nieprawidłowości w odczytach. Dzięki temu możemy być pewni, że dane z czujnika są przekazywane bez zniekształceń do PLC. W praktyce takie rozwiązanie jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie dokładność pomiarów jest kluczowa. Ważne jest, aby zawsze dobierać odpowiednie ustawienia DIP switcha do charakterystyki sygnału, co znacznie zwiększa niezawodność całego systemu. Moim zdaniem, znajomość takich konfiguracji to podstawowa wiedza dla każdego inżyniera automatyka, która pomaga uniknąć błędów w konfiguracji systemów sterowania. Stosowanie standardów jest nie tylko zgodne z dobrymi praktykami, ale także z normami branżowymi, co jest niezwykle istotne w kontekście jakości i bezpieczeństwa pracy urządzeń.

Pytanie 16

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. IL
B. LD
C. SFC
D. FBD
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 17

Przedstawiony na rysunku przewód sterowniczy, wymieniony w dokumentacji projektowej, może być zastosowany podczas łączenia elementów systemu sterowania, jeżeli napięcie pracy nie przekracza wartości

Ilustracja do pytania
A. 300 V/500 V
B. 200 V/400 V
C. 300 V/400 V
D. 100 V/500 V
Przewód widoczny na zdjęciu ma oznaczenie 300/500 V, co oznacza, że jego napięcie znamionowe wynosi 300 V dla układania w izolacji i 500 V dla napięcia roboczego. To jest zgodne z normami europejskimi jak np. VDE, które definiują standardy dla przewodów stosowanych w automatyce przemysłowej. Kiedy mówimy o przewodach sterowniczych, ważne jest, aby napięcie robocze nie przekraczało wskazanych wartości, ponieważ mogłoby to prowadzić do uszkodzenia izolacji i awarii systemu. Przewody o takich parametrach są często stosowane w środowiskach przemysłowych, gdzie wymagana jest wysoka odporność na zakłócenia elektromagnetyczne oraz trwałość mechaniczna. Moim zdaniem, znajomość parametrów przewodów jest kluczowa dla bezpieczeństwa i niezawodności instalacji. W praktyce, takie przewody można spotkać w szafach sterowniczych, gdzie łączą różne elementy systemu automatyki. Dobre praktyki zalecają także regularną kontrolę stanu przewodów, aby zapobiec potencjalnym awariom.

Pytanie 18

Element przedstawione na rysunku to

Ilustracja do pytania
A. termometr rtęciowy.
B. pirometr.
C. czujnik pojemnościowy.
D. czujnik rezystancyjny.
To świetnie, że rozpoznajesz czujnik rezystancyjny. Te czujniki, zwane także RTD (Resistance Temperature Detector), są szeroko stosowane w przemyśle do precyzyjnych pomiarów temperatury. Ich działanie opiera się na zależności rezystancji metalu od temperatury. Najczęściej spotykane są czujniki wykonane z platyny, takie jak Pt100, Pt500 czy Pt1000, gdzie liczby oznaczają wartość rezystancji w omach przy 0°C. Czujniki te są cenione za swoją dokładność i stabilność pomiarową. Są stosowane tam, gdzie wymagana jest wysoka precyzja, jak w przemyśle chemicznym, farmaceutycznym czy w laboratoriach badawczych. Ich kalibracja i zgodność z międzynarodowymi standardami, np. IEC 60751, zapewniają spójność i wiarygodność pomiarów. Dodatkowo, dzięki zastosowaniu różnych materiałów na osłonę, mogą być stosowane w trudnych warunkach środowiskowych. Takie czujniki mogą pracować w szerokim zakresie temperatur, co czyni je niezwykle uniwersalnymi narzędziami pomiarowymi.

Pytanie 19

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego załączenie TON
B. blok timera opóźniającego wyłączenie TOF
C. blok licznika impulsów zliczającego w górę CTU
D. blok licznika impulsów zliczającego w dół CTD
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 20

Na ilustracji przedstawiono

Ilustracja do pytania
A. separator sygnałów USB.
B. zadajnik cyfrowo-analogowy.
C. przetwornik PWM.
D. elektroniczny czujnik ciśnienia.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 21

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Zasilacz 230 V AC / 24 V DC
D. Przetwornica napięcia 2x24 V DC / 230 V AC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 22

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 220 ÷ 240 V
B. 254 ÷ 277 V
C. 380 ÷ 420 V
D. 440 ÷ 480 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 23

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 2
Ilustracja do odpowiedzi A
B. Miernik 4
Ilustracja do odpowiedzi B
C. Miernik 1
Ilustracja do odpowiedzi C
D. Miernik 3
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 24

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. A
B. P
C. B
D. T
Poprawna odpowiedź to przyłącze T, czyli tzw. port powrotny (ang. Tank). W zaworach hydraulicznych oznaczenie T zawsze odnosi się do przewodu odprowadzającego ciecz z powrotem do zbiornika. W klasycznym układzie hydrauliki siłowej mamy trzy podstawowe przyłącza: P – zasilanie (ciśnienie z pompy), A i B – wyjścia robocze do siłowników lub silników hydraulicznych oraz T – powrót do zbiornika. W momencie, gdy zawór ustawi się w pozycji neutralnej, przepływ z P często kierowany jest właśnie do T, aby układ nie pracował pod stałym ciśnieniem. W praktyce montażowej należy pamiętać, że przewód powrotny powinien mieć możliwie małe opory przepływu i odpowiednią średnicę, aby uniknąć wzrostu ciśnienia zwrotnego. Z mojego doświadczenia w układach przemysłowych przewód T prowadzi ciecz do filtra, a dopiero potem do zbiornika – poprawia to czystość i trwałość całego systemu. W schematach hydraulicznych port T często rysowany jest na dole zaworu, co odpowiada kierunkowi grawitacyjnego powrotu cieczy.

Pytanie 25

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 26

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. zasilacz impulsowy.
B. sterownik PLC.
C. koncentrator sieciowy.
D. panel operatorski.
To urządzenie to sterownik PLC, czyli programowalny sterownik logiczny. Jest ono kluczowym elementem w automatyce przemysłowej, używane do sterowania procesami produkcyjnymi i maszynami. PLC mogą być programowane w językach takich jak ladder logic, co pozwala na elastyczne dostosowanie działania do konkretnych potrzeb. Przykładowo, w fabrykach używa się ich do sterowania liniami montażowymi czy systemami pakowania. Warto zauważyć, że PLC są zaprojektowane tak, aby mogły pracować w trudnych warunkach, są odporne na zakłócenia elektromagnetyczne i wibracje. Dzięki temu, są niezawodne i cenione w przemyśle. Standardy takie jak IEC 61131 określają, jak powinny być programowane i stosowane, co zapewnia ich unifikację i możliwość współpracy z różnymi systemami. W praktyce, dobry technik czy inżynier automatyki powinien umieć nie tylko programować PLC, ale też diagnozować ewentualne problemy i optymalizować działanie całych systemów. Także, świetnie, że rozpoznałeś to urządzenie!

Pytanie 27

Do pomiaru wartości podciśnienia w zautomatyzowanej instalacji pneumatycznej, w której stosowane są ejektory wraz z przyssawkami, należy zastosować

A. manometr różnicowy.
B. wakuometr.
C. barometr.
D. manometr.
Podciśnienie, czyli ciśnienie niższe od atmosferycznego, mierzymy za pomocą przyrządu zwanego wakuometrem. Jest to narzędzie specjalistyczne, które znajduje zastosowanie w wielu dziedzinach, gdzie wykorzystuje się systemy próżniowe, jak np. w zautomatyzowanych instalacjach pneumatycznych z ejektorami i przyssawkami. Ejektory to urządzenia, które dzięki efektowi Venturiego tworzą podciśnienie, a przyssawki, które są przyłączone do systemu, wymagają precyzyjnego monitorowania tego podciśnienia, aby działały efektywnie. Dlatego właśnie wakuometr, który jest dedykowany do pomiaru ciśnień niższych od atmosferycznego, jest idealnym narzędziem. Warto wspomnieć, że wakuometry mogą mieć różne skale w zależności od zastosowania, np. milibary, milimetry słupa rtęci czy pascale. Praktyczne zastosowanie wakuometrów to nie tylko przemysł, ale także medycyna, gdzie używa się ich w urządzeniach do terapii próżniowej. Z mojego doświadczenia, wybór odpowiedniego wakuometru, zależy od specyfikacji systemu i wymagań dokładności pomiaru. Standardy takie jak ISO 9001:2015 często wymagają dokładnego monitorowania parametrów systemów, stąd użycie dokładnych przyrządów pomiarowych jest kluczowe.

Pytanie 28

Określ, który blok funkcyjny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Licznik dwukierunkowy.
B. Regulator PID.
C. Timer TON.
D. Multiplekser analogowy.
Wybór licznika dwukierunkowego jako odpowiedniego bloku funkcyjnego do sterowania urządzeniem pakującym zabawki do kartonu jest jak najbardziej trafiony. Licznik dwukierunkowy to rodzaj licznika, który potrafi zarówno zwiększać, jak i zmniejszać swoją wartość, w zależności od sygnałów wejściowych. Jest to niezwykle przydatne w sytuacjach, gdzie musimy kontrolować precyzyjne ilości - na przykład liczbę zabawek, które mają zostać zapakowane do jednego kartonu. W praktyce, licznik dwukierunkowy można skonfigurować tak, aby zwiększał swoją wartość o jeden za każdym razem, gdy zabawka jest umieszczana w kartonie, a zmniejszał, gdy coś idzie nie tak i trzeba zabawkę usunąć. Dzięki temu mamy pełną kontrolę nad procesem pakowania i zapewniamy, że w każdym kartonie znajdzie się dokładnie tyle zabawek, ile potrzeba. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, gdzie dąży się do dokładności i precyzji w procesach produkcyjnych. Warto także podkreślić, że liczniki tego typu są szeroko stosowane w automatyce przemysłowej i stanowią podstawowy element wielu systemów kontrolnych, szczególnie tam, gdzie istotna jest możliwość reagowania na zmieniające się warunki procesu.

Pytanie 29

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. rezystancyjne metalowe.
C. rezystancyjne półprzewodnikowe.
D. bimetalowe.
W systemach automatyki pomiar temperatury jest kluczowy dla wielu procesów, dlatego ważne jest, aby używać odpowiednich czujników. Czasami błędnie można założyć, że czujniki rezystancyjne półprzewodnikowe, termoelektryczne czy bimetalowe będą stosowane zamiennie z czujnikami Pt100, jednak każda z tych technologii ma swoje unikalne cechy i zastosowania. Czujniki rezystancyjne półprzewodnikowe, często znane jako termistory, różnią się znacząco od czujników Pt100. Termistory mają nieliniową charakterystykę i są zazwyczaj stosowane w aplikacjach wymagających kompaktowych rozwiązań o ograniczonym zakresie temperatur. Natomiast czujniki termoelektryczne, zwane też termoparami, generują napięcie w odpowiedzi na różnicę temperatur, co czyni je idealnymi dla wysokich temperatur i aplikacji wymagających szybkiej reakcji. Z kolei czujniki bimetalowe działają na zasadzie fizycznego wyginania się dwóch zespawanych metali o różnej rozszerzalności cieplnej. Choć są one proste i tanie, ich dokładność i szybkość reakcji są ograniczone. Typowym błędem myślowym jest założenie, że wszystkie czujniki temperatury działają w podobny sposób, co może prowadzić do nieodpowiedniego doboru czujnika do konkretnej aplikacji. Wybór odpowiedniego czujnika jest kluczowy dla zapewnienia dokładności i efektywności procesów przemysłowych.

Pytanie 30

Określ, który blok funkcjonalny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Licznik jednokierunkowy.
B. Timer TON
C. Regulator PID
D. Multiplekser analogowy.
Wybór licznika jednokierunkowego do sterowania urządzeniem pakującym zabawki jest trafny, ponieważ liczniki świetnie nadają się do zliczania określonej liczby zdarzeń, takich jak pakowanie zabawek do kartonu. Licznik jednokierunkowy, często określany jako licznik up, zwiększa swoją wartość za każdym razem, gdy otrzymuje impuls. W kontekście urządzenia pakującego może to być impuls z czujnika, który rejestruje każdą wrzuconą zabawkę. Po osiągnięciu zaprogramowanej liczby zabawek licznik może wysłać sygnał, który inicjuje kolejne działania, takie jak zamknięcie i przeniesienie kartonu. To podejście jest zgodne z praktycznym zastosowaniem w automatyce przemysłowej, gdzie liczniki są często wykorzystywane do zadań związanych z kontrolą ilościową. W branży automatyki standardem jest stosowanie liczników w przypadku, gdy wymagane jest precyzyjne śledzenie liczby operacji. Takie rozwiązanie zapewnia zarówno dokładność, jak i prostotę implementacji, co jest kluczowe w środowiskach produkcyjnych, gdzie niezawodność i łatwość obsługi są na wagę złota. Warto zauważyć, że w przypadku bardziej złożonych operacji, licznik jednokierunkowy może być częścią systemu zawierającego również inne typy liczników lub komponenty logiczne.

Pytanie 31

Użyta funkcja komparatora przedstawiona na rysunku, jest sprawdzeniem warunku

Ilustracja do pytania
A. „mniejszy lub równy”.
B. „nierówny”.
C. „równy”.
D. „mniejszy”.
Funkcja komparatora użyta na rysunku to 'mniejszy lub równy'. To oznacza, że porównywana jest wartość w zmiennej %MW48 z liczbą 5. Jeśli wartość w %MW48 jest mniejsza lub równa 5, komparator zwróci prawdę. W praktyce, takie zastosowanie jest często wykorzystywane w automatyce i systemach sterowania, gdzie musimy monitorować i reagować na zmieniające się wartości procesowe. Przykładowo, w przypadku sterowania poziomem cieczy w zbiorniku, można użyć takiego komparatora do aktywacji pompy, gdy poziom cieczy jest mniejszy lub równy określonej wartości. To podejście jest zgodne z dobrymi praktykami w dziedzinie automatyki, ponieważ umożliwia proste i efektywne monitorowanie stanu systemu. Dodatkowo, stosowanie komparatorów 'mniejszy lub równy' w kodzie sterowników PLC jest częste, ponieważ pozwala na podjęcie decyzji w oparciu o proste warunki logiczne. Wykorzystując takie podejście, możemy zwiększyć niezawodność systemu, co jest kluczowe w aplikacjach przemysłowych.

Pytanie 32

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację przełożenia.
B. ruch ciągły.
C. multiplikację obrotów.
D. ruch przerywany.
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.

Pytanie 33

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 4.
Ilustracja do odpowiedzi A
B. Wynik 3.
Ilustracja do odpowiedzi B
C. Wynik 2.
Ilustracja do odpowiedzi C
D. Wynik 1.
Ilustracja do odpowiedzi D
Rezystancja przewodu miedzianego zależy od jego długości, przekroju poprzecznego oraz oporności właściwej materiału. Patrząc na przewód YLY 3x10 mm² o długości 8 m, można obliczyć teoretyczną rezystancję przy użyciu wzoru R = ρ * (L/A), gdzie ρ to oporność właściwa miedzi (około 0,0175 Ω·mm²/m), L to długość przewodu, a A to przekrój poprzeczny. Dla tego przewodu, wynik powinien być w granicach miliomów, co jest wskazywane przez odczyt wynoszący 13,999 mΩ (Wynik 4). Taki wynik wskazuje na prawidłową ciągłość przewodu i brak uszkodzeń, co jest kluczowe dla bezpieczeństwa i wydajności w instalacjach elektrycznych. Regularne sprawdzanie rezystancji jest dobrą praktyką, szczególnie w kontekście utrzymania efektywności energetycznej oraz zapobiegania przegrzewaniu się przewodów, co mogłoby prowadzić do awarii lub niebezpiecznych sytuacji. Wiedza o poprawnych wartościach rezystancji i umiejętność ich interpretacji są niezbędne dla każdego technika zajmującego się instalacjami elektrycznymi.

Pytanie 34

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. łap mocujących.
B. ucha ze sworzniem.
C. uchwytu widełkowego ze sworzniem.
D. kołnierza.
Kołnierz, mimo że jest popularnym sposobem montażu w niektórych aplikacjach, zazwyczaj służy do innych rodzajów przytwierdzeń. Często jest używany w aplikacjach, gdzie niezbędne jest szczelne połączenie elementów, takich jak w systemach rurociągowych. W kontekście siłowników jego zastosowanie jest ograniczone, ponieważ wymaga precyzyjnego dopasowania i nie oferuje takiej elastyczności w montażu jak łapy mocujące. Ucho ze sworzniem to metoda, która umożliwia ruch obrotowy siłownika wokół osi sworznia, co jest korzystne w aplikacjach wymagających dużej mobilności. Jednak w przedstawionym rysunku nie ma wskazania na takie rozwiązanie. Uchwyt widełkowy ze sworzniem również umożliwia ruch obrotowy, ale jest stosowany w innych konfiguracjach montażowych. Typowym błędem jest nieodróżnienie sytuacji, gdzie potrzeba stabilnego, stałego montażu od takich, gdzie ruchliwość jest kluczowa. Dlatego ważne jest, aby zrozumieć specyfikę zastosowania i wymagania każdej z tych metod, co pomoże uniknąć nieprawidłowych wniosków podczas projektowania systemów z siłownikami.

Pytanie 35

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RS-232
B. USB
C. RJ-45
D. HDMI
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 36

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 1 i 4.
B. 2 i 4.
C. 2 i 3.
D. 3 i 4.
Dobrze, że zauważyłeś, że piny 2 i 4 są kluczowe w tym układzie. Pin 2 oznaczony jest jako NC (normally closed), a pin 4 jako NO (normally open). To typowe oznaczenia w technice przekaźników i czujników, gdzie NC oznacza, że obwód jest zamknięty w stanie nieaktywnym, a NO że jest otwarty. W praktyce, wiele przetworników, szczególnie w automatyce przemysłowej, wykorzystuje te piny do przesyłania sygnałów do odbiorników. Podłączając piny 2 i 4 do odbiorników, zapewniasz prawidłowe działanie zarówno w trybie normalnie zamkniętym, jak i otwartym, co jest często wymogiem w systemach zabezpieczeń i automatyki. To podejście jest zgodne z wieloma normami, takimi jak IEC 60947 dotyczących aparatury rozdzielczej i sterowniczej. Warto pamiętać, że takie połączenia zwiększają niezawodność systemu i pozwalają na szybką reakcję w przypadku zmiany stanu czujnika.

Pytanie 37

Do pomiaru wilgotności powietrza stosuje się

A. higrometr.
B. barometr.
C. termometr.
D. manometr.
Higrometr to urządzenie, które jest niezastąpione w wielu dziedzinach technicznych i naukowych. Dzięki niemu możemy precyzyjnie zmierzyć wilgotność powietrza, co ma kluczowe znaczenie w różnych branżach. Na przykład, w przemyśle tekstylnym wilgotność wpływa na właściwości materiałów, a w elektronicznym na funkcjonowanie urządzeń. W rolnictwie kontrola wilgotności jest istotna dla zdrowia roślin i plonów. Warto też wiedzieć, że higrometry mogą działać na różne sposoby, np. wykorzystując włosie, które zmienia długość pod wpływem wilgoci, czy też za pomocą technologii elektronicznej, jak czujniki pojemnościowe. Z mojego doświadczenia, w laboratoriach często spotyka się higrometry psychrometryczne, które używają dwóch termometrów - suchego i mokrego. W praktyce, dobrze skalibrowany higrometr to podstawa w miejscach, gdzie warunki atmosferyczne mogą wpływać na procesy produkcyjne czy zdrowie pracowników. Dlatego w wielu normach ISO znajdziemy wytyczne dotyczące precyzyjnego pomiaru wilgotności, co podkreśla znaczenie tego urządzenia w utrzymaniu jakości i bezpieczeństwa.

Pytanie 38

Jaki rodzaj ustroju pomiarowego zastosowano w mierniku, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Magnetoelektryczny.
B. Elektromagnetyczny.
C. Indukcyjny.
D. Elektrodynamiczny.
Na tabliczce znamionowej nie przedstawiono ustroju indukcyjnego, elektrodynamicznego ani elektromagnetycznego. Ustrój indukcyjny działa na zasadzie prądów wirowych i stosowany jest w miernikach prądu przemiennego, np. w licznikach energii – jego symbolem są dwa prostokąty lub zwoje. Ustrój elektrodynamiczny wykorzystuje oddziaływanie dwóch cewek i umożliwia pomiar zarówno prądu stałego, jak i przemiennego, a jego oznaczenie to dwa połączone zwoje. Natomiast ustrój elektromagnetyczny wykorzystuje ruch żelaznej kotwiczki w polu cewki, a w symbolu widoczny jest prostokąt z ukośną kreską – tego tutaj nie ma. W prezentowanym symbolu kluczowy jest magnes trwały w kształcie podkowy, co jednoznacznie wskazuje na układ magnetoelektryczny. Błędne rozpoznanie często wynika z mylenia go z elektromagnetycznym, ale różnica polega na tym, że w magnetoelektrycznym używa się magnesu stałego, a w elektromagnetycznym – pola wytwarzanego przez cewkę. To ważne, bo decyduje o tym, czy miernik może pracować tylko z prądem stałym, czy również zmiennym.

Pytanie 39

Które przyłącze procesowe jest zastosowane w przedstawionym czujniku?

Parametry techniczne czujnika

- Ekonomiczny przetwornik ciśnienia

- Zakres pomiarowy: 0 ... 1 bar / 0 ... 250 bar

- Dokładność: 0,3%

- Przyłącze procesowe: G¼"

- Sygnał wyjściowy: 4 ... 20 mA

- Przyłącze elektryczne: wtyczka kątowa

- Temperatura medium: -25 ... 85 °C

- Zasilanie: 9 ... 30 V DC

Ilustracja do pytania
A. Zewnętrzny gwint 1/8”
B. Wewnętrzny gwint 1/8”
C. Zewnętrzny gwint 1/4”
D. Wewnętrzny gwint 1/4"
Dokładnie, ten czujnik ma przyłącze procesowe o gwincie zewnętrznym G¼”, który jest powszechnie stosowany w przemysłowych aplikacjach pomiaru ciśnienia. Ten typ przyłącza jest często wybierany ze względu na jego niezawodność i kompatybilność z różnymi systemami. G¼” to standardowy gwint metryczny, co oznacza, że jest szeroko stosowany na całym świecie, dzięki czemu łatwo znaleźć odpowiednie przejściówki czy złączki. Warto zauważyć, że gwint ten zapewnia dobrą szczelność i jest odporny na wysokie ciśnienia, co czyni go idealnym wyborem dla przetworników ciśnienia. W praktyce, wybór odpowiedniego przyłącza procesowego jest kluczowy, aby zapewnić prawidłowe działanie czujnika i uniknąć problemów z przeciekami. Dlatego też zrozumienie, jakie przyłącze jest używane, jest niezbędne dla inżynierów i techników podczas instalacji i konserwacji systemów pomiarowych. W branży przyjęło się, że wybierając komponenty instalacji, takie jak czujniki, zwraca się szczególną uwagę na zgodność przyłączy, co ułatwia montaż i późniejszą obsługę układu.

Pytanie 40

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. oczkowy.
B. dynamometryczny.
C. imbusowy.
D. hakowy.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.