Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 17:48
  • Data zakończenia: 7 grudnia 2025 18:26

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Niesymetryczność obciążenia
B. Nieszczelność kadzi transformatora
C. Praca na biegu jałowym
D. Drgania skrajnych blach rdzenia
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 2

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. intensywności drgań
B. odczytów aparatury kontrolno-pomiarowej
C. stanu szczotek
D. konfiguracji zabezpieczeń
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 3

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 4

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 25 kΩ
B. 75 kΩ
C. 10 kΩ
D. 50 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 5

Wkładka topikowa przedstawiona na rysunku, zabezpieczająca jeden z obwodów elektrycznych w pewnym pomieszczeniu, zapewnia skuteczną ochronę

Ilustracja do pytania
A. urządzeń energoelektronicznych tylko przed skutkami przeciążeń.
B. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
C. przewodów elektrycznych tylko przed skutkami zwarć.
D. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
Wkładka topikowa jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, a jej zadaniem jest ochrona przewodów przed skutkami zwarć i przeciążeń. Gdy prąd w obwodzie przekroczy ustalony bezpieczny poziom, wkładka topikowa przerywa obwód, co zapobiega przegrzaniu się przewodów i potencjalnym uszkodzeniom zarówno instalacji, jak i podłączonych urządzeń. Przykładem zastosowania wkładek topikowych jest ich użycie w domowych instalacjach elektrycznych oraz w przemyśle, gdzie ochrona przed przeciążeniem i zwarciem jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. W praktyce, dobór odpowiedniej wkładki topikowej powinien być zgodny z obowiązującymi normami, takimi jak PN-EN 60269, które określają wymagania dotyczące bezpieczników. Właściwe dobranie wkładek topikowych do obciążenia oraz rodzaju przewodów jest kluczowe dla efektywności ochrony, co podkreśla znaczenie zrozumienia tego zagadnienia w kontekście projektowania i eksploatacji instalacji elektrycznych.

Pytanie 6

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
B. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
C. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
D. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu Z
B. Wyłącznik nadprądowy typu B
C. Bezpiecznik typu aM
D. Bezpiecznik typu aR
Bezpiecznik typu aM jest właściwym wyborem do zabezpieczenia silnika trójfazowego o mocy 5,5 kW i napięciu 400/690 V. Ten typ bezpiecznika został zaprojektowany do ochrony przed przeciążeniem i zwarciem w aplikacjach silnikowych. Charakteryzuje się on wydłużonym czasem reakcji na prąd przeciążeniowy, co pozwala na chwilowe przekroczenie prądu nominalnego bez wyzwolenia, co jest niezbędne w przypadku rozruchu silnika. Dzięki temu zabezpieczenie jest w stanie tolerować wyższe prądy startowe, co jest kluczowe w praktycznych zastosowaniach, takich jak uruchamianie maszyn w zakładach przemysłowych. Dodatkowo, zastosowanie przekaźnika termicznego oraz stycznika umożliwia pełne zabezpieczenie silnika, zapewniając nie tylko ochronę przed zwarciem, ale również przed długotrwałym przeciążeniem. Przykłady poprawnych zastosowań obejmują silniki napędowe w pompach, wentylatorach czy kompresorach, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem. Wysoka jakość wykonania i zgodność z normami IEC 60269 sprawiają, że bezpieczniki typu aM są często preferowane w profesjonalnych instalacjach.

Pytanie 10

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie TT
B. W systemie IT
C. W systemie TN-C
D. W systemie TN-S
Układ TN-C (z ang. Terre Neutral Combined) charakteryzuje się tym, że neutralny przewód (N) i przewód ochronny (PE) są połączone w jednym przewodzie (PEN) na całej długości instalacji. Z tego powodu, wyłączniki różnicowoprądowe (RCD) nie mogą być stosowane jako elementy ochrony przeciwporażeniowej, ponieważ w przypadku uszkodzenia nie ma możliwości prawidłowego pomiaru prądów różnicowych. W układach TN-C, uszkodzenie przewodu PEN może prowadzić do niebezpiecznej sytuacji, gdzie brak separacji przewodów ochronnych i neutralnych utrudnia detekcję nieprawidłowości. Przykładem stosowania wyłączników różnicowoprądowych są układy TN-S, gdzie przewody N i PE są oddzielone, co umożliwia skuteczne monitorowanie prądów różnicowych. Warto również zaznaczyć, że w kontekście przepisów, zgodnie z normą PN-EN 61008-1, RCD powinny być używane w odpowiednich układach, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym, co w układzie TN-C nie jest możliwe.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Zmierzanie rezystancji izolacji instalacji elektrycznej
B. Ocena prawidłowego doboru przekroju kabli
C. Weryfikacja czasu samoczynnego odłączenia zasilania
D. Przeprowadzenie próby ciągłości przewodów ochronnych oraz połączeń wyrównawczych
Sprawdzenie właściwego doboru przekroju przewodów jest kluczowym elementem oceny instalacji elektrycznej. Przekroje przewodów muszą być odpowiednio dobrane do obciążenia, jakie będą musiały znieść. Niewłaściwy dobór może prowadzić do przegrzewania się przewodów, co z kolei zwiększa ryzyko pożaru oraz uszkodzenia urządzeń elektrycznych. Zgodnie z normą PN-IEC 60364-5-52, należy uwzględnić zarówno parametry obciążeniowe, jak i długość przewodów oraz warunki ich ułożenia. Przykładowo, dla instalacji w domach jednorodzinnych, niezbędne jest, by przekrój przewodu zasilającego gniazdka był odpowiedni do przewidywanego obciążenia, co pozwala na bezpieczne użytkowanie. Dobre praktyki nakazują także regularne przeglądy instalacji elektrycznych, a w szczególności zwrócenie uwagi na te aspekty podczas inspekcji przed oddaniem budynku do użytku, co zapewnia bezpieczeństwo mieszkańców.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
B. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
C. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
D. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 20

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C32
B. S303 C40
C. S303 C25
D. S303 C20
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O średnicy dwa razy mniejszej, połączonymi szeregowo
B. O przekroju dwa razy mniejszym, połączonymi równolegle
C. O średnicy dwa razy mniejszej, połączonymi równolegle
D. O przekroju dwa razy mniejszym, połączonymi szeregowo
Odpowiedź, która sugeruje użycie drutu o przekroju dwa razy mniejszym, połączonym równolegle, jest prawidłowa ze względu na zasadę zachowania impedancji w transformatorach. Gdy zmniejszamy pole przekroju poprzecznego drutu nawojowego, zwiększa się jego oporność, co negatywnie wpływa na zdolność przewodzenia prądu. Aby zrekompensować tę utratę, łączenie dwóch lub więcej drutów równolegle pozwala na zwiększenie efektywnej powierzchni przekroju poprzecznego, co przeciwdziała wzrostowi oporności. W praktyce takie podejście jest zgodne z normami stosowanymi w rewitalizacji transformatorów, gdzie zachowanie parametrów elektrycznych jest kluczowe dla ich dalszego funkcjonowania. Dodatkowo, przy odpowiednim doborze materiałów izolacyjnych oraz średnicy drutów, można uzyskać wydajność bliską oryginalnym wartościom. Przykładem może być przezwojenie transformatora w elektrowniach, gdzie zastosowanie drutów o mniejszych średnicach, połączonych równolegle, skutkuje poprawą funkcjonowania urządzenia, a także wpływa na obniżenie kosztów materiałów. Takie praktyki są szeroko przyjęte w branży, co potwierdzają liczne publikacje i normy techniczne.

Pytanie 23

Tabela zawiera zalecane okresy pomiarów eksploatacyjnych urządzeń i instalacji elektrycznych pracujących w różnych warunkach środowiskowych. Jak często należy dokonywać pomiaru wyłącznika RCD oraz rezystancji izolacji instalacji zasilającej piec chlebowy w piekarni?

Rodzaj pomieszczeniaOkres pomiędzy kolejnymi sprawdzeniami
skuteczności ochrony przeciwporażeniowejrezystancji izolacji instalacji
O wyziewach żrącychnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Zagrożone wybuchemnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Otwarta przestrzeńnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Bardzo wilgotne o wilgotności ok. 100% i wilgotne przejściowo od 75% do 100%nie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Gorące o temperaturze powietrza ponad 35 °Cnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Zagrożone pożaremnie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Stwarzające zagrożenie dla ludzi (ZL I, ZL II, ZL III)nie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Zapylonenie rzadziej niż co 5 latnie rzadziej niż co 5 lat
A. Wyłącznik RCD co 1 rok; rezystancja izolacji co 5 lat.
B. Wyłącznik RCD co 5 lat; rezystancja izolacji co 1 rok.
C. Wyłącznik RCD co 5 lat; rezystancja izolacji co 5 lat.
D. Wyłącznik RCD co 1 rok; rezystancja izolacji co 1 rok.
Wydaje mi się, że wybór kilkuletnich okresów dla pomiarów wyłącznika RCD, jak na przykład co 5 lat, może być trochę nieodpowiedni, zwłaszcza w wilgotnym środowisku. RCD jest naprawdę ważny w ochronie przed prądem, więc te regularne testy są kluczowe, zwłaszcza w piekarni. Jeśli opieramy się na dłuższych interwałach, to można przegapić uszkodzenia izolacji, a to grozi niebezpieczeństwem. Z kolei ustawienie 1 roku dla pomiaru rezystancji izolacji może sugerować, że nie znasz się za bardzo na standardach. Normy te są wynikiem analizy ryzyka, a dla piekarni z taką wilgotnością co 5 lat to wystarczający czas, jeśli nie widziano żadnych nieprawidłowości. Zbyt częste pomiary mogą generować dodatkowe koszty oraz zakłócać workflow, co może stresować pracowników. Warto podejmować decyzje na podstawie konkretnych danych i norm, jak PN-IEC 60364, żeby dobrze zarządzać ryzykiem i zabezpieczyć miejsce pracy.

Pytanie 24

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. transformator bezpieczeństwa
B. dzielnik napięcia
C. rezystor w układzie szeregowym
D. autotransformator
Transformator bezpieczeństwa jest kluczowym elementem zasilania obwodów SELV (Separated Extra Low Voltage), który zapewnia izolację i bezpieczeństwo użytkowników. Takie zasilanie charakteryzuje się niskim napięciem, co minimalizuje ryzyko porażenia prądem oraz innych niebezpieczeństw. Transformator bezpieczeństwa działa poprzez separację obwodu niskonapięciowego od sieci zasilającej, dzięki czemu nie ma bezpośredniego połączenia ze źródłem wysokiego napięcia. Przykładem zastosowania transformatorów bezpieczeństwa mogą być systemy oświetlenia w obiektach użyteczności publicznej, gdzie zapewnia się wysokie bezpieczeństwo, zwłaszcza w miejscach narażonych na kontakt z wodą, takich jak łazienki czy baseny. Zastosowanie transformatora bezpieczeństwa jest zgodne z normami, takimi jak IEC 60364 oraz dyrektywami Unii Europejskiej, które podkreślają znaczenie stosowania urządzeń zapewniających bezpieczeństwo elektryczne. Dzięki tym rozwiązaniom można znacząco zredukować ryzyko wypadków związanych z elektrycznością.

Pytanie 25

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmianę kierunku obrotu
B. zatrzymanie wirnika
C. zwiększenie prędkości obrotowej
D. zmniejszenie prędkości obrotowej
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy
B. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
C. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym
D. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.

Pytanie 28

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 10,50 A
B. 11,00 A
C. 9,50 A
D. 10,10 A
Wybór odpowiedzi 10,10 A, 10,50 A lub 9,50 A opiera się na błędnym rozumieniu zasad działania przekaźników termobimetalowych i ogólnych zasad dotyczących zabezpieczeń silników. Ustawienie prądu nastawczego na wartość zaledwie odrobinę wyższą niż wartość znamionowa (jak 10,10 A czy 10,50 A) może prowadzić do niepożądanego wyłączania silnika w sytuacjach, które są całkowicie normalne, takich jak rozruch, gdzie prąd może chwilowo wzrosnąć. Z kolei wartość 9,50 A jest zbyt niska, aby skutecznie chronić silnik przed uszkodzeniem w przypadku przeciążeń. W praktyce, stosowanie zbyt niskiego prądu nastawczego może prowadzić do fałszywych wyłączeń, co z kolei może skutkować dodatkowymi kosztami związanymi z naprawami i przestojami w produkcji. Wybierając wartości nastawcze, należy uwzględnić nie tylko prąd znamionowy, ale również charakterystyki rozruchowe silnika oraz typ pompy, która może generować dodatkowe obciążenia. Standardy branżowe, takie jak IEC 60204-1, podkreślają znaczenie adekwatnego doboru zabezpieczeń, co w praktyce oznacza, że wartości nastawcze muszą być starannie obliczone i dostosowane do rzeczywistych warunków pracy. Dlatego kluczowe jest skupienie się na odpowiednim marginesie oraz zrozumieniu dynamiki działania urządzeń, aby zapewnić efektywność i niezawodność systemu zabezpieczeń.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zmniejszenie napięcia zasilania
B. Zwiększenie poziomu hałasu
C. Zmniejszenie częstotliwości prądu
D. Zmniejszenie momentu obrotowego
Nieprawidłowe działanie łożysk w silniku elektrycznym często prowadzi do zwiększenia poziomu hałasu. W praktyce, kiedy łożyska są uszkodzone lub zużyte, mogą generować dźwięki takie jak szumy, stukoty czy metaliczne odgłosy. Hałas ten jest wynikiem zwiększonego tarcia oraz nieprawidłowego ruchu elementów łożyska, co jest bezpośrednim skutkiem mechanicznych nieprawidłowości. W branży technicznej powszechnie uznaje się, że regularne monitorowanie poziomu hałasu jest istotnym elementem diagnostyki stanu technicznego łożysk. Moim zdaniem, to zwiększenie hałasu jest jednym z najbardziej oczywistych sygnałów, że coś niedobrego dzieje się z łożyskami. Dlatego też, standardy utrzymania maszyn, takie jak TPM (Total Productive Maintenance), kładą duży nacisk na regularne przeglądy i konserwację łożysk, by zapobiec poważniejszym awariom. Uwzględniając te praktyki, można znacznie wydłużyć żywotność maszyn i uniknąć kosztownych napraw czy przestojów produkcyjnych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. stanu osłon części wirujących
B. wskazań aparatury kontrolno-pomiarowej
C. stanu szczotek
D. poziomu drgań
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Przedstawiony amperomierz jest przygotowany do pomiaru prądu

Ilustracja do pytania
A. rozruchu silnika szeregowego prądu stałego.
B. pobieranego z sieci przez spawarkę transformatorową.
C. sterującego tyrystorem mocy.
D. wyjściowego prądnicy synchronicznej.
Amperomierz przedstawiony na zdjęciu to urządzenie cęgowe, które umożliwia pomiar prądu w obwodach elektrycznych bez konieczności ich rozłączania. W przypadku rozruchu silnika szeregowego prądu stałego, prąd rozruchowy może osiągać wartości znacznie wyższe niż nominalne, co może prowadzić do uszkodzenia silnika, jeśli nie zostanie odpowiednio monitorowane. Amperomierz cęgowy jest idealnym rozwiązaniem w takich sytuacjach, ponieważ pozwala na szybki i bezinwazyjny pomiar prądu bez zakłócania pracy urządzenia. Zastosowanie tego typu mierników jest szczególnie istotne w przemyśle, gdzie ochrona urządzeń przed przeciążeniem jest kluczowa dla ich niezawodności i długowieczności. Dobrą praktyką w monitorowaniu prądów rozruchowych jest stosowanie cęgów pomiarowych zgodnych z normami PN-EN 61010, co zapewnia bezpieczeństwo i dokładność pomiarów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. LYc 300/500 1x6
C. Dyd 750 1x4
D. ADY 750 1x2,5
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.