Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 4 lutego 2026 16:33
  • Data zakończenia: 4 lutego 2026 17:15

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do pomiaru wartości mocy pobieranej przez zestaw komputerowy służy

A. anemometr.
B. watomierz.
C. omomierz.
D. dozymetr.
Właściwie, watomierz to przyrząd przeznaczony właśnie do pomiaru mocy pobieranej przez urządzenia elektryczne, w tym zestawy komputerowe. Sam kiedyś sprawdzałem, ile dokładnie prądu pożera mój komputer podczas grania i watomierz był wtedy niezastąpiony – nie tylko pokazuje chwilowe zużycie energii, ale często zapisuje też całkowite zużycie w dłuższym czasie. Takie narzędzia są obowiązkowym elementem wyposażenia każdego serwisanta czy instalatora, szczególnie gdy chodzi o sprawdzanie, czy zasilacz pracuje zgodnie ze swoją specyfikacją. W branży IT i automatyce zaleca się regularne pomiary mocy, żeby ocenić, czy infrastruktura nie jest przeciążana i czy nie dochodzi do niepotrzebnych strat energii. To też świetna metoda na wykrycie 'pożeraczy prądu' w biurze albo domu, a osobiście uważam, że każdy powinien choć raz sprawdzić, ile realnie kosztuje go działanie komputera przez cały miesiąc. Watomierze bywają proste, w formie gniazdek, a czasem bardziej zaawansowane, podłączane w rozdzielniach. W praktyce, bez watomierza, nie da się rzetelnie ocenić poboru mocy przez zestaw komputerowy – inne przyrządy po prostu się do tego nie nadają.

Pytanie 2

Kiedy użytkownik systemu Windows wybiera opcję przywrócenia do określonego punktu, które pliki utworzone po tym punkcie nie będą podlegać zmianom w wyniku tej operacji?

A. Pliki sterowników
B. Pliki aplikacji
C. Pliki osobiste
D. Pliki aktualizacji
Wybór błędnych odpowiedzi może prowadzić do nieporozumień dotyczących funkcji przywracania systemu Windows. Pierwsza z błędnych opcji, pliki aplikacji, wskazuje na nieporozumienie dotyczące zakresu ochrony danych w czasie przywracania. Podczas tego procesu, aplikacje zainstalowane po utworzeniu punktu przywracania są usuwane, co może prowadzić do utraty danych związanych z tymi aplikacjami. Oznacza to, że aplikacje, które zostały zainstalowane po danym punkcie przywracania, przestaną działać, i ich dane mogą zostać utracone, co jest kluczowym aspektem, o którym użytkownicy powinni wiedzieć. Drugą nieprawidłową koncepcją są pliki aktualizacji, które również mają wpływ na stabilność systemu. Aktualizacje, które zostały zainstalowane po utworzeniu punktu przywracania, zostaną odinstalowane, co może spowodować, że system nie będzie działał na najnowszych poprawkach bezpieczeństwa, co stwarza potencjalne ryzyko dla użytkownika. Co więcej, pliki sterowników również nie są chronione, ponieważ przywracanie systemu może cofnąć zmiany wprowadzone przez nowe sterowniki, co może prowadzić do problemów z działaniem sprzętu. To zrozumienie, że przywracanie systemu dotyczy głównie plików systemowych i aplikacji, a nie osobistych danych, jest kluczowe dla skutecznego zarządzania systemem operacyjnym i ochrony danych.

Pytanie 3

Wskaż tryb operacyjny, w którym komputer wykorzystuje najmniej energii

A. uśpienie
B. hibernacja
C. wstrzymanie
D. gotowość (pracy)
Tryb uśpienia, choć również zmniejsza zużycie energii, nie jest tak efektywny jak hibernacja. W trybie uśpienia komputer pozostaje w stanie aktywności z zachowaną zawartością pamięci RAM, co oznacza, że wymaga ciągłego zasilania, by utrzymać ten stan. To podejście jest przydatne w sytuacjach, gdy użytkownik planuje krótką przerwę, ale w dłuższej perspektywie prowadzi do większego zużycia energii. Gotowość to kolejny tryb, który, podobnie jak uśpienie, nie wyłącza zasilania, co czyni go nieoptymalnym dla dłuższych przerw. Wstrzymanie to stan, który w praktyce nie jest często stosowany jako tryb oszczędzania energii, ponieważ w rzeczywistości nie różni się znacząco od trybu gotowości. Użytkownicy mogą mylnie sądzić, że te tryby są wystarczające dla oszczędzania energii, nie zdając sobie sprawy z ich ograniczeń. Podejmując decyzję o wyborze trybu, ważne jest zrozumienie różnic między nimi oraz ich wpływu na zużycie energii. Zaleca się korzystanie z hibernacji jako najskuteczniejszego rozwiązania dla dłuższych przerw w użytkowaniu, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej.

Pytanie 4

Ikona z wykrzyknikiem, którą widać na ilustracji, pojawiająca się przy nazwie urządzenia w Menedżerze urządzeń, wskazuje, że to urządzenie

Ilustracja do pytania
A. nie funkcjonuje prawidłowo
B. sterowniki zainstalowane na nim są w nowszej wersji
C. funkcjonuje poprawnie
D. zostało dezaktywowane
Ikona z wykrzyknikiem w Menedżerze urządzeń nie oznacza że urządzenie działa poprawnie. W rzeczywistości wskazuje na problem z jego działaniem. Sądząc że urządzenie działa poprawnie można przeoczyć potrzebę podjęcia działań naprawczych co może prowadzić do dalszych problemów z systemem. Wykrzyknik nie wskazuje także że urządzenie zostało wyłączone. Wyłączone urządzenie w Menedżerze zazwyczaj przedstawiane jest z ikoną strzałki skierowanej w dół. To nieporozumienie może wynikać z błędnego utożsamiania ikon z rzeczywistym stanem operacyjnym urządzenia. Co więcej mylne jest twierdzenie że ikona sugeruje posiadanie nowszej wersji sterowników. Taka sytuacja zwykle nie jest sygnalizowana żadnym wyróżnieniem w Menedżerze urządzeń. U podstaw tych błędnych przekonań leży brak wiedzy o tym jak system operacyjny sygnalizuje różne stany sprzętu. Dlatego tak ważne jest zrozumienie komunikatów i ikon systemowych by skutecznie diagnozować i rozwiązywać problemy sprzętowe. Dzięki temu można uniknąć niepotrzebnych komplikacji i utrzymać optymalną wydajność komputera.

Pytanie 5

Zainstalowanie gniazda typu keyston w serwerowej szafie jest możliwe w

A. patchpanelu FO
B. adapterze typu mosaic
C. patchpanelu niezaładowanym
D. patchpanelu załadowanym
Instalacja gniazda typu keyston w patchpanelu niezaładowanym jest poprawną odpowiedzią, ponieważ takie gniazda są zaprojektowane do montażu w panelach, które nie zawierają jeszcze zainstalowanych modułów. W przypadku patchpaneli niezaładowanych, technik ma możliwość dostosowania ich do specyficznych potrzeb sieciowych, co pozwala na elastyczne zarządzanie połączeniami i ich konfigurację. W praktyce, instalacja gniazda keyston w takim panelu umożliwia szybkie wprowadzanie zmian w infrastrukturze sieciowej, co jest kluczowe w dynamicznych środowiskach, gdzie często zachodzi potrzeba modyfikacji połączeń. Ponadto, stosowanie standardów takich jak TIA/EIA 568A/B zapewnia, że instalacje są zgodne z wymaganiami branżowymi, co przekłada się na niezawodność i jakość wykonania systemu okablowania.

Pytanie 6

Jakie urządzenie stosuje technikę polegającą na wykrywaniu zmian w pojemności elektrycznej podczas manipulacji kursorem na monitorze?

A. trackpoint
B. touchpad
C. joystik
D. mysz
Wybór trackpointa, joysticka lub myszy jako urządzeń wykorzystujących metodę detekcji zmian pojemności elektrycznej jest błędny, ponieważ te technologie opierają się na innych zasadach działania. Trackpoint, znany z laptopów, działa na zasadzie mechanicznego przemieszczenia, gdzie użytkownik naciska na mały joystick, co przekłada się na ruch kursora na ekranie. Ta metoda nie wykorzystuje detekcji pojemnościowej, lecz opiera się na mechanizmie fizycznym. Joystick również nie korzysta z detekcji pojemnościowej; zamiast tego, jego ruchy są interpretowane przez mechaniczne lub elektroniczne czujniki, które mierzą nachylenie i kierunek, aby przesuwać kursor. Z kolei mysz, popularne urządzenie wskazujące, zwykle działa na zasadzie detekcji ruchu optycznego lub mechanicznego – w zależności od zastosowanej technologii. Mysz optyczna używa diod LED do detekcji ruchu na powierzchni, a nie zmiany pojemności. Zrozumienie tych podstawowych różnic jest kluczowe dla prawidłowego rozróżnienia technologii urządzeń wejściowych. Często mylone są one z touchpadami, które w pełni wykorzystują metodę pojemnościową, co prowadzi do nieporozumień w zakresie ich zastosowania i funkcjonalności.

Pytanie 7

Oblicz całkowity koszt kabla UTP Cat 6, który będzie użyty do połączenia 5 punktów abonenckich z punktem dystrybucji, mając na uwadze, że średnia odległość pomiędzy każdym punktem abonenckim a punktem dystrybucji wynosi 8 m oraz że cena za 1 m kabla wynosi 1 zł. W obliczeniach uwzględnij zapas 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 40 zł
C. 45 zł
D. 50 zł
Aby obliczyć koszt brutto kabla UTP Cat 6 potrzebnego do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, należy uwzględnić zarówno średnią długość kabla, jak i zapas na każdy punkt abonencki. Średnia długość pomiędzy punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, co oznacza, że na każdy z 5 punktów potrzebujemy 8 m kabla. Dodatkowo, dla każdego punktu abonenckiego uwzględniamy zapas 2 m, co daje łącznie 10 m na punkt. Zatem dla 5 punktów abonenckich potrzebujemy 5 * 10 m = 50 m kabla. Koszt 1 m kabla wynosi 1 zł, więc całkowity koszt brutto wynosi 50 m * 1 zł = 50 zł. W praktyce, przy projektowaniu sieci komputerowych, zawsze warto uwzględniać zapasy na kable, aby zminimalizować ryzyko wystąpienia problemów związanych z niewystarczającą ilością materiałów. Taka praktyka jest zgodna z dobrymi praktykami inżynieryjnymi w zakresie instalacji sieciowych.

Pytanie 8

Na diagramie płyty głównej, który znajduje się w dokumentacji laptopa, złącza oznaczone numerami 8 i 9 to

Ilustracja do pytania
A. M.2
B. USB 3.0
C. cyfrowe audio
D. Serial ATA
Złącza Serial ATA, często określane jako SATA, są standardem interfejsu służącego do podłączania dysków twardych, dysków SSD oraz napędów optycznych do płyt głównych komputerów. Ich główną zaletą jest wysoka przepustowość, która w przypadku standardu SATA III sięga nawet 6 Gb/s. Złącza te charakteryzują się wąskim, płaskim kształtem, co umożliwia łatwe i szybkie podłączanie oraz odłączanie urządzeń. SATA jest powszechnie stosowany w komputerach stacjonarnych, laptopach oraz serwerach, co czyni go jednym z najczęściej używanych interfejsów w branży IT. W przypadku płyt głównych laptopów, złącza oznaczone na schemacie jako 8 i 9 są typowymi portami SATA, co pozwala na bezproblemową integrację z wewnętrznymi urządzeniami pamięci masowej. W codziennym użytkowaniu zrozumienie funkcji i możliwości złączy SATA jest kluczem do efektywnego zarządzania przestrzenią dyskową urządzenia, a także do optymalizacji jego wydajności poprzez zastosowanie odpowiednich konfiguracji, takich jak RAID. Warto również wspomnieć, że złącza SATA obsługują funkcję hot swapping, co umożliwia wymianę dysków bez konieczności wyłączania systemu, co jest szczególnie korzystne w środowiskach serwerowych.

Pytanie 9

Urządzenie, które zamienia otrzymane ramki na sygnały przesyłane w sieci komputerowej, to

A. regenerator
B. konwerter mediów
C. karta sieciowa
D. punkt dostępu
Karta sieciowa jest kluczowym elementem w architekturze sieci komputerowych, odpowiedzialnym za konwersję danych z postaci cyfrowej na sygnały, które mogą być przesyłane przez medium transmisyjne, takie jak kable czy fale radiowe. Jej głównym zadaniem jest obsługa protokołów komunikacyjnych, takich jak Ethernet czy Wi-Fi, co pozwala na efektywne łączenie komputerów i innych urządzeń w sieci. Przykładowo, w przypadku korzystania z technologii Ethernet, karta sieciowa przekształca dane z pamięci komputera na ramki Ethernetowe, które są następnie transmitowane do innych urządzeń w sieci. Dodatkowo, karty sieciowe często zawierają funkcje takie jak kontrola błędów oraz zarządzanie przepustowością, co przyczynia się do stabilności i wydajności przesyłania danych. Warto zauważyć, że w kontekście standardów branżowych, karty sieciowe muszą być zgodne z normami IEEE, co zapewnia ich interoperacyjność w zróżnicowanych środowiskach sieciowych.

Pytanie 10

Tryb działania portu równoległego, oparty na magistrali ISA, który umożliwia transfer danych do 2,4 MB/s, przeznaczony dla skanerów oraz urządzeń wielofunkcyjnych, to

A. Bi-directional
B. Nibble Mode
C. ECP
D. SPP
Wybór trybu SPP (Standard Parallel Port) jest częstym błędem w rozumieniu różnorodności portów równoległych. SPP ogranicza transfer do 150 KB/s, co zdecydowanie nie spełnia wymagań nowoczesnych urządzeń, takich jak skanery czy wielofunkcyjne drukarki, które potrzebują szybszego transferu danych. Nibble Mode, z kolei, to metoda, która pozwala przesyłać dane w blokach po 4 bity, co również jest mało efektywne w kontekście nowoczesnych aplikacji. Zastosowanie tej metody może prowadzić do znacznych opóźnień oraz obniżonej wydajności, co jest nieakceptowalne w środowiskach wymagających wysokiej przepustowości. Bi-directional oznacza komunikację w obu kierunkach, co teoretycznie zwiększa możliwości interakcji z urządzeniami, jednak nie jest on dedykowany do osiągnięcia tak wysokich prędkości transferu danych jak ECP. Zrozumienie różnic między tymi trybami jest kluczowe dla efektywnej konfiguracji sprzętu. Użytkownicy często myślą, że różnice są marginalne, podczas gdy w praktyce mogą one znacznie wpłynąć na wydajność systemu oraz czas realizacji zadań. Tego rodzaju błędy w ocenie mogą prowadzić do wyboru niewłaściwego sprzętu, co w dłuższej perspektywie skutkuje dużymi stratami czasowymi i finansowymi.

Pytanie 11

Aby na Pasku zadań pojawiły się ikony z załączonego obrazu, trzeba w systemie Windows ustawić

Ilustracja do pytania
A. funkcję Pokaż pulpit
B. obszar powiadomień
C. funkcję Snap i Peek
D. obszar Action Center
Obszar powiadomień w systemie Windows, znany również jako zasobnik systemowy, znajduje się na pasku zadań i umożliwia szybki dostęp do ikonek programów uruchomionych w tle. Jest to kluczowy element interfejsu użytkownika, pozwalający na monitorowanie stanu systemu, powiadomienia od aplikacji oraz szybki dostęp do funkcji takich jak połączenia sieciowe czy ustawienia dźwięku. Konfiguracja obszaru powiadomień obejmuje dostosowanie widoczności ikon, co pozwala użytkownikowi na ukrywanie mniej istotnych elementów, aby zachować porządek. W praktyce oznacza to, że użytkownik może skonfigurować, które ikony będą widoczne zawsze, a które będą ukryte, co jest zgodne z dobrymi praktykami zarządzania środowiskiem pracy. Dzięki temu użytkownik ma szybki i wygodny dostęp do najczęściej używanych funkcji bez potrzeby przeszukiwania całego systemu. Zasobnik systemowy jest integralną częścią doświadczenia użytkownika, wpływającą na efektywność pracy z komputerem, dlatego też jego prawidłowa konfiguracja jest kluczowa dla optymalnego wykorzystania możliwości systemu operacyjnego.

Pytanie 12

Na ilustracji zobrazowano okno ustawień rutera. Wprowadzone parametry sugerują, że

Ilustracja do pytania
A. na komputerze z adresem MAC 44-8A-5B-5A-56-D0 skonfigurowano adres IP 192.168.17.30 przy użyciu Panelu Sterowania
B. komputer z adresem MAC 44-8A-5B-5A-56-D0 oraz adresem IP 192.168.17.30 został usunięty z sieci
C. komputerowi o adresie MAC 44-8A-5B-5A-56-D0 usługa DHCP rutera przydzieli adres IP 192.168.17.30
D. komputer z adresem MAC 44-8A-5B-5A-56-D0 oraz adresem IP 192.168.17.30 nie będzie w stanie połączyć się z urządzeniami w tej sieci
Prawidłowa odpowiedź wskazuje na to że usługa DHCP rutera została skonfigurowana w taki sposób aby przypisywać komputerowi o adresie MAC 44-8A-5B-5A-56-D0 stały adres IP 192.168.17.30. Tego typu konfiguracja jest znana jako rezerwacja DHCP i pozwala na przypisanie określonego adresu IP do konkretnego urządzenia w sieci co jest użyteczne w przypadku gdy chcemy zapewnić urządzeniu zawsze ten sam adres IP bez konieczności ręcznej konfiguracji na każdym urządzeniu. Przykładowo serwery drukarki czy inne urządzenia wymagające stałego adresu IP mogą korzystać z tej funkcji aby zapewnić stabilne i przewidywalne działanie w sieci. Rezerwacja IP jest kluczowym elementem zarządzania siecią pozwalającym na lepszą kontrolę nad alokacją zasobów sieciowych oraz uniknięcie konfliktów IP. Jest to szczególnie ważne w środowiskach biznesowych gdzie stabilność sieci ma bezpośredni wpływ na ciągłość operacyjną przedsiębiorstwa. Zgodnie z najlepszymi praktykami branżowymi rezerwacja DHCP jest preferowanym rozwiązaniem w porównaniu do ręcznego przypisywania adresów IP na urządzeniach co minimalizuje ryzyko błędów konfiguracyjnych.

Pytanie 13

Jaka wartość dziesiętna została zapisana na jednym bajcie w kodzie znak – moduł: 1 1111111?

A. 256
B. 128
C. –127
D. –100
Wartości 256, 128 oraz –100 są niepoprawne w kontekście przedstawionego pytania. Po pierwsze, liczba 256 nie mieści się w zakresie reprezentacji jednego bajtu, który może przechowywać maksymalnie 256 różnych wartości (0-255 dla liczb bez znaku lub –128 do 127 dla liczb ze znakiem). Zatem wartość ta nie jest możliwa do zapisania w jednym bajcie, ponieważ wykracza poza jego możliwości. Drugą nieprawidłową odpowiedzią jest 128, która w przypadku reprezentacji liczb ze znakiem odpowiada 10000000 w zapisie binarnym, co oznacza –128, a nie 128, więc również nie jest właściwa w tym kontekście. Co więcej, 128 w systemie ze znakiem może być mylące dla osób, które nie są zaznajomione z pojęciem uzupełnienia do dwóch. Ostatnią błędną odpowiedzią jest –100. Choć ta liczba mieści się w zakresie liczb, które można zapisać w bajcie, nie odpowiada ona wartości, która jest reprezentowana przez podany ciąg bitów. Zrozumienie sposobu reprezentacji liczb w pamięci komputerowej, a zwłaszcza w kontekście formatów binarnych, jest kluczowe dla programistów oraz inżynierów zajmujących się systemami komputerowymi. Błędy w interpretacji tych formatów mogą prowadzić do poważnych problemów w kodzie, dlatego tak istotne jest posiadanie solidnych podstaw teoretycznych oraz praktycznych w tym obszarze.

Pytanie 14

Domyślnie w programie Eksplorator Windows przy użyciu klawisza F5 uruchamiana jest funkcja

A. odświeżania zawartości aktualnego okna
B. otwierania okna wyszukiwania
C. kopiowania
D. rozpoczynania drukowania zrzutu ekranowego
Klawisz F5 w programie Eksplorator Windows jest standardowo używany do odświeżania zawartości bieżącego okna. Funkcja ta jest niezwykle istotna w kontekście zarządzania plikami i folderami, gdyż umożliwia aktualizację widoku, co jest niezbędne w przypadku wprowadzania zmian w systemie plików. Na przykład, gdy dodasz lub usuniesz pliki z wybranego folderu, naciśnięcie F5 pozwala na natychmiastowe zaktualizowanie wyświetlanej listy, co zwiększa efektywność pracy. Warto również zauważyć, że odświeżanie jest praktyką zalecaną w standardach użytkowania systemów operacyjnych, aby zapewnić, że użytkownik zawsze dysponuje aktualnymi danymi. Ponadto, w kontekście programowania, wiele aplikacji przyjmuje podobne skróty klawiszowe dla odświeżania widoku, co świadczy o ujednoliceniu dobrych praktyk w interfejsach użytkownika.

Pytanie 15

Podczas przetwarzania pakietów danych w sieci, wartość pola TTL (ang. Time To Live) jest modyfikowana za każdym razem, gdy pakiet przechodzi przez ruter. Jaką wartość tego pola należy ustawić, aby ruter skasował pakiet?

A. 0
B. 255
C. 127
D. 64
Wartość pola TTL (Time To Live) w pakietach IP wskazuje, jak długo dany pakiet może przebywać w sieci zanim zostanie uznany za wygasły i usunięty. Gdy wartość TTL wynosi 0, oznacza to, że pakiet nie może być już przesyłany i zostanie skasowany przez ruter. TTL jest zmniejszane o 1 na każdym urządzeniu, przez które pakiet przechodzi. Jeśli pakiet dotrze do rutera z wartością TTL równą 1, po zmniejszeniu do 0 ruter usunie go, ponieważ oznacza to, że pakiet przekroczył dozwolony czas życia w sieci. Zrozumienie TTL jest kluczowe w kontekście zarządzania ruchem sieciowym oraz w diagnozowaniu problemów z siecią, ponieważ pozwala na efektywne zarządzanie długością życia pakietów i unikanie sytuacji, w której pakiety krążą w sieci bez końca, co może prowadzić do przeciążenia. W praktyce, administracja sieciowa często wykorzystuje mechanizmy związane z TTL do monitorowania i optymalizacji ruchu, co jest zgodne z najlepszymi praktykami w branży sieciowej.

Pytanie 16

Na ilustracji przedstawiona jest karta

Ilustracja do pytania
A. sieciowa Token Ring
B. kontrolera SCSI
C. kontrolera RAID
D. sieciowa Fibre Channel
Token Ring to starsza technologia sieciowa, która działała w oparciu o metodę przesyłania danych za pomocą tokena. Była popularna w latach 80. i 90. XX wieku, jednak w dużej mierze została wyparta przez standard Ethernet, który oferuje prostszą implementację i wyższą prędkość przesyłu danych. Token Ring stosował topologię pierścieniową, co oznaczało, że każda stacja musiała przechodzić przez inne, co mogło prowadzić do problemów z niezawodnością i skalowalnością w większych sieciach. Kontrolery SCSI natomiast są używane do podłączania urządzeń peryferyjnych, takich jak dyski twarde i taśmy, do komputerów. Standard SCSI jest szeroko stosowany w serwerach i stacjach roboczych, ale nie jest to technologia sieciowa. Kontrolery te pozwalają na zarządzanie i przesył danych w systemach pamięci masowej, lecz ich funkcja jest bardziej związana z lokalnym przechowywaniem danych niż z przesyłaniem ich w sieci. Z kolei kontrolery RAID są używane do zarządzania grupami dysków twardych w celu zwiększenia wydajności i zapewnienia redundancji danych. RAID (Redundant Array of Independent Disks) jest techniką, która łączy wiele dysków w jedną jednostkę logiczną, co pozwala na zwiększenie szybkości odczytu i zapisu danych oraz ochronę przed utratą danych w przypadku awarii jednego z dysków. Podobnie jak SCSI, RAID koncentruje się na przechowywaniu danych, a nie na ich przesyłaniu w sieci. Dlatego obie technologie, SCSI i RAID, nie są właściwie związane z funkcjami sieciowymi, co czyni odpowiedź dotyczącą sieciowej karty Fibre Channel jako najbardziej odpowiednią w kontekście przesyłu danych w sieci wysokiej wydajności.

Pytanie 17

Jakie urządzenie powinno się zastosować do pomiaru topologii okablowania strukturalnego w sieci lokalnej?

A. Reflektometr OTDR
B. Analizator sieci LAN
C. Monitor sieciowy
D. Analizator protokołów
Analizator sieci LAN jest kluczowym narzędziem do pomiarów mapy połączeń okablowania strukturalnego w sieciach lokalnych. Jego podstawową funkcją jest monitorowanie i diagnostyka stanu sieci, co pozwala na identyfikację problemów związanych z łącznością oraz wydajnością. Umożliwia analizę ruchu w sieci, co jest szczególnie ważne w kontekście zarządzania pasmem i wykrywania ewentualnych wąskich gardeł. Przykładem zastosowania analizatora LAN jest sytuacja, gdy administrator sieci musi zdiagnozować problemy z prędkością transferu danych. Dzięki analizatorowi możliwe jest przeprowadzenie testów wydajności, identyfikacja źródeł opóźnień oraz przetestowanie jakości połączeń. W praktyce, analizatory sieciowe są zgodne z międzynarodowymi standardami, takimi jak IEEE 802.3, co zapewnia ich niezawodność oraz uniwersalność w różnorodnych środowiskach sieciowych. Dobre praktyki wskazują, że regularne monitorowanie i analiza stanu sieci pozwalają na wczesne wychwytywanie potencjalnych awarii oraz optymalizację zasobów sieciowych, co przekłada się na lepszą jakość usług świadczonych przez sieć.

Pytanie 18

Jaką liczbę warstw określa model ISO/OSI?

A. 5
B. 9
C. 7
D. 3
Jeśli wybrałeś inną liczbę warstw, to raczej nie zrozumiałeś, o co chodzi w modelu ISO/OSI. Jest on zbudowany na siedmiu warstwach i to nie jest przypadek. Każda z tych warstw ma swoje zadanie, więc np. ograniczenie do pięciu to ignorowanie ważnych elementów, jak warstwa prezentacji, która przetwarza dane. Z kolei myślenie o dziewięciu czy trzech warstwach to totalne uproszczenie, co może prowadzić do problemów w sieciach. Każda warstwa pełni swoją rolę i ich pominięcie może sprawić sporo kłopotów. Z mojego doświadczenia dobrze jest mieć to na uwadze, bo znajomość modelu OSI jest naprawdę ważna w IT, zwłaszcza przy nowych technologiach.

Pytanie 19

Program df działający w systemach z rodziny Linux pozwala na wyświetlenie

A. danych dotyczących dostępnej przestrzeni na dysku
B. nazwa aktualnego katalogu
C. tekstu, który odpowiada wzorcowi
D. zawartości katalogu ukrytego
Wybór odpowiedzi dotyczącej bieżącego katalogu to trochę nieporozumienie. Tak naprawdę to polecenie pwd (print working directory) pokazuje, gdzie teraz jesteśmy w systemie. Zrozumienie, jakie polecenia co robią, jest mega istotne, zwłaszcza pracując w Linuksie. No i trochę mylisz się, myśląc, że df będzie pokazywać coś na temat wzorców - do tego używa się narzędzi jak grep. A jeśli chodzi o ukryte foldery, to znowu df nie pomoże, bo za to odpowiada polecenie ls z dodatkowymi opcjami. Jak widać, często ludzie mylą funkcje różnych poleceń, co może wprowadzać w błąd. Kluczowe jest, żeby wiedzieć, co każde polecenie robi, bo to ważna umiejętność w świecie Unix i Linux.

Pytanie 20

Aby zainicjować w systemie Windows oprogramowanie do monitorowania wydajności komputera przedstawione na ilustracji, należy otworzyć

Ilustracja do pytania
A. perfmon.msc
B. taskschd.msc
C. gpedit.msc
D. devmgmt.msc
Odpowiedź perfmon.msc jest poprawna, ponieważ polecenie to uruchamia narzędzie Monitor wydajności w systemie Windows. Jest to zaawansowane narzędzie systemowe, które pozwala użytkownikom monitorować i rejestrować wydajność systemu w czasie rzeczywistym. Umożliwia śledzenie różnych wskaźników wydajności, takich jak zużycie CPU, pamięci, dysku i sieci. Dzięki temu administratorzy IT mogą diagnozować problemy z wydajnością, analizować wzorce użytkowania zasobów oraz planować przyszłe potrzeby sprzętowe. Monitor wydajności może również generować raporty oraz alerty, co jest kluczowe dla zapewnienia stabilnej pracy systemów w środowiskach produkcyjnych. Narzędzie to jest zgodne z najlepszymi praktykami branżowymi dla zarządzania wydajnością, umożliwiając proaktywne podejście do utrzymania infrastruktury IT. Polecenie perfmon.msc jest często wykorzystywane w zarządzaniu serwerami oraz w środowiskach testowych, gdzie monitorowanie zasobów jest kluczowe dla optymalizacji i przygotowania do wdrożenia. Zrozumienie jak korzystać z Monitora wydajności jest niezbędne dla specjalistów IT, którzy chcą efektywnie zarządzać i optymalizować infrastrukturę komputerową.

Pytanie 21

Na ilustracji zaprezentowano schemat działania

Ilustracja do pytania
A. modemu
B. karty graficznej
C. karty dźwiękowej
D. kontrolera USB
Schemat przedstawia strukturę karty dźwiękowej, która jest odpowiedzialna za przetwarzanie sygnałów audio w komputerze. Na schemacie widać kluczowe elementy, takie jak DSP (Digital Signal Processor), który jest sercem karty dźwiękowej i odpowiada za cyfrowe przetwarzanie dźwięku. Elementy takie jak A/C i C/A to konwertery analogowo-cyfrowe i cyfrowo-analogowe, które umożliwiają konwersję sygnałów analogowych na cyfrowe oraz odwrotnie, co jest niezbędne do współpracy z urządzeniami zewnętrznymi jak mikrofony i głośniki. W tabeli fali (Wave Table) znajdują się próbki dźwięku, które pozwalają na generowanie realistycznych brzmień instrumentów muzycznych. System FM służy do syntezy dźwięku poprzez modulację częstotliwości, co było popularne w kartach dźwiękowych poprzednich generacji. Slot ISA wskazuje na sposób podłączenia karty do płyty głównej komputera. Praktyczne zastosowanie kart dźwiękowych obejmuje odtwarzanie muzyki, efekty dźwiękowe w grach oraz profesjonalną obróbkę dźwięku w studiach nagrań. Zgodnie ze standardami branżowymi, nowoczesne karty dźwiękowe oferują wysoką jakość dźwięku i dodatkowe funkcje jak wsparcie dla dźwięku przestrzennego i zaawansowane efekty akustyczne.

Pytanie 22

Ile par przewodów miedzianej skrętki kategorii 5e jest używanych do transmisji danych w standardzie sieci Ethernet 100Base-TX?

A. 1
B. 4
C. 3
D. 2
Wybór jednej pary przewodów do transmisji danych w standardzie 100Base-TX jest błędny, ponieważ ten standard wymaga co najmniej dwóch par, aby umożliwić pełny dupleks. Użycie tylko jednej pary przewodów ograniczałoby komunikację do trybu półdupleksowego, co oznacza, że dane mogłyby być przesyłane lub odbierane, ale nie jednocześnie. To podejście stwarzałoby wąskie gardła w sytuacjach, gdy wiele urządzeń w sieci próbuje komunikować się jednocześnie. W kontekście standardów sieciowych, kluczowe jest zrozumienie, że pełny dupleks jest preferowany w nowoczesnych instalacjach, ponieważ znacznie zwiększa efektywność sieci. Odpowiedzi sugerujące trzy lub cztery pary również są niepoprawne, ponieważ takie połączenia są wymagane w innych standardach, takich jak 1000Base-T, gdzie wykorzystuje się wszystkie cztery pary do osiągnięcia prędkości 1 Gb/s. W praktyce, wiele organizacji stosuje standard 100Base-TX w połączeniach z urządzeniami, które nie wymagają wyższej przepustowości, jednak kluczowe jest, aby mieć świadomość, że wybór odpowiedniej liczby par przewodów zależy od wymagań konkretnej aplikacji i infrastruktury sieciowej.

Pytanie 23

Uruchomienie systemu Windows jest niemożliwe z powodu awarii oprogramowania. W celu przeprowadzenia jak najmniej inwazyjnej diagnostyki i usunięcia tej usterki, zaleca się

A. przeprowadzenie diagnostyki komponentów
B. uruchomienie komputera w trybie awaryjnym
C. przeprowadzenie wymiany komponentów
D. wykonanie reinstalacji systemu Windows
Uruchomienie komputera w trybie awaryjnym jest jedną z najskuteczniejszych metod diagnozowania problemów z systemem operacyjnym Windows, zwłaszcza w sytuacjach, gdy system nie uruchamia się poprawnie z powodu usterki programowej. Tryb awaryjny włącza system Windows w minimalnej konfiguracji, co oznacza, że załadowane są jedynie podstawowe sterowniki i usługi. Dzięki temu można zidentyfikować, czy problem wynika z konfliktów z oprogramowaniem lub niewłaściwych ustawień. Przykładowo, jeśli nowo zainstalowane oprogramowanie lub aktualizacja systemu spowodowały awarię, uruchomienie w trybie awaryjnym umożliwi odinstalowanie takich komponentów bez ryzyka uszkodzenia systemu. Dodatkowo, w tym trybie można wykonać skanowanie systemu w poszukiwaniu wirusów lub złośliwego oprogramowania, które mogłyby być przyczyną problemów. Warto również pamiętać, że standardy diagnostyki informatycznej sugerują stosowanie trybu awaryjnego jako pierwszego kroku w przypadku awarii, co czyni go istotnym narzędziem w arsenale każdego technika komputerowego.

Pytanie 24

Po włączeniu komputera wyświetlił się komunikat: "non-system disk or disk error. Replace and strike any key when ready". Jakie mogą być przyczyny?

A. uszkodzony kontroler DMA
B. dyskietka umieszczona w napędzie
C. brak pliku ntldr
D. skasowany BIOS komputera
Analizując pozostałe propozycje odpowiedzi, warto zauważyć, że brak pliku ntldr nie jest przyczyną wskazanego komunikatu. Plik ntldr jest kluczowy dla rozruchu systemu Windows, ale jego brak skutkowałby innym komunikatem, związanym z brakiem systemu operacyjnego. Uszkodzony kontroler DMA również nie jest bezpośrednio związany z pojawieniem się tego błędu. Uszkodzenia kontrolera DMA mogą prowadzić do problemów z transferem danych, ale nie wpływają na uruchamianie systemu operacyjnego w sposób, który skutkowałby komunikatem o błędzie dotyczącym 'non-system disk'. Skasowanie BIOS-u jest niezwykle rzadkim przypadkiem i również nie jest przyczyną tego konkretnego komunikatu. BIOS odpowiada za podstawowe funkcje uruchamiania komputera, ale w przypadku jego usunięcia komputer nie uruchomiłby się wcale, a użytkownik otrzymałby zupełnie inny komunikat o błędzie. Te błędne odpowiedzi ilustrują typowe nieporozumienia dotyczące funkcji poszczególnych komponentów komputerowych oraz ich wpływu na proces uruchamiania. Kluczowe jest zrozumienie, że wiele z tych problemów można rozwiązać poprzez proste sprawdzenie konfiguracji sprzętowej i dostosowanie ustawień BIOS/UEFI, co jest najlepszą praktyką w zarządzaniu komputerem.

Pytanie 25

Nie można uruchomić systemu Windows z powodu błędu oprogramowania. Jak można przeprowadzić diagnozę i usunąć ten błąd w jak najmniej inwazyjny sposób?

A. uruchomienie komputera w trybie awaryjnym
B. przeprowadzenie wymiany podzespołów
C. wykonanie reinstalacji systemu Windows
D. przeprowadzenie diagnostyki podzespołów
Wykonanie reinstalacji systemu Windows to podejście, które może wydawać się sensowne w obliczu problemów z uruchomieniem systemu, jednak jest to metoda znacznie bardziej inwazyjna. Reinstalacja systemu prowadzi do utraty wszystkich zainstalowanych aplikacji oraz danych użytkowników, co jest niepożądane, szczególnie jeśli problem można rozwiązać innym, mniej drastycznym sposobem. W przypadku wykonywania diagnostyki podzespołów, choć może to być konieczne w przypadku problemów sprzętowych, nie jest to pierwszy krok, gdyż usterka programowa niekoniecznie wskazuje na uszkodzenie sprzętu. Wymiana podzespołów, jako ostatnia opcja, powinna być stosowana wyłącznie wtedy, gdy inne metody nie przynoszą rezultatu, co w przypadku problemów programowych nie ma zastosowania. Często użytkownicy popełniają błąd w myśleniu, zakładając, że problem z uruchomieniem systemu wynika z uszkodzenia sprzętu, podczas gdy może być to efekt konfliktu oprogramowania lub problemów z konfiguracją. Z tego powodu, kluczowe jest, aby przed podjęciem bardziej radykalnych działań najpierw przeprowadzić diagnostykę w trybie awaryjnym, co pozwala na szybsze i mniej inwazyjne zidentyfikowanie źródła problemu.

Pytanie 26

Na ilustracji zaprezentowano schemat blokowy karty

Ilustracja do pytania
A. telewizyjnej
B. sieciowej
C. dźwiękowej
D. graficznej
Schemat blokowy przedstawia kartę telewizyjną, co można zidentyfikować na podstawie kilku kluczowych elementów. Karty telewizyjne są zaprojektowane do odbioru sygnałów telewizyjnych z anteny i ich przetwarzania na formaty cyfrowe, które mogą być odtwarzane na komputerze. Na schemacie widoczne są takie komponenty jak tuner, który odbiera sygnał RF z anteny, a także dekoder wideo, który przetwarza sygnał na format cyfrowy, często w standardzie MPEG-2. Obecność przetwornika analogowo-cyfrowego (A/C) dla sygnałów wideo i audio wskazuje na funkcję konwersji sygnałów analogowych na cyfrowe. Dodatkowe elementy, takie jak EEPROM i DRAM, wspierają przetwarzanie i przechowywanie danych, co jest typowe dla bardziej zaawansowanych funkcji kart TV, takich jak timeshifting czy nagrywanie programów. Interfejs magistrali umożliwia komunikację karty z resztą systemu komputerowego, co jest niezbędne do przesyłania przetworzonych danych wideo i audio do dalszego odtwarzania. Karty telewizyjne znajdują zastosowanie w systemach multimedialnych, umożliwiając odbiór i nagrywanie telewizji oraz integrację z innymi funkcjami komputerowymi.

Pytanie 27

Jaką zmianę sygnału realizuje konwerter RAMDAC?

A. analogowy na cyfrowy
B. stały na zmienny
C. zmienny na stały
D. cyfrowy na analogowy
Analizując pozostałe odpowiedzi, można zauważyć, że koncepcje w nich zawarte są błędne. Odpowiedź dotycząca przetwarzania sygnału analogowego na cyfrowy opiera się na mylnym założeniu, że RAMDAC potrafi odwrócić proces konwersji, co nie jest zgodne z jego funkcją. RAMDAC z natury przekształca dane cyfrowe, a nie odwrotnie. Kolejne odpowiedzi, mówiące o przekształcaniu sygnałów zmiennych na stałe oraz stałych na zmienne, wprowadzają do dyskusji pojęcia, które nie są związane z podstawową funkcjonalnością RAMDAC. W rzeczywistości RAMDAC nie zajmuje się konwersją zmienności sygnałów, lecz ich formą. Typowym błędem w myśleniu o tych konwersjach jest niepełne zrozumienie roli sygnałów w systemach cyfrowych i analogowych. Niektórzy mogą myśleć, że konwertery RAMDAC mają wiele funkcji, jednak ich głównym zadaniem jest zapewnienie płynnej i dokładnej konwersji danych z formatu cyfrowego na analogowy, co jest niezbędne dla wyświetlania grafiki na monitorach. Zrozumienie tych procesów jest kluczowe dla specjalistów zajmujących się technologią komputerową, aby skutecznie projektować i implementować systemy graficzne.

Pytanie 28

Najlepszą metodą ochrony danych przedsiębiorstwa, którego biura znajdują się w różnych, odległych miejscach, jest wdrożenie

A. kompresji strategicznych danych
B. kopii analogowych
C. backupu w chmurze firmowej
D. kopii przyrostowych
Kopie analogowe, czyli fizyczne nośniki danych, takie jak taśmy czy płyty CD, są niewystarczające w przypadku firm rozproszonych geograficznie. Choć mogą one stanowić pewną formę archiwizacji, ich ograniczenia są znaczące, z uwagi na trudności w dostępie do danych z różnych lokalizacji oraz ryzyko uszkodzenia lub zgubienia nośników. Ponadto, kopie analogowe nie oferują automatyzacji ani synchronizacji w czasie rzeczywistym, co jest kluczowe w aktualnym środowisku biznesowym, gdzie czas reakcji jest istotny. Kopie przyrostowe, które dotyczą jedynie zmian od ostatniego backupu, są bardziej efektywne od pełnych kopii, jednak również nie są idealnym rozwiązaniem w przypadku firm z wieloma lokalizacjami. Mogą one prowadzić do problemów z zarządzaniem wersjami danych, a przywrócenie pełnej bazy danych wymaga skomplikowanego procesu odtwarzania. Kompresja strategicznych danych, choć może pomóc w oszczędności miejsca, nie zapewnia ochrony danych ani ich dostępności w przypadku awarii. Te metody, z uwagi na swoje ograniczenia, mogą wprowadzać w błąd firmy, które są przekonane, że wystarczą jako jedyne formy zabezpieczenia danych. W rzeczywistości, optymalne podejście powinno obejmować różnorodne strategie backupu, w tym chmurę, która jest uznawana za standard w branży dla zarządzania danymi w nowoczesnym przedsiębiorstwie.

Pytanie 29

W skład sieci komputerowej wchodzi 3 komputery stacjonarne oraz drukarka sieciowa, które są połączone kablem UTP z routerem mającym porty 1 x WAN oraz 5 x LAN. Które urządzenie sieciowe pozwoli na dołączenie kablem UTP dwóch dodatkowych komputerów do tej sieci?

A. Przełącznik
B. Konwerter mediów
C. Terminal sieciowy
D. Modem
Przełącznik (switch) to urządzenie sieciowe, które umożliwia podłączenie dodatkowych komputerów do istniejącej sieci lokalnej (LAN). W przypadku omawianej sieci składającej się z 3 komputerów stacjonarnych i drukarki, przełącznik pozwoli na rozszerzenie tej infrastruktury o kolejne urządzenia. Działa na poziomie warstwy drugiej modelu OSI, co oznacza, że przetwarza ramki danych, umożliwiając komunikację pomiędzy różnymi urządzeniami w sieci. Typowe zastosowanie przełączników obejmuje tworzenie lokalnych sieci komputerowych, w których wiele urządzeń może komunikować się ze sobą w efektywny sposób. Przełączniki są często używane w biurach i domach, gdzie zwiększa się liczba urządzeń wymagających dostępu do internetu oraz wspólnego korzystania z zasobów, takich jak drukarki. Dzięki standardom takim jak IEEE 802.3 (Ethernet), przełączniki mogą wspierać różne prędkości połączeń, co pozwala na elastyczne dopasowanie do wymagań sieci. Ich zastosowanie przyczynia się do zwiększenia efektywności transferu danych, a także zmniejsza ryzyko kolizji, co jest kluczowe w złożonych infrastrukturach sieciowych.

Pytanie 30

Które z poniższych poleceń w systemie Linux służy do zmiany uprawnień pliku?

A. chmod
B. pwd
C. chown
D. ls
Polecenie <code>chmod</code> jest używane w systemach operacyjnych Unix i Linux do zmiany uprawnień plików i katalogów. Uprawnienia te określają, kto i w jaki sposób może czytać, zapisywać lub wykonywać dany plik. Polecenie to jest niezwykle przydatne w kontekście zarządzania bezpieczeństwem i dostępem do zasobów na serwerach i komputerach osobistych. Przykładowo, aby nadać pełne uprawnienia właścicielowi pliku, ale ograniczyć je dla innych użytkowników, można użyć polecenia <code>chmod 700 nazwa_pliku</code>. Ten sposób nadawania uprawnień jest bardzo elastyczny i pozwala na dokładne skonfigurowanie dostępu zgodnie z potrzebami użytkownika lub politykami firmy. Warto także wspomnieć, że <code>chmod</code> wspiera zarówno notację symboliczną (np. <code>chmod u+x</code>) jak i ósemkową (np. <code>chmod 755</code>), co ułatwia jego stosowanie w różnych scenariuszach. Dzięki temu narzędziu administratorzy systemów mogą skutecznie zarządzać dostępem do plików, co jest kluczowe dla utrzymania bezpieczeństwa danych.

Pytanie 31

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
B. konfigurowaniem adresu karty sieciowej.
C. dodaniem drugiego dysku twardego.
D. wybraniem pliku z obrazem dysku.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 32

Jakie urządzenie pozwoli na połączenie kabla światłowodowego zastosowanego w okablowaniu pionowym sieci z przełącznikiem, który ma jedynie złącza RJ45?

A. Konwerter mediów
B. Regenerator
C. Router
D. Modem
Ruter, modem i regenerator to urządzenia, które spełniają różne funkcje w zakresie komunikacji sieciowej, ale żadne z nich nie jest odpowiednie do bezpośredniej konwersji sygnału ze światłowodu na sygnał elektryczny, co jest kluczowe w omawianym kontekście. Ruter przede wszystkim zarządza ruchem danych w sieci, kierując pakiety do odpowiednich adresów IP, ale nie ma zdolności przekształcania sygnałów optycznych na elektryczne. Z kolei modem, który jest przeznaczony do konwersji sygnałów cyfrowych na analogowe i vice versa, także nie radzi sobie z bezpośrednim połączeniem światłowodu z urządzeniami miedzianymi. Regenerator, natomiast, jest używany do wzmacniania sygnału w długodystansowych połączeniach optycznych, ale nie dokonuje konwersji typów kabli. Często powodem wyboru niewłaściwych odpowiedzi jest niepełne zrozumienie roli, jaką każde z tych urządzeń odgrywa w infrastrukturze sieciowej. W praktyce, kluczowe jest zrozumienie, że światłowody i kable miedziane to różne technologie, które wymagają odpowiednich rozwiązań, aby mogły współpracować. W przypadku potrzeby połączenia tych dwóch typów kabli, konwerter mediów staje się jedyną sensowną opcją, a wybór innych urządzeń prowadzi do braku możliwości komunikacji między składnikami sieci.

Pytanie 33

W jakiej topologii sieci komputerowej każdy węzeł ma bezpośrednie połączenie z każdym innym węzłem?

A. Częściowej siatki
B. Rozszerzonej gwiazdy
C. Podwójnego pierścienia
D. Pełnej siatki
Topologia pełnej siatki to fajna sprawa, bo każdy węzeł w sieci ma połączenie z każdym innym. Dzięki temu mamy maksymalną niezawodność i komunikacja działa bez zarzutu. Jeżeli jedno połączenie padnie, to ruch da się przekierować na inne ścieżki. To jest szczególnie ważne w miejscach, gdzie liczy się dostępność, jak w centrach danych czy dużych firmach. Jasne, że w praktyce wprowadzenie takiej topologii może być kosztowne, bo liczba połączeń rośnie drastycznie. Ale w krytycznych sytuacjach, jak w sieciach finansowych, lepiej postawić na pełną siatkę, bo to zwiększa bezpieczeństwo danych i szybkość reakcji na zagrożenia. Co ciekawe, wiele organizacji zaleca użycie tej topologii, gdy potrzeba maksymalnej wydajności i minimalnych opóźnień.

Pytanie 34

Aby zablokować widoczność identyfikatora sieci Wi-Fi, konieczne jest dokonanie zmian w ustawieniach rutera w sekcji oznaczonej numerem

Ilustracja do pytania
A. 3
B. 2
C. 1
D. 4
Aby ukryć identyfikator sieci bezprzewodowej SSID w ruterze, należy skonfigurować opcję zwaną „Ukryj SSID”. Jest to bardzo popularna funkcja, która pozwala na zwiększenie bezpieczeństwa sieci bezprzewodowej poprzez niewyświetlanie jej nazwy w dostępnych sieciach. Ruter przestaje wtedy ogłaszać swój SSID w eterze, co teoretycznie utrudnia osobom niepowołanym zidentyfikowanie sieci. W praktyce ukrycie SSID nie jest jednak pełnoprawną metodą zabezpieczeń i nie zastępuje silnego szyfrowania, takiego jak WPA2 lub WPA3. Ukrywanie SSID może być używane jako dodatkowa warstwa zabezpieczeń, ale nie należy na tym polegać jako na jedynej formie ochrony sieci. Zastosowanie tej funkcji wymaga ręcznego wpisania nazwy sieci na każdym urządzeniu, które ma się z nią łączyć. Funkcjonalność ta jest zgodna z większością standardów konfiguracji ruterów takich jak IEEE 802.11. Warto również pamiętać, że ukrycie SSID nie chroni przed zaawansowanymi atakami, ponieważ doświadczony napastnik może używać narzędzi do sniffingu, aby wykryć ruch sieciowy i namierzyć ukryty SSID. Dlatego zawsze należy stosować kompleksowe zabezpieczenia sieci, w tym silne hasła i aktualizacje oprogramowania sprzętowego.

Pytanie 35

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć w topologii gwiazdy 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu "skrętka"1 zł za 1 metr
A. 92 zł
B. 252 zł
C. 249 zł
D. 89 zł
Aby obliczyć koszt brutto materiałów do połączenia trzech komputerów w topologii gwiazdy, należy uwzględnić wszystkie wymagane elementy. W topologii gwiazdy każdy komputer łączy się z centralnym przełącznikiem za pomocą przewodów. W tym przypadku korzystamy z przewodów o długości 2 metrów. Mamy więc trzy komputery, co daje nam łącznie trzy przewody o długości 2 metrów każdy. Koszt przewodu wynosi 1 zł za metr, co oznacza, że koszt trzech przewodów o długości 2 metrów wyniesie 3 x 2 m x 1 zł = 6 zł. Dodatkowo potrzebujemy trzech wtyków RJ-45, z których każdy kosztuje 1 zł, co łącznie kosztuje 3 zł. Na końcu musimy uwzględnić koszt przełącznika, który wynosi 80 zł. Sumując wszystkie koszty: 80 zł (przełącznik) + 6 zł (przewody) + 3 zł (wtyki) = 89 zł. Warto jednak zwrócić uwagę, że w pytaniu hetuje o koszt brutto, co może obejmować dodatkowe opłaty lub podatki, które są wliczone w cenę brutto. Jednak, jeśli przyjmiemy, że wszystkie podane ceny już uwzględniają VAT, to całkowity koszt wynosi 89 zł, a nie 92 zł. Koszt łączny to 89 zł, co czyni tę odpowiedź poprawną.

Pytanie 36

W jakim systemie numerycznym przedstawione są zakresy We/Wy na ilustracji?

Ilustracja do pytania
A. Szesnastkowym
B. Ósemkowym
C. Dziesiętnym
D. Binarnym
Rozważając system binarny, warto zauważyć, że chociaż jest on fundamentalny dla samego działania komputerów, nie jest praktyczny do bezpośredniego użycia w zarządzaniu zasobami systemowymi ze względu na swoją długość i złożoność. System binarny składa się tylko z dwóch cyfr, 0 i 1, przez co reprezentacja dużych liczb wymaga wielu cyfr, co zwiększa ryzyko błędów przy ręcznym ich przetwarzaniu i odczycie. System ósemkowy, również oparty na potęgach liczby 2, nie jest powszechnie używany w kontekście zarządzania zasobami systemowymi. Choć historycznie miał swoje zastosowania, obecnie jego użycie jest ograniczone, ponieważ system szesnastkowy jest bardziej efektywny i zrozumiały dla specjalistów IT. System dziesiętny, najbardziej intuicyjny dla ludzi, ze względu na swoje szerokie zastosowanie w codziennym życiu, nie jest efektywny w kontekście sprzętu komputerowego. Komputery operują na bazie dwójkowej, więc naturalnym wyborem jest system szesnastkowy, który jest bardziej zwięzły i łatwiejszy do konwersji z systemu binarnego. Koncepcja użycia systemu dziesiętnego w zarządzaniu zasobami sprzętowymi jest błędna, ponieważ nie odzwierciedla rzeczywistego sposobu ich reprezentacji i adresowania w systemach operacyjnych. Decyzja o użyciu systemu szesnastkowego w informatyce wynika z jego efektywności i praktyczności w zarządzaniu i diagnozowaniu technologii komputerowych, co czyni go standardem branżowym w tym obszarze. Poprawne rozumienie i zastosowanie odpowiednich systemów liczbowych jest kluczowe dla skutecznego zarządzania systemami komputerowymi i urządzeniami peryferyjnymi.

Pytanie 37

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
B. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
C. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD
D. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5
Wszystkie inne odpowiedzi, które nie są poprawne, mają różne błędy w składni i w podejściu. Na przykład, pierwsza opcja, gdzie pojawia się "static route", jest niepoprawna, bo takie polecenie po prostu nie istnieje w standardzie. W odpowiedzi z "route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD" masz złą kolejność argumentów, co powoduje, że polecenie jest źle interpretowane. Pamiętaj, że "ADD" powinno być na początku, to naprawdę ma znaczenie dla prawidłowego działania komendy. Ostatnia opcja także ma błędy składniowe, co prowadzi do nieporozumień przy definiowaniu tras w tablicy routingu. Musisz pamiętać, że zrozumienie poleceń dotyczących trasowania jest kluczowe w zarządzaniu siecią. Błędne zdefiniowanie tras może wywołać problemy z łącznością i nieefektywne wykorzystanie zasobów. Dlatego dobra znajomość składni i logicznego porządku poleceń to podstawa dla każdego, kto zajmuje się administracją sieci.

Pytanie 38

Aby monitorować przesył danych w sieci komputerowej, należy wykorzystać program klasy

A. firmware.
B. sniffer.
C. debugger.
D. kompilator.
Sniffer, znany również jako analizator pakietów, to narzędzie używane do monitorowania i analizowania ruchu w sieci komputerowej. Jego głównym zadaniem jest przechwytywanie pakietów danych przesyłanych przez sieć, co pozwala na ich szczegółową analizę. Sniffery są wykorzystywane w różnych kontekstach, od diagnostyki sieci po analizę bezpieczeństwa. Na przykład, administratorzy sieci mogą używać sniffera, aby wykryć nieprawidłowe działania, takie jak nieautoryzowany dostęp do danych lub ataki typu Man-in-the-Middle. Sniffery są także pomocne w optymalizacji wydajności sieci poprzez identyfikację wąskich gardeł i nadmiarowego ruchu. W branży IT korzysta się z różnych narzędzi typu sniffer, takich jak Wireshark, który jest jednym z najpopularniejszych analizatorów pakietów. Zgodnie z dobrą praktyką branżową, monitorowanie ruchu sieciowego powinno odbywać się z zachowaniem odpowiednich zasad bezpieczeństwa oraz prywatności użytkowników. Warto również pamiętać, że użycie sniffera w nieodpowiedni sposób, bez zgody osób zaangażowanych, może być nielegalne.

Pytanie 39

Aby zmienić system plików na dysku z FAT32 na NTFS w Windows XP, należy użyć programu

A. convert
B. attrib
C. replace
D. subst
Odpowiedź "convert" jest prawidłowa, ponieważ jest to narzędzie systemowe w systemie Windows, które służy do konwersji systemów plików. Umożliwia ono zmianę typu systemu plików z FAT32 na NTFS bez utraty danych. Proces konwersji jest niezwykle istotny, gdyż NTFS oferuje wiele zaawansowanych funkcji w porównaniu do FAT32, takich jak wsparcie dla dużych plików, lepsza wydajność, funkcje zabezpieczeń oraz obsługa dysków większych niż 32 GB. Przy użyciu polecenia "convert" w wierszu poleceń, użytkownik może wpisać "convert D: /fs:ntfs", gdzie "D:" to litera dysku, który ma być konwertowany. Przed przystąpieniem do konwersji zaleca się wykonanie kopii zapasowej danych na dysku, aby zminimalizować ryzyko utraty informacji. Dobrą praktyką jest także sprawdzenie integralności danych przed i po konwersji za pomocą narzędzi takich jak CHKDSK. Warto również pamiętać, że konwersja jest procesem nieodwracalnym, dlatego należy dokładnie przemyśleć decyzję o zmianie systemu plików.

Pytanie 40

Do konwersji kodu źródłowego na program wykonywalny używany jest

A. interpreter
B. kompilator
C. debuger
D. emulator
Kompilator to narzędzie, które przekształca kod źródłowy, napisany w języku wysokiego poziomu, na kod maszynowy, który jest zrozumiały dla procesora. Proces ten jest kluczowy w programowaniu, ponieważ pozwala na uruchomienie aplikacji na sprzęcie komputerowym. Kompilatory analizują i optymalizują kod, co sprawia, że programy działają szybciej i bardziej efektywnie. Przykłady popularnych kompilatorów to GCC (GNU Compiler Collection) dla języka C/C++ oraz javac dla języka Java. Kompilacja przynosi korzyści takie jak sprawdzanie błędów na etapie kompilacji, co pozwala na wczesne wykrywanie problemów. Standardy takie jak ISO C++ oraz Java Language Specification definiują, jak powinny wyglądać języki oraz jak działa kompilacja, co zapewnia spójność i interoperacyjność w ekosystemie programistycznym. Kompilatory także często tworzą pliki wykonywalne, które są łatwe w dystrybucji i uruchamianiu na różnych systemach operacyjnych, co jest istotne w kontekście rozwijania oprogramowania.