Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:46
  • Data zakończenia: 7 grudnia 2025 10:21

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. C.
B. A.
C. B.
D. D.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań prawnych dotyczących pomiarów w instalacjach elektrycznych. Niektórzy mogą mylnie uważać, że pomiary skuteczności ochrony przeciwporażeniowej powinny być przeprowadzane częściej niż co 5 lat, co nie znajduje potwierdzenia w przepisach Prawa budowlanego. Częstsze wykonywanie tych pomiarów nie tylko generuje niepotrzebne koszty, ale także może prowadzić do zjawiska przestymulowania, gdzie wykonawcy, skupiając się na nadmiarowych interwencjach, zaniedbują istotne aspekty konserwacji i nadzoru. Ponadto, nieprawidłowe przekonanie o rocznych pomiarach rezystancji izolacji często powoduje pominięcie bardziej kompleksowych analiz stanu technicznego instalacji. Kluczowym jest zrozumienie, że pomiary te mają na celu potwierdzenie, iż instalacja spełnia wymogi bezpieczeństwa przez dłuższy czas, a nie tylko w krótkich interwałach. Najlepsze praktyki w obszarze ochrony przeciwporażeniowej zalecają stosowanie okresowych przeglądów zgodnych z ustalonym harmonogramem, co pozwala na efektywne zarządzanie bezpieczeństwem elektrycznym. W związku z tym, ignorowanie wytycznych dotyczących interwałów pomiarowych prowadzi do niepełnego obrazu stanu instalacji i może narażać użytkowników na poważne ryzyko. Zrozumienie tych zasad jest kluczowe dla skutecznego zarządzania bezpieczeństwem w obiektach edukacyjnych.

Pytanie 2

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
B. Zmniejszyć prąd wzbudzenia
C. Zwiększyć częstotliwość napięcia zasilającego
D. Zastosować dodatkowe uziemienie
Obniżona rezystancja izolacji w uzwojeniu stojana silnika elektrycznego jest poważnym problemem, który może prowadzić do awarii silnika lub nawet zagrożenia bezpieczeństwa. Jednym z podstawowych działań, które należy podjąć, jest osuszanie uzwojenia. Proces ten ma na celu usunięcie wilgoci, która często jest przyczyną obniżonej rezystancji izolacji. Osuszanie można przeprowadzić za pomocą specjalnych urządzeń grzewczych lub wykorzystując energię elektryczną do podgrzania uzwojeń. Jeśli osuszanie nie przynosi oczekiwanych rezultatów, konieczna może być wymiana izolacji na nową, co jest bardziej skomplikowanym i kosztownym procesem. Współczesne normy i dobre praktyki branżowe zalecają regularne monitorowanie stanu izolacji oraz stosowanie materiałów o wysokiej odporności na wilgoć i temperaturę. Dzięki temu można zminimalizować ryzyko wystąpienia tego typu problemów i zapewnić niezawodną pracę urządzeń elektrycznych. Ważne jest, aby wszelkie prace naprawcze były wykonywane zgodnie z wytycznymi producenta oraz normami bezpieczeństwa, co zapewnia długą i bezawaryjną pracę silnika elektrycznego.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W którym obwodzie powinno się odłączyć zasilanie, aby bezpiecznie przeprowadzić wymianę cewki stycznika w obwodzie sterującym silnikiem znajdującym się w hali maszyn?

A. Tylko w obwodzie głównym silnika
B. W rozdzielnicy stanowiskowej, z której zasilany jest silnik
C. W głównej rozdzielnicy zasilającej całą halę maszyn
D. Wyłącznie w obwodzie sterującym silnikiem
Musisz koniecznie wyłączyć napięcie w rozdzielnicy stanowiskowej, zanim zaczniesz wymieniać cewkę stycznika. To naprawdę ważne dla Twojego bezpieczeństwa. Rozdzielnica ta to miejsce, które zarządza zasilaniem dla silnika, a z tego co pamiętam, takie podejście jest zgodne z normami bezpieczeństwa, jak np. PN-EN 50110-1. Operatorzy powinni wyłączać napięcie w obwodzie zasilającym urządzenie, które konserwują, żeby uniknąć porażenia prądem. Podczas wymiany cewki ważne jest, by nie tylko Twoje bezpieczeństwo było na pierwszym miejscu, ale też żeby sprzęt nie ucierpiał przez przypadkowe włączenie. Przykład? W zakładach produkcyjnych przed każdym przeglądem trzeba ustalić, które obwody trzeba deenergizować, żeby ryzyko wypadków było jak najmniejsze. Warto też prowadzić dokumentację i etykietować rozdzielnice, żeby łatwiej było zidentyfikować, które obwody są aktywne. To na pewno zwiększa bezpieczeństwo podczas prac konserwacyjnych.

Pytanie 5

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Przeprowadzanie oględzin wymagających demontażu
B. Realizowanie przeglądów niewymagających demontażu
C. Włączanie i wyłączanie urządzeń
D. Monitorowanie urządzeń w trakcie pracy
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 6

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ
A. Wyniki pomiarów pozytywne.
B. Uszkodzona izolacja uzwojenia W.
C. Zbyt duża asymetria rezystancji uzwojeń.
D. Zbyt duża rezystancja uzwojenia U.
Wybór odpowiedzi dotyczących uszkodzonej izolacji uzwojenia lub zbyt dużej asymetrii rezystancji uzwojeń opiera się na błędnym zrozumieniu wyników pomiarów i ich interpretacji. Uszkodzenie izolacji uzwojenia może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia, jednak w przypadku prezentowanych wyników, rezystancje izolacji są wysokie, co wskazuje na ich dobry stan. Typowym błędem myślowym jest nadinterpretacja odchyleń w rezystancjach uzwojeń. Choć różnice w rezystancji mogą sugerować problemy, w podanych wynikach wartości są wystarczająco zbliżone, aby uznać je za akceptowalne. Również, nadmierne zmartwienie o asymetrię rezystancji w sytuacji, gdy wartości są bliskie siebie, jest niewłaściwe. Istotne jest, aby nie mylić pojedynczych pomiarów z ogólną kondycją silnika. Właściwe podejście do oceny stanu technicznego obejmuje dokładne analizowanie wszystkich danych pomiarowych w kontekście praktyk inżynierskich, takich jak te opisane w normach PN-EN. Dobrą praktyką jest stosowanie systematycznego przeglądu maszyn, co pozwala na identyfikację i eliminację potencjalnych problemów przed ich wystąpieniem.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. przewodów elektrycznych wyłącznie przed skutkami zwarć.
B. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
C. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
D. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
Wkładki topikowe są kluczowymi elementami ochrony elektrycznej, które zapobiegają uszkodzeniom przewodów elektrycznych w wyniku przeciążeń i zwarć. Kiedy prąd przepływający przez obwód przekracza bezpieczny poziom, wkładka topikowa ulega przepaleniu, co przerywa obwód i chroni przed dalszymi szkodami. Jest to istotne w kontekście norm ochrony elektrycznej, takich jak PN-EN 60269, które określają wymagania dotyczące zabezpieczeń przed przeciążeniem i zwarciem. W praktyce wkładki topikowe są powszechnie stosowane w rozdzielniach elektrycznych oraz w instalacjach przemysłowych, gdzie odpowiednia ochrona przewodów jest niezbędna do zapewnienia bezpieczeństwa pracy oraz ochrony urządzeń. Dzięki zastosowaniu wkładek topikowych, użytkownicy mogą mieć pewność, że ich instalacje są zabezpieczone przed niebezpiecznymi sytuacjami, co jest kluczowe dla minimalizacji ryzyka pożaru i awarii sprzętu.

Pytanie 9

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 750 V
B. 100 V
C. 230 V
D. 500 V
Podczas gdy napięcie testowe 100 V może wydawać się bezpieczną opcją, jest niewystarczające do wykrycia drobnych uszkodzeń izolacji, które mogą prowadzić do poważniejszych problemów w przyszłości. Napięcie to jest stosowane do pomiarów w obwodach o niższym napięciu znamionowym, ale nie jest zgodne z wymaganiami dla obwodów 230 V. Z kolei napięcie testowe 230 V, choć odpowiada napięciu znamionowemu badanego obwodu, nie spełnia norm dotyczących pomiarów rezystancji izolacji. Testowanie przy napięciu znamionowym nie uwzględnia potencjalnych warunków przeciążeniowych, które mogą wystąpić w eksploatacji. Zastosowanie napięcia 750 V, choć technicznie możliwe, może być niebezpieczne dla izolacji i nie jest standardem w pomiarach dla obwodów 230 V. Tak wysokie napięcie może prowadzić do niepotrzebnych uszkodzeń, a testowanie każdej instalacji przy takim napięciu nie jest praktykowane ze względu na ryzyko i brak zgodności z normami. Dlatego najczęściej stosowane jest 500 V, jako kompromis między bezpieczeństwem a skutecznością diagnostyki.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Podczas wymiany gniazda wtyczkowego w instalacji domowej wykonanej w rurkach pod tynkiem złamał się jeden z przewodów aluminiowych, przez co stał się za krótki. Jak powinno się postąpić w tej sytuacji przy wymianie gniazda?

A. Skręcić złamany przewód z kawałkiem przewodu miedzianego i zamontować gniazdo
B. Przylutować brakującą część przewodu aluminiowego i zamontować gniazdo
C. Przed zamontowaniem gniazda wymienić przewody na miedziane, wciągając nowe razem z usuwaniem starych
D. Przed zamontowaniem gniazda usunąć uszkodzony przewód i wciągnąć nowy miedziany
Wymiana uszkodzonych przewodów na miedziane przed założeniem gniazda jest najlepszym rozwiązaniem ze względu na właściwości miedzi, takie jak lepsza przewodność elektryczna, odporność na korozję oraz trwałość. Miedź jest materiałem o znacznie wyższej jakości w porównaniu do aluminium, co wpływa na bezpieczeństwo i efektywność instalacji elektrycznej. W przypadku uszkodzenia przewodu aluminiowego, jego wymiana na miedziany jest kluczowa, aby uniknąć problemów z połączeniami oraz ryzyka awarii. Przykładem praktycznym jest sytuacja, kiedy podczas remontu mieszkania stwierdzono, że instalacja elektryczna była przestarzała. Wymiana przewodów na miedziane, zgodnie z normą PN-IEC 60364, zapewniła nie tylko lepsze parametry użytkowe, ale również zgodność z aktualnymi przepisami bezpieczeństwa. Dobrą praktyką jest również stosowanie odpowiednich złączek i akcesoriów, które są przystosowane do miedzi, co dodatkowo zwiększa bezpieczeństwo oraz trwałość całej instalacji. Ważne jest, aby każda wymiana była przeprowadzana przez wykwalifikowanego elektryka, który zna lokalne przepisy oraz standardy wykonania instalacji.

Pytanie 13

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Zwarcie międzyzwojowe
B. Przeciążenie transformatora
C. Przerwa w uzwojeniu
D. Uszkodzenie rdzenia
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 14

W jakim przedziale powinno być nastawione zabezpieczenie przeciążeniowe silnika, którego tabliczkę znamionową przedstawiono na zdjęciu, jeśli wiadomo, że jego uzwojenia są zasilane z sieci 230/400 V, 50 Hz i połączone w gwiazdę?

Ilustracja do pytania
A. (1,95 - 2,20) A
B. (2,21 - 2,31) A
C. (3,82 - 4,00) A
D. (3,40 - 3,80) A
Podane odpowiedzi, które nie mieszczą się w zakresie (2,21 - 2,31) A, są wynikiem nieprawidłowego rozumienia zasad obliczania prądów znamionowych oraz ustawiania zabezpieczeń przeciążeniowych. Kluczowym błędem jest brak uwzględnienia, że prąd znamionowy silnika przy zasilaniu 400 V wynosi 1,46 A, a zabezpieczenia przeciążeniowe powinny być ustawiane na poziomie 110-125% tego prądu. Z tego wynika, że dolna granica zabezpieczenia wynosi 1,606 A, a górna granica 1,825 A. Odpowiedzi, które sugerują wyższe wartości, mogą wynikać z nieprawidłowych założeń co do specyfiki silnika lub nieznajomości zasad doboru zabezpieczeń zgodnie z normami branżowymi. Typowym błędem jest przyjmowanie, że wartości prądów przy zasilaniu 230 V bądź nieprawidłowe zaokrąglenia lub interpretacje danych z tabliczki znamionowej są wystarczające do określenia odpowiednich ustawień. Istotne jest zrozumienie, że zabezpieczenia przeciążeniowe mają na celu ochronę urządzenia przed uszkodzeniem w wyniku przeciążenia, a nie mogą być ustawiane losowo bez uwzględnienia specyfiki silnika oraz warunków jego pracy. Z tego powodu przy doborze zabezpieczeń należy kierować się zarówno obliczeniami, jak i standardami branżowymi, takimi jak IEC 60947-4-1, które precyzują zasady doboru zabezpieczeń dla silników elektrycznych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zwiększenia częstotliwości prądu
B. Zmniejszenia prędkości obrotowej silników
C. Zwiększenia napięcia znamionowego
D. Zmniejszenia strat energii i poprawy współczynnika mocy
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 17

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Świadectwo kwalifikacyjne w zakresie E + pomiary
B. Wyłącznie świadectwo kwalifikacyjne w zakresie D
C. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
D. Jedynie świadectwo kwalifikacyjne w zakresie E
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 18

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Zwarcia pomiarowego
B. Zwarcia awaryjnego
C. Obciążenia znamionowego
D. Biegu jałowego
Silnik asynchroniczny w stanie zwarcia pomiarowego oraz zwarcia awaryjnego nie powinien funkcjonować w normalnych warunkach roboczych. W zwarciu pomiarowym, które występuje podczas testowania lub diagnozowania silnika, jego parametry są czasowo zaburzone, co nie pozwala na prawidłowe ocenienie efektywności działania. Zwarcie awaryjne, natomiast, prowadzi do poważnych uszkodzeń silnika i może skutkować jego zatarciem. W obu tych przypadkach silnik nie jest w stanie normalnie pracować, a ich współczynnik mocy nie jest miarodajny ani użyteczny. Z kolei obciążenie znamionowe jest optymalnym stanem pracy silnika, gdzie współczynnik mocy jest bliski wartości nominalnej, zazwyczaj powyżej 0,8. W związku z tym, pomylenie tych stanów z biegiem jałowym może prowadzić do błędnych wniosków na temat efektywności energetycznej i wydajności silników elektrycznych. Zrozumienie różnic pomiędzy tymi stanami jest kluczowe dla inżynierów oraz techników w branży elektrotechnicznej, aby podejmować odpowiednie decyzje dotyczące projektowania, eksploatacji oraz konserwacji maszyn elektrycznych.

Pytanie 19

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie wzrośnie
B. Dwukrotnie zmniejszy się
C. Czterokrotnie wzrośnie
D. Czterokrotnie zmniejszy się
W kontekście prędkości obrotowej silnika synchronicznego, niektóre odpowiedzi mogą prowadzić do mylnych wniosków. Na przykład, stwierdzenie, że prędkość obrotowa zmaleje czterokrotnie, jest niezgodne z podstawowymi zasadami działania tych silników. Zmniejszenie liczby par biegunów z 2 na 1 nie prowadzi do zmniejszenia prędkości, lecz do jej wzrostu, co jest kluczowym aspektem zapamiętywania zasady działania silników synchronicznych. Z kolei stwierdzenie, że prędkość zmaleje dwukrotnie, także jest błędne, gdyż sugeruje, że zmiana liczby par biegunów działa w odwrotny sposób, co jest sprzeczne z równaniem n = (120 * f) / p. Powinno być jasne, że zmniejszenie liczby par biegunów zwiększa prędkość obrotową, a nie zmniejsza. Ponadto, błędne koncepcje związane z odpowiedziami mówiącymi o czterokrotnym wzroście prędkości również wskazują na nieporozumienia dotyczące proporcjonalności między liczbą par biegunów a prędkością obrotową. W rzeczywistości, prędkość obrotowa jest odwrotnie proporcjonalna do liczby par biegunów, co potwierdza, że w przypadku zmiany liczby z 2 na 1 prędkość obrotowa wzrośnie dokładnie dwukrotnie. Czynniki te są kluczowe dla zrozumienia działania silników elektrycznych, a ich zrozumienie jest niezbędne dla inżynierów i techników, którzy zajmują się projektowaniem oraz eksploatacją systemów napędowych.

Pytanie 20

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. w lokalach mieszkalnych tylko w zamkniętych szafkach
B. na strychu w otwartych skrzynkach
C. w piwnicach w otwartych skrzynkach
D. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 21

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 35 mm2
B. 25 mm2
C. 20 mm2
D. 50 mm2
Wybór innego przekroju przewodu PE niż 25 mm2 może wynikać z nieporozumienia dotyczącego zasad ochrony przeciwporażeniowej. Przekroje 35 mm2, 20 mm2 oraz 50 mm2 są nieadekwatne dla tego przypadku. Przekrój 35 mm2 jest zbyt duży i niezgodny z wymaganiami normatywnymi, które określają minimalne wartości. W przypadku przewodu 20 mm2, jest on poniżej wymaganego minimum, co stwarza ryzyko niedostatecznego zabezpieczenia w razie awarii. Odpowiedź 50 mm2 natomiast, mimo że technicznie spełnia normy, jest zbyt wysoka, co prowadzi do zbędnych kosztów oraz nieoptymalnego doboru materiałów. W praktyce, zbyt duży przekrój może skutkować trudnościami w montażu i nieefektywnym wykorzystaniu przestrzeni instalacyjnej. Ponadto, w przypadku przewodów ochronnych, ich główną funkcją jest przewodzenie prądu zwarciowego do ziemi, co minimalizuje ryzyko porażenia prądem. Dlatego normy jasno definiują, że odpowiedni przekrój powinien być proporcjonalny do przekroju przewodów zasilających, a w przypadku aluminium wynosić 25 mm2. Niezrozumienie zasadności tych wartości może prowadzić do zastosowania niewłaściwych przekrojów, co skutkuje obniżeniem poziomu bezpieczeństwa w instalacji elektrycznej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 12 V
B. 60 V
C. 25 V
D. 50 V
Wartości napięcia dotykowego, które są podane w odpowiedziach, mogą wprowadzać w błąd, jeśli nie zostaną właściwie zrozumiane w kontekście bezpieczeństwa elektrycznego. Odpowiedzi 12 V, 25 V oraz 60 V nie spełniają kryteriów bezpieczeństwa, które zostały określone przez normy dotyczące ochrony przed porażeniem prądem. Przykładowo, napięcie 12 V jest często uznawane za stosunkowo bezpieczne, lecz w praktyce może być nieadekwatne w kontekście długotrwałego kontaktu z ciałem ludzkim, zwłaszcza w obecności wilgoci, co zwiększa ryzyko przepływu prądu. Z kolei napięcie 25 V, chociaż niższe od 50 V, nie jest wystarczające do oceny realnych zagrożeń, które mogą wystąpić w standardowych ustaleniach. Natomiast napięcie 60 V przekracza bezpieczny poziom, wprowadzając znaczne ryzyko dla zdrowia użytkowników. Pamiętajmy, że ochrona przed porażeniem prądem opiera się na systematycznym podejściu do projektowania instalacji elektrycznych, które uwzględniają nie tylko wartości napięcia, ale także warunki ich użytkowania. Kluczowe jest zrozumienie, że przekraczanie ustalonych wartości granicznych napięcia może prowadzić do poważnych konsekwencji zdrowotnych, a także odpowiedzialności prawnej w przypadku awarii. Normy bezpieczeństwa elektrycznego, takie jak IEC 60479, podkreślają znaczenie przestrzegania tych zasad, aby zminimalizować ryzyko dla użytkowników.

Pytanie 24

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. przerwie w uzwojeniu Wl - W2
B. przerwie w uzwojeniu VI - V2
C. zwarciu międzyzwojowym w uzwójeniu V1 - V2
D. zwarciu międzyzwojowym w uzwojeniu Ul - U2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 25

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się czterokrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się dwukrotnie
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. AC-3
B. AC-1
C. DC-2
D. DC-4
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 28

Na rysunku przedstawiono wyłącznik

Ilustracja do pytania
A. różnicowoprądowy.
B. czasowy.
C. gazowo-wydmuchowy.
D. nadprądowy.
Wyłącznik różnicowoprądowy jest kluczowym urządzeniem stosowanym w systemach elektrycznych, którego głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie pomiaru różnicy prądów wpływających i wypływających z obwodu. W przypadku wykrycia nieprawidłowości, na przykład przy uszkodzeniu izolacji, wyłącznik natychmiast przerywa obwód, co minimalizuje ryzyko wypadków. Głównym elementem wyłącznika różnicowoprądowego jest przycisk testowy, który pozwala użytkownikowi na regularne sprawdzanie jego działania. Zgodnie z normami PN-EN 61008-1, każdy wyłącznik różnicowoprądowy powinien być poddawany testom, co stało się standardem w nowoczesnych instalacjach elektrycznych. Warto zastosować te urządzenia w domach oraz obiektach użyteczności publicznej, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie.

Pytanie 29

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. pojawienie się napięcia na obudowie silnika
B. wzrost prędkości obrotowej wirnika
C. obniżenie prędkości obrotowej wirnika
D. uruchomienie ochronnika przeciwprzepięciowego
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 30

Który element osprzętu kablowego przedstawiono na ilustracji?

Ilustracja do pytania
A. Złączkę.
B. Mufę rozgałęźną.
C. Mufę przelotową.
D. Głowicę.
Głowice kablowe to naprawdę ważna część sprzętu w systemach elektroenergetycznych, zwłaszcza gdy mówimy o końcówkach kabli energetycznych. Na obrazku widać głowicę, która nie tylko dobrze izoluje, ale też chroni przed różnymi nieprzyjemnościami na zewnątrz, jak na przykład wilgoć czy brud. Takie głowice są często wykorzystywane w przyłączach do sieci, gdzie potrzeba mocnego i bezpiecznego połączenia. Warto korzystać z głowic, które spełniają normy, takie jak IEC 60529 czy IEC 61238-1, bo to podnosi jakość i niezawodność instalacji. Praktycznie rzecz biorąc, głowice są stosowane w wielu miejscach, jak przyłączenia do transformatorów, stacji rozdzielczych czy w różnych instalacjach przemysłowych, więc są naprawdę niezbędne w infrastrukturze energetycznej.

Pytanie 31

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń wirnika
B. stratności magnetycznej blach stojana
C. rezystancji uzwojeń stojana
D. natężenia pola magnetycznego rozproszenia
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Urządzenie oznaczone przedstawionym symbolem klasy ochronności można podłączyć do instalacji

Ilustracja do pytania
A. o obniżonym napięciu zasilania SELV lub PELV.
B. bez przewodu ochronnego.
C. separowanej elektrycznie od linii zasilającej.
D. ze stykiem ochronnym.
Zastanawiając się nad podłączaniem urządzeń elektrycznych, trzeba mieć na uwadze kilka ważnych rzeczy. Wydaje mi się, że nie do końca zrozumiałeś, jak działa klasa ochronności III. To, co napisałeś, sugeruje, że takie urządzenie powinno być odseparowane od zasilania, a to nie jest do końca prawda. Klasa III dotyczy niskonapięciowych systemów, które wcale nie potrzebują takiej separacji, jak to wskazujesz. Dodatkowo, jeśli podłączysz je do instalacji z ochronnym stykem, to może być niebezpieczne, bo klasa III działa na niskich napięciach, więc nie ma potrzeby dodatkowych zabezpieczeń. Warto pamiętać, że źle jest mylić te klasy ochronności i nie rozumieć, kiedy stosować styki ochronne. W każdym razie, jeśli chcesz bezpiecznie korzystać z takich urządzeń, trzeba trzymać się standardów jak IEC 61140.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. C.
B. B.
C. D.
D. A.
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 37

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP22
B. IP32
C. IP44
D. IP11
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 1,0 IΔN
B. Od 0,3 IΔN do 0,8 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,5 IΔN do 1,2 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.

Pytanie 40

Korzystając z tabeli podaj jakimi przewodami, według sposobu Al, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
A.YDYp 2×1,514,5
B.YDYp 2×2,519,5
C.YDYp 3×1,513,5
D.YDYp 3×2,518
A. A.
B. B.
C. D.
D. C.
Odpowiedź D to strzał w dziesiątkę! Przewód YDYp 3x2,5 mm², który jest 3-żyłowy, naprawdę spełnia wymagania dla gniazd jednofazowych z zabezpieczeniem B16A w systemie TN-S. Z tego co pamiętam, jego obciążalność długotrwała to 18A, a to całkiem spoko, bo zabezpieczenie wynosi 16A. W elektryce to mega ważne, żeby przewody mogły udźwignąć obciążenie, bo inaczej mogą się przegrzać, a tego chcemy uniknąć. Jak się buduje instalacje w systemie TN-S, to standardem są przewody 3-żyłowe. Dlaczego? Bo przewód ochronny (PE) jest oddzielony od fazowych, co bardzo zwiększa bezpieczeństwo. W praktyce, jakby się coś stało z izolacją przewodu fazowego, to prąd nie popłynie przez człowieka, tylko do ziemi. Dobrze jest też pamiętać, że wybierając przewody, trzeba uwzględnić długość instalacji i rodzaj obciążenia, więc znajomość tych rzeczy jest ważna dla każdego, kto zajmuje się elektryką.