Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 7 grudnia 2025 23:03
  • Data zakończenia: 7 grudnia 2025 23:22

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 3, 6, 12
B. 1,6,11
C. 2, 5,7
D. 1,3,12
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN 2,4 GHz jest optymalnym rozwiązaniem, ponieważ te kanały są jedynymi, które są od siebie wystarczająco oddalone, aby zminimalizować zakłócenia. W paśmie 2,4 GHz, które jest ograniczone do 14 kanałów, tylko te trzy kanały nie nachodzą na siebie, co pozwala na skuteczną separację sygnałów. Przykładowo, jeśli używamy kanału 1, to jego widmo interferencyjne kończy się w okolicach 2,412 GHz, co nie koliduje z sygnałami z kanału 6 (2,437 GHz) i 11 (2,462 GHz). W praktyce, zastosowanie tych kanałów w bliskim sąsiedztwie, na przykład w biurze z trzema punktami dostępowymi, zapewnia nieprzerwaną komunikację dla użytkowników i redukcję zakłóceń. Warto również pamiętać, że zgodnie z zaleceniami IEEE 802.11, stosowanie tych trzech kanałów w konfiguracji nie tylko poprawia jakość sygnału, ale także zwiększa przepustowość sieci, co jest szczególnie ważne w środowiskach o dużej gęstości użytkowników.

Pytanie 2

Aby chronić sieć przed zewnętrznymi atakami, warto rozważyć nabycie

A. sprzętowej zapory sieciowej
B. serwera proxy
C. przełącznika warstwy trzeciej
D. skanera antywirusowego
Sprzętowa zapora sieciowa jest kluczowym elementem zabezpieczeń sieciowych, który pełni funkcję filtra, kontrolując ruch przychodzący i wychodzący w sieci. Działa na poziomie warstwy 3 modelu OSI, co pozwala jej na analizowanie pakietów i podejmowanie decyzji o ich dopuszczeniu lub odrzuceniu na podstawie zdefiniowanych reguł. W praktyce, implementacja sprzętowej zapory sieciowej może znacząco ograniczyć ryzyko ataków zewnętrznych, takich jak DDoS, dzięki funkcjom takim jak stateful inspection oraz deep packet inspection. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają istotność zabezpieczeń sieciowych dla integralności i dostępności systemów informatycznych. Przykładowo, w organizacjach, które przetwarzają wrażliwe dane, stosowanie sprzętowych zapór sieciowych jest praktyką rekomendowaną przez specjalistów ds. bezpieczeństwa IT, aby zapewnić zgodność z regulacjami ochrony danych, takimi jak RODO. Ponadto, sprzętowe zapory sieciowe mogą być integrowane z innymi systemami zabezpieczeń, takimi jak systemy wykrywania włamań (IDS), co zwiększa ich efektywność.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do których komputerów dotrze ramka rozgłoszeniowa wysyłana ze stacji roboczej PC1?

Ilustracja do pytania
A. PC2 i PC6
B. PC4 i PC5
C. PC2 i PC4
D. PC3 i PC6
Ramka rozgłoszeniowa wysyłana z PC1 dotrze do PC3 i PC6, ponieważ wszystkie te urządzenia znajdują się w tym samym VLANie, czyli VLAN10. W kontekście sieci komputerowych, ramki rozgłoszeniowe są mechanizmem pozwalającym na wysyłanie danych do wszystkich urządzeń w danym VLANie. To oznacza, że wszystkie urządzenia, które są logicznie połączone w tej samej grupie, mogą odbierać taką ramkę. Chociaż ramki rozgłoszeniowe są ograniczone do jednego VLANu, ich zastosowanie jest kluczowe w przypadku komunikacji w lokalnych sieciach. Przykładem mogą być protokoły ARP (Address Resolution Protocol), które wykorzystują ramki rozgłoszeniowe do mapowania adresów IP na adresy MAC. Z tego względu dobrze zrozumieć, jak działają VLANy oraz zasady ich izolacji, aby efektywnie zarządzać ruchem w sieci oraz poprawić jej bezpieczeństwo, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 5

Którego numeru portu używa usługa FTP do wysyłania komend?

A. 69
B. 21
C. 80
D. 20
Wybór innych numerów portów w kontekście usługi FTP do przesyłania poleceń jest błędny z kilku kluczowych powodów. Port 80 jest standardowym portem dla protokołu HTTP, który jest używany do przesyłania treści stron internetowych. Jego zastosowanie w kontekście FTP jest mylące, ponieważ FTP i HTTP to różne protokoły służące do różnych celów – FTP do transferu plików, a HTTP do przesyłania dokumentów HTML. Port 20, z kolei, jest wykorzystywany do transferu danych w ramach FTP, a nie do komunikacji kontrolnej, dlatego jego wybór jako portu do przesyłania poleceń jest błędny. Port 69 jest zarezerwowany dla TFTP (Trivial File Transfer Protocol), który jest uproszczoną wersją FTP, jednak nie jest używany do typowych zastosowań FTP. Typowym błędem myślowym jest mylenie ról portów oraz protokołów, co prowadzi do nieporozumień w konfiguracji usług sieciowych. Aby prawidłowo zarządzać połączeniami i zapewnić ich bezpieczeństwo, kluczowe jest zrozumienie, który port jest przypisany do jakiego protokołu i w jaki sposób te protokoły współdziałają w sieci.

Pytanie 6

Jaki port jest używany przez protokół FTP (File Transfer Protocol) do przesyłania danych?

A. 69
B. 53
C. 20
D. 25
Port 20 jest standardowo wykorzystywany przez protokół FTP do transmisji danych. Protokół FTP działa w trybie klient-serwer i składa się z dwóch głównych portów: 21, który służy do nawiązywania połączenia i zarządzania kontrolą, oraz 20, który jest używany do przesyłania danych. W praktyce oznacza to, że po nawiązaniu połączenia na porcie 21, konkretne dane (pliki) są przesyłane przez port 20. W przypadku transferów aktywnych, serwer FTP nawiązuje połączenie zwrotne z klientem na porcie, który ten ostatni udostępnia. Dobrą praktyką w administracji siecią jest znajomość tych portów, aby móc odpowiednio konfigurować zapory sieciowe i monitorować ruch. Warto również pamiętać, że FTP, mimo swojej popularności, ma swoje ograniczenia w zakresie bezpieczeństwa, dlatego obecnie zaleca się korzystanie z protokołu SFTP lub FTPS, które zapewniają szyfrowanie danych podczas transferu, aby chronić je przed nieautoryzowanym dostępem.

Pytanie 7

Administrator zamierza udostępnić folder C:\instrukcje w sieci trzem użytkownikom należącym do grupy Serwisanci. Jakie rozwiązanie powinien wybrać?

A. Udostępnić grupie Wszyscy folder C:\instrukcje i ustalić limit równoczesnych połączeń na 3
B. Udostępnić grupie Wszyscy dysk C: i ograniczyć liczbę równoczesnych połączeń do 3
C. Udostępnić folder C:\instrukcje grupie Serwisanci bez ograniczeń co do liczby równoczesnych połączeń
D. Udostępnić dysk C: grupie Serwisanci i nie ograniczać liczby równoczesnych połączeń
Udostępnienie folderu C:\instrukcje grupie Serwisanci jest najlepszym rozwiązaniem, ponieważ pozwala na skoncentrowanie kontroli dostępu na niewielkiej grupie użytkowników, co jest zgodne z zasadą minimalnych uprawnień. Taka praktyka zapewnia, że tylko upoważnieni użytkownicy mają dostęp do niezbędnych zasobów, co zmniejsza ryzyko nieautoryzowanego dostępu. Ograniczenie dostępu do konkretnego folderu zamiast całego dysku C: minimalizuje potencjalne zagrożenia związane z bezpieczeństwem danych, umożliwiając jednocześnie łatwe zarządzanie uprawnieniami. W kontekście zarządzania systemem, unikanie ograniczeń w liczbie równoczesnych połączeń może przyspieszyć dostęp do folderu, co jest korzystne w przypadku, gdy trzech użytkowników jednocześnie potrzebuje dostępu do tych samych instrukcji. Takie podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania zasobami w sieci, gdzie kluczowe znaczenie ma efektywne zarządzanie dostępem i bezpieczeństwem.

Pytanie 8

Jaki protokół umożliwia przeglądanie stron www w przeglądarkach internetowych poprzez szyfrowane połączenie?

A. SSH File Transfer Protocol
B. FTP Secure
C. Hypertext Transfer Protocol Secure
D. Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure (HTTPS) to protokół, który zapewnia bezpieczne przesyłanie danych między przeglądarką internetową a serwerem. Działa on na bazie standardowego protokołu HTTP, ale dodaje warstwę szyfrowania przy użyciu protokołów TLS (Transport Layer Security) lub SSL (Secure Sockets Layer). Dzięki temu, przesyłane informacje, takie jak dane osobowe czy informacje płatnicze, są chronione przed przechwyceniem przez osoby trzecie. Przykłady zastosowania HTTPS to wszelkie strony internetowe, które wymagają bezpieczeństwa, takie jak banki online, sklepy internetowe oraz portale społecznościowe. Zastosowanie HTTPS jest obecnie standardem w Internecie, a wiele przeglądarek oznacza niezaszyfrowane strony jako mniej bezpieczne. Wdrożenie HTTPS jest zgodne z zaleceniami organizacji takich jak W3C oraz IETF, które promują bezpieczne praktyki w sieci. Warto również dodać, że korzystanie z HTTPS może wpływać na lepsze pozycjonowanie w wyszukiwarkach internetowych, co czyni go korzystnym nie tylko z perspektywy bezpieczeństwa, ale także SEO.

Pytanie 9

Które urządzenie sieciowe przedstawiono na ilustracji?

Ilustracja do pytania
A. Konwerter mediów.
B. Bramka VoIP.
C. Przełącznik.
D. Ruter.
Bramka VoIP, jak przedstawiona na ilustracji, jest kluczowym urządzeniem w modernizacji komunikacji głosowej, które pozwala na integrację tradycyjnych telefonów z nowoczesnymi systemami telefonii internetowej. Na zdjęciu widoczne są porty Ethernet, które umożliwiają podłączenie urządzenia do lokalnej sieci komputerowej, oraz dodatkowe porty do podłączenia telefonów analogowych. Użycie bramek VoIP jest szczególnie korzystne w działalności biznesowej, gdzie możliwość prowadzenia rozmów telefonicznych przez Internet może znacząco obniżyć koszty połączeń. W praktyce, bramki VoIP wykorzystują protokoły takie jak SIP (Session Initiation Protocol), co umożliwia zarządzanie połączeniami głosowymi w sposób wydajny i elastyczny. Ponadto, urządzenia te wspierają funkcje takie jak przekazywanie połączeń, konferencje telefoniczne oraz nagrywanie rozmów, co czyni je niezbędnymi w nowoczesnych środowiskach pracy. Warto także zauważyć, że zgodność z normami i standardami branżowymi, takimi jak IEEE 802.3 dla Ethernetu, zapewnia niezawodność i wysoką jakość połączeń.

Pytanie 10

Który z podanych adresów IP można uznać za prywatny?

A. 191.168.0.1
B. 10.34.100.254
C. 8.8.8.8
D. 172.132.24.15
Adres IP 10.34.100.254 jest adresem prywatnym, co oznacza, że jest przeznaczony do użytku wewnętrznego w sieciach lokalnych i nie jest routowany w Internecie. Adresy prywatne w sieciach komputerowych są zdefiniowane przez standard RFC 1918, który określa zakresy adresów, które mogą być używane w sieciach lokalnych. W przypadku IPv4, zakresy te obejmują: 10.0.0.0 do 10.255.255.255, 172.16.0.0 do 172.31.255.255 oraz 192.168.0.0 do 192.168.255.255. Adresy te są niezwykle ważne w kontekście tworzenia sieci domowych oraz korporacyjnych, ponieważ pozwalają na oszczędność publicznych adresów IP, które są ograniczonym zasobem. Przykładem zastosowania adresu prywatnego może być lokalna sieć w biurze, gdzie wiele komputerów korzysta z adresów w zakresie 192.168.x.x, a ich połączenie z Internetem odbywa się przez jeden publiczny adres IP dzięki technologii NAT (Network Address Translation).

Pytanie 11

Jak nazywa się adres nieokreślony w protokole IPv6?

A. ::/128
B. ::1/128
C. 2001::/64
D. FE80::/64
Adres nieokreślony w protokole IPv6, zapisany jako ::/128, jest używany w sytuacjach, gdy adres nie może być określony lub jest nieznany. Jest to ważny element specyfikacji IPv6, ponieważ pozwala na odróżnienie urządzeń, które nie mają przypisanego konkretnego adresu. Przykładowo, gdy urządzenie próbuje komunikować się z innymi w sieci, ale jeszcze nie otrzymało adresu, może użyć adresu nieokreślonego do wysłania wiadomości. Użycie tego adresu jest kluczowe w kontekście protokołu DHCPv6, gdzie urządzenia mogą wysyłać zapytania o adres IP, korzystając z adresu ::/128 jako źródła. Dodatkowo, adres nieokreślony jest często stosowany w kontekście tworzenia aplikacji sieciowych, które muszą być elastyczne w kontekście przydzielania adresów. Standardy dotyczące IPv6, takie jak RFC 4291, wyraźnie definiują rolę oraz znaczenie adresów nieokreślonych, co czyni je niezbędnym elementem każdej nowoczesnej infrastruktury sieciowej.

Pytanie 12

W systemie Windows narzędzie do zarządzania skryptami wiersza poleceń, które pozwala na przeglądanie lub zmianę konfiguracji sieciowej komputera, który jest włączony, to

A. netstat
B. ipconfig
C. netsh
D. nslookup
No, więc 'netsh' to naprawdę super narzędzie do ogarniania konfiguracji sieci w Windowsie. Dzięki niemu możesz nie tylko zobaczyć, jak wyglądają twoje parametry sieciowe, ale też je zmienić. W praktyce można tam ogarnąć ustawienia IP, DNS czy zaporę systemową. Na przykład, jak chcesz ustawić statyczny adres IP albo zmienić coś w DHCP, to właśnie netsh będzie najlepszym wyborem. Ciekawostka – administratorzy mogą nawet pisać skrypty, żeby zautomatyzować te procesy. To jest mega przydatne w zarządzaniu infrastrukturą IT. A jak coś nie działa w sieci, to często korzysta się z netsh do resetowania TCP/IP, co czasami naprawdę potrafi załatwić sprawę. W skrócie, znajomość netsh to must-have dla każdego, kto boryka się z administracją Windowsa.

Pytanie 13

Który z zakresów adresów IPv4 jest właściwie przyporządkowany do klasy?

Zakres adresów IPv4Klasa adresu IPv4
1.0.0.0 ÷ 127.255.255.255A
128.0.0.0 ÷ 191.255.255.255B
192.0.0.0 ÷ 232.255.255.255C
233.0.0.0 ÷ 239.255.255.255D
A. A.
B. C.
C. B.
D. D.
Odpowiedź B jest poprawna, ponieważ zakres adresów IP klasy B to 128.0.0.0 do 191.255.255.255. Adresy IP są podzielone na klasy w celu ułatwienia ich zarządzania i routingu w sieciach komputerowych. Klasa A jest wykorzystywana głównie dla dużych organizacji, natomiast klasa B jest przeznaczona dla średnich sieci. W praktyce oznacza to, że klasa B pozwala na przypisanie wielu adresów dla różnych podsieci, co jest kluczowe w przypadku organizacji z większą liczbą pracowników lub lokalizacji geograficznych. Zastosowanie odpowiednich klas adresów IP jest zgodne z zasadą CIDR (Classless Inter-Domain Routing), która jest aktualnym standardem w zarządzaniu adresacją IP, pozwalającym na bardziej efektywne wykorzystanie dostępnego zakresu adresów. Klasa B jest również często wykorzystywana w sieciach korporacyjnych, co czyni ją bardzo istotną w kontekście projektowania architektury sieci.

Pytanie 14

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa danych łącza
B. Warstwa sieci
C. Warstwa transportowa
D. Warstwa fizyczna
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 15

Protokół wykorzystywany do wymiany wiadomości kontrolnych pomiędzy urządzeniami w sieci, takich jak żądanie echa, to

A. ICMP
B. SSMP
C. IGMP
D. SNMP
ICMP, czyli Internet Control Message Protocol, jest kluczowym protokołem w warstwie sieciowej modelu OSI, który służy do wymiany komunikatów kontrolnych między urządzeniami w sieci. Protokół ten jest powszechnie stosowany do diagnostyki i zarządzania siecią, umożliwiając przesyłanie informacji o stanie połączeń sieciowych. Przykładem zastosowania ICMP jest polecenie 'ping', które wysyła żądanie echa do określonego adresu IP w celu sprawdzenia, czy urządzenie jest dostępne i jak długo trwa odpowiedź. Użycie ICMP do monitorowania dostępności i czasu odpowiedzi serwerów jest standardową praktyką w administracji sieciowej. ICMP odgrywa również istotną rolę w raportowaniu błędów, takich jak informowanie nadawcy o tym, że pakiet danych nie mógł dotrzeć do celu. W kontekście standardów, ICMP jest dokumentowany w serii RFC, co zapewnia jego uniwersalne zastosowanie w różnych systemach operacyjnych i urządzeniach sieciowych.

Pytanie 16

W której części edytora lokalnych zasad grupy w systemie Windows można ustawić politykę haseł?

A. Konfiguracja użytkownika / Szablony administracyjne
B. Konfiguracja komputera / Ustawienia systemu Windows
C. Konfiguracja komputera / Szablony administracyjne
D. Konfiguracja użytkownika / Ustawienia systemu Windows
Odpowiedź "Konfiguracja komputera / Ustawienia systemu Windows" jest poprawna, ponieważ w tej sekcji edytora lokalnych zasad grupy można skonfigurować politykę haseł, która jest kluczowym elementem zabezpieczeń systemu Windows. Polityka haseł pozwala administratorom na definiowanie wymagań dotyczących złożoności haseł, minimalnej długości, maksymalnego czasu użytkowania oraz wymuszania zmiany hasła. Przykładem zastosowania tej polityki jest wymóg stosowania haseł składających się z co najmniej ośmiu znaków, zawierających wielkie i małe litery oraz cyfry, co znacznie podnosi poziom bezpieczeństwa. Zgodnie z najlepszymi praktykami branżowymi, silne polityki haseł są niezbędne do ochrony przed atakami typu brute force oraz innymi formami nieautoryzowanego dostępu. Dodatkowo, polityki te powinny być regularnie przeglądane i aktualizowane, aby dostosować się do zmieniających się zagrożeń w cyberprzestrzeni.

Pytanie 17

W strukturze hierarchicznej sieci komputery należące do użytkowników znajdują się w warstwie

A. szkieletowej
B. dystrybucji
C. dostępu
D. rdzenia
Warstwa dostępu w modelu hierarchicznym sieci komputerowych jest kluczowym elementem, który odpowiedzialny jest za bezpośrednie łączenie użytkowników i urządzeń końcowych z siecią. To w tej warstwie odbywa się fizyczne podłączenie do sieci oraz zarządzanie dostępem do zasobów, co czyni ją istotnym komponentem w architekturze sieci. W praktyce, urządzenia takie jak switche, punkty dostępowe oraz routery operują w tej warstwie, umożliwiając użytkownikom dostęp do zasobów sieciowych oraz internetowych. Przykładem zastosowania tej warstwy może być biuro, w którym pracownicy korzystają z laptopów i smartfonów, które łączą się z siecią lokalną za pomocą switchy i punktów dostępowych. Właściwe zaprojektowanie warstwy dostępu, zgodnie z zasadami best practices, ma kluczowe znaczenie dla zapewnienia wydajności oraz bezpieczeństwa sieci. Ważne jest również, aby uwzględnić kwestie takie jak VLAN-y do segregacji ruchu i bezpieczeństwa, co jest standardową praktyką w nowoczesnych sieciach lokalnych.

Pytanie 18

Jak wygląda ścieżka sieciowa do folderu pliki, który jest udostępniony pod nazwą dane jako ukryty zasób?

A. \pliki
B. \dane
C. \pliki$
D. \dane$
Odpowiedzi \dane oraz \pliki są niepoprawne, ponieważ nie uwzględniają kluczowego aspektu dotyczącego udostępniania zasobów w sieciach Windows. Foldery, które nie mają znaku dolara na końcu, są traktowane jako udostępnione publicznie, co oznacza, że mogą być przeglądane przez wszystkich użytkowników w sieci, co naraża je na potencjalne zagrożenia ze strony nieautoryzowanych użytkowników. W przypadku organizacji, w której bezpieczeństwo danych jest priorytetem, takie podejście jest niewłaściwe i może prowadzić do poważnych naruszeń prywatności. Z kolei odpowiedź \pliki$ jest również błędna, ponieważ nie wskazuje na odpowiednią ścieżkę do folderu, który został opisany w pytaniu jako zasób ukryty. Warto również zwrócić uwagę, że w przypadku folderów, które mają być ukryte, stosuje się konkretne konwencje nazewnictwa, które odzwierciedlają ich przeznaczenie. Użytkownicy często mylą się w ocenie, jakie foldery mogą być udostępnione publicznie, a jakie powinny być ukryte. Zrozumienie różnicy między zasobami ukrytymi a publicznymi jest kluczowe dla efektywnego zarządzania danymi i zapewnienia bezpieczeństwa w sieci.

Pytanie 19

Jakie dane należy wpisać w adresie przeglądarki internetowej, aby uzyskać dostęp do zawartości witryny ftp o nazwie domenowej ftp.biuro.com?

A. ftp://ftp.biuro.com
B. ftp.ftp.biuro.com
C. http://ftp.biuro.com
D. http.ftp.biuro.com
Jak się przyjrzymy błędnym odpowiedziom, to widać, że często wynikają z nieporozumienia z tymi wszystkim protokołami. Na przykład 'http.ftp.biuro.com' to dość dziwny pomysł, bo nie ma czegoś takiego jak 'http.ftp'. HTTP i FTP to inne bajki - HTTP jest do stron internetowych, a FTP do przesyłania plików. Z kolei 'ftp.ftp.biuro.com' to znowu nie to, bo nie ma potrzeby powtarzać 'ftp'. Takie błędy mogą się zdarzać, szczególnie gdy myślimy, że coś powinno być zrobione inaczej, niż jest. Jeszcze 'http://ftp.biuro.com' nie zadziała, bo przeglądarka będzie próbowała użyć HTTP zamiast troszkę bardziej odpowiedniego FTP. Takie nieporozumienia mogą frustrować, gdy nie do końca rozumie się różnice między tymi protokołami. Ważne jest, żeby wiedzieć, że każdy protokół ma swoje zadania i używanie ich w niewłaściwy sposób może prowadzić do problemów z dostępem do zasobów w internecie.

Pytanie 20

Zrzut ekranowy przedstawia wynik wykonania w systemie z rodziny Windows Server polecenia

Server:  livebox.home
Address:  192.168.1.1

Non-authoritative answer:
dns2.tpsa.pl    AAAA IPv6 address = 2a01:1700:3:ffff::9822
dns2.tpsa.pl    internet address = 194.204.152.34
A. nslookup
B. tracert
C. whois
D. ping
Odpowiedzi 'tracert', 'whois' i 'ping' nie są prawidłowe w kontekście zrzutu ekranowego przedstawiającego wynik polecenia, ponieważ każde z tych poleceń ma inne, specyficzne zastosowania w diagnostyce sieciowej. Tracert, na przykład, używane jest do śledzenia trasy pakietów danych do określonego hosta, co pozwala na identyfikację opóźnień i ewentualnych problemów w trasie. Nie wskazuje jednak na szczegóły dotyczące adresów IP domen, co jest kluczowe dla zrozumienia kontekstu zadania. Whois, z drugiej strony, służy do uzyskiwania informacji o rejestrze domen, takich jak dane kontaktowe właściciela i serwery nazw, co nie ma związku z bezpośrednim zapytaniem do serwera DNS ani z uzyskiwaniem adresu IP. Ping jest narzędziem do sprawdzania dostępności hosta w sieci i mierzenia czasu odpowiedzi, ale także nie dostarcza informacji o systemie DNS. Użytkownicy mogą często mylić te polecenia, myśląc, że wszystkie są związane z diagnostyką sieci, jednak każde z nich ma swoje unikalne funkcje. Kluczowe jest zrozumienie, że nslookup jest specjalistycznym narzędziem do zapytań DNS, które pozwala na bardziej szczegółowe przeszukiwanie i weryfikację rekordów DNS, co czyni je niezastąpionym w analizie problemów związanych z dostępem do zasobów internetowych.

Pytanie 21

Które urządzenie w sieci lokalnej nie segreguje obszaru sieci komputerowej na domeny kolizyjne?

A. Koncentrator.
B. Ruter.
C. Most.
D. Przełącznik.
Mosty, przełączniki i routery mają różne funkcje w sieciach i pomagają zarządzać ruchem, w tym dzielić sieć na różne domeny kolizyjne. Most działa na drugiej warstwie OSI, a jego zadaniem jest segmentowanie ruchu, co zmniejsza liczbę kolizji, bo tworzy oddzielne segmenty. Przełączniki, które też działają na tej samej warstwie, są jeszcze bardziej zaawansowane, bo używają MAC adresów do wysyłania danych tylko do właściwego urządzenia, co zmniejsza ryzyko kolizji. Z kolei routery działają na trzeciej warstwie i zarządzają ruchem między różnymi sieciami, co czyni je bardzo ważnymi w sieciach IP. Często ludzie myślą, że wszystkie te urządzenia są podobne do koncentratorów, ale tak nie jest. Koncentrator przesyła dane do wszystkich urządzeń, a mosty, przełączniki i routery robią to znacznie lepiej, co poprawia wydajność sieci. Dlatego, wybierając urządzenia do sieci, warto mieć na uwadze te zasady segmentacji ruchu i efektywności według nowoczesnych standardów.

Pytanie 22

Dwie stacje robocze w tej samej sieci nie mogą się nawzajem komunikować. Która z poniższych okoliczności może być prawdopodobną przyczyną tego problemu?

A. Różne bramy domyślne stacji roboczych
B. Identyczne adresy IP stacji roboczych
C. Inne systemy operacyjne stacji roboczych
D. Tożsame nazwy użytkowników
Sytuacje, w których dwa urządzenia nie mogą się komunikować, mogą być mylnie interpretowane, jeśli analiza opiera się na nieprawidłowych założeniach. Posiadanie tych samych nazw użytkowników nie jest przyczyną problemów z komunikacją w sieci komputerowej. Nazwy użytkowników są z reguły używane w kontekście systemów operacyjnych i aplikacji, a nie w odniesieniu do komunikacji sieciowej. Różne systemy operacyjne również nie są przeszkodą w komunikacji, gdyż wiele protokołów komunikacyjnych, takich jak TCP/IP, są standardami branżowymi, które umożliwiają wymianę danych pomiędzy różnymi systemami operacyjnymi. Różnice w systemach operacyjnych mogą czasami wpływać na zgodność aplikacji, ale nie są przyczyną problemów z komunikacją w sieci lokalnej. Kolejnym błędnym założeniem jest stwierdzenie, że różne bramy domyślne mogą powodować problemy z komunikacją. Choć różne bramy domyślne mogą prowadzić do problemów z dostępem do zewnętrznych zasobów, to w ramach samej sieci lokalnej mogą one funkcjonować poprawnie, o ile urządzenia są poprawnie skonfigurowane. Ważne jest zrozumienie, że do lokalnej komunikacji w sieci wystarczy, aby urządzenia miały poprawnie skonfigurowane adresy IP oraz maski podsieci. Dlatego kluczowe jest unikanie upraszczania problemów sieciowych na podstawie powierzchownych obserwacji, co może prowadzić do błędnych wniosków.

Pytanie 23

Jaki jest skrócony zapis maski sieci, której adres w zapisie dziesiętnym to 255.255.254.0?

A. /22
B. /24
C. /23
D. /25
Zapis skrócony maski sieci 255.255.254.0 to /23, co oznacza, że w pierwszych 23 bitach znajduje się informacja o sieci, a pozostałe 9 bitów jest przeznaczone na identyfikację hostów. W zapisie dziesiętnym maska 255.255.254.0 ma postać binarną 11111111.11111111.11111110.00000000, co potwierdza, że pierwsze 23 bity są jedynkami, a pozostałe bity zerami. Ta maska pozwala na adresowanie 512 adresów IP w danej podsieci, co jest przydatne w większych środowiskach sieciowych, gdzie liczba hostów może być znacząca, na przykład w biurach czy na uczelniach. Dzięki zapisie skróconemu łatwiej jest administracyjnie zarządzać adresami IP, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii sieciowej. Zrozumienie, jak funkcjonują maski sieciowe, pozwala na efektywne projektowanie sieci oraz optymalizację wykorzystania dostępnych zasobów adresowych.

Pytanie 24

W lokalnej sieci stosowane są adresy prywatne. Aby nawiązać połączenie z serwerem dostępnym przez Internet, trzeba

A. skonfigurować translację NAT na ruterze brzegowym lub serwerze
B. przypisać adres publiczny jako dodatkowy adres karty sieciowej na każdym hoście
C. ustawić sieci wirtualne w obrębie sieci lokalnej
D. dodać drugą kartę sieciową z adresem publicznym do każdego hosta
Odpowiedź jest prawidłowa, ponieważ translacja adresów sieciowych (NAT) jest kluczowym procesem umożliwiającym komunikację między prywatnymi adresami IP w sieci lokalnej a publicznymi adresami IP w Internecie. NAT działa na routerach brzegowych, które przekształcają adresy prywatne hostów w adresy publiczne, co pozwala na nawiązywanie połączeń z serwerami dostępnymi w sieci globalnej. Przykładem może być sytuacja, gdy użytkownik w domowej sieci lokalnej, korzystając z routera z włączonym NAT, chce uzyskać dostęp do strony internetowej. Router zmienia adres prywatny urządzenia na swój adres publiczny, a odpowiedzi z serwera są następnie kierowane z powrotem do właściwego urządzenia dzięki przechowywaniu informacji o sesji. NAT jest zgodny z protkokłami takimi jak TCP/IP i jest uznawany za standardową praktykę w zarządzaniu adresacją IP, co zwiększa bezpieczeństwo sieci lokalnych poprzez ukrycie rzeczywistych adresów IP. Dodatkowo, NAT umożliwia oszczędność adresów IP, ponieważ wiele urządzeń może korzystać z jednego adresu publicznego.

Pytanie 25

Który rysunek przedstawia ułożenie żył przewodu UTP we wtyku 8P8C zgodnie z normą TIA/EIA-568-A, sekwencją T568A?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź D jest poprawna, ponieważ przedstawia ułożenie żył w wtyku 8P8C zgodnie z normą TIA/EIA-568-A, sekwencją T568A. Sekwencja ta wymaga, aby żyły były ułożone w następującej kolejności: biało-zielony, zielony, biało-pomarańczowy, niebieski, biało-niebieski, pomarańczowy, biało-brązowy, brązowy. Użycie właściwej sekwencji jest kluczowe dla zapewnienia poprawnej transmisji danych w sieciach lokalnych. W praktyce, stosowanie standardu T568A zmniejsza ryzyko zakłóceń i błędów transmisyjnych, co jest szczególnie istotne w środowiskach, gdzie wiele urządzeń jest podłączonych do tej samej infrastruktury sieciowej. Znajomość tych standardów pozwala na prawidłowe wykonanie kabli sieciowych, co przekłada się na niezawodność i wydajność sieci. W sytuacji, gdy żyły są ułożone niezgodnie z normą, mogą wystąpić problemy z połączeniem, co może prowadzić do znacznych kosztów napraw i przestojów w pracy.

Pytanie 26

Aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. zapory ogniowej
B. skaner antywirusowy
C. bezpieczną przeglądarkę internetową
D. oprogramowanie antyspamowe
Zainstalowanie i skonfigurowanie zapory ogniowej (firewall) jest kluczowym krokiem w zabezpieczaniu lokalnej sieci komputerowej przed atakami typu Smurf, które polegają na wykorzystaniu adresów IP ofiar do generowania nadmiaru ruchu sieciowego. Zapora ogniowa działa jako filtr, który blokuje nieautoryzowany dostęp do sieci oraz monitoruje i kontroluje ruch przychodzący i wychodzący. W przypadku ataku Smurf, złośliwy użytkownik wysyła pakiety ICMP Echo Request (ping) do rozgłoszeniowego adresu IP, co powoduje, że wszystkie urządzenia w sieci odpowiadają na te żądania, co wywołuje przeciążenie. Skonfigurowana zapora ogniowa może wykrywać i blokować takie pakiety, co znacznie zmniejsza ryzyko ataku. Dobrym praktyką jest również wdrożenie zasad ograniczających dostęp do portów oraz monitorowanie ruchu sieciowego w celu szybkiej identyfikacji potencjalnych zagrożeń. Współczesne zapory ogniowe oferują wiele funkcji, takich jak inspekcja głębokiego pakietu i wykrywanie intruzów, co dodatkowo wspiera obronę przed różnorodnymi atakami.

Pytanie 27

Jakiego wtyku należy użyć do zakończenia ekranowanej skrętki czteroparowej?

A. SC
B. 8P8C
C. RP-SMA
D. RJ-11
Wtyk 8P8C, znany również jako RJ-45, jest standardowym złączem stosowanym w sieciach Ethernet oraz do zakończeń ekranowanych skrętek, takich jak skrętki czteroparowe. Umożliwia on przesyłanie danych z prędkością do 10 Gbps na odległość do 100 metrów, co czyni go odpowiednim wyborem dla nowoczesnych aplikacji sieciowych. Wtyk 8P8C jest zaprojektowany do obsługi ośmiu żył, które są odpowiednio parowane, co minimalizuje zakłócenia elektromagnetyczne. Użycie wtyku 8P8C w kablach sieciowych zapewnia zgodność z normami TIA/EIA-568, które definiują sposób układania i zakończenia przewodów. W praktyce, właściwe zakończenie kabla skręcanego z użyciem wtyku 8P8C pozwala na osiągnięcie optymalnej wydajności oraz stabilności połączeń, co jest kluczowe w środowiskach biurowych i przemysłowych, gdzie jakość sygnału ma ogromne znaczenie dla pracy systemów informatycznych.

Pytanie 28

Jakie oznaczenie według normy ISO/IEC 11801:2002 definiuje skrętkę foliowaną, przy czym wszystkie pary żył są ekranowane folią?

A. F/UTP
B. U/UTP
C. S/FTP
D. F/FTP
Wybór innych oznaczeń związanych z typami skrętek nie oddaje prawidłowo charakterystyki F/UTP. Zaczynając od S/FTP, jest to skrętka, gdzie każda para żył jest ekranowana osobno, a dodatkowo cały kabel jest otoczony ekranem, co zapewnia wysoki poziom ochrony, ale zdecydowanie różni się od tego, co oferuje F/UTP – oznaczającego ekranowanie tylko par żył. U/UTP wskazuje na kabel nieekranowany, co jest użyteczne w mniej zakłóconych środowiskach, lecz nie dostarcza ochrony, jaką oferują typy ekranowane, przez co jest mniej zalecany w miejscach o wysokim natężeniu zakłóceń elektromagnetycznych. F/FTP natomiast wskazuje, że cały kabel jest ekranowany folią, co mogłoby wydawać się korzystniejsze, jednakże nie odpowiada specyfikacji pytania dotyczącego skrętki foliowanej, gdzie ekranowanie dotyczy jedynie par. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi polegają na myleniu stopnia ekranowania oraz nieprawidłowym interpretowaniu oznaczeń, co może skutkować wyborem niewłaściwego typu kabla do danej aplikacji. W praktyce, dobór odpowiedniego typu skrętki jest kluczowy dla zapewnienia optymalnej wydajności sieci oraz bezpieczeństwa przesyłanych danych.

Pytanie 29

Aby funkcja rutingu mogła prawidłowo funkcjonować na serwerze, musi być on wyposażony

A. w dodatkową pamięć RAM
B. w drugą kartę sieciową
C. w szybszy procesor
D. w dodatkowy dysk twardy
Fajnie, że zauważyłeś, że żeby funkcja rutingu działała jak należy na serwerze, potrzebujesz drugiej karty sieciowej. Ta karta to taki kluczowy element, jeśli chodzi o komunikację z innymi urządzeniami w sieci. Kiedy masz dwie karty, zwiększasz przepustowość i redundancję, co jest mega ważne, gdy jedna z kart przestaje działać. W praktyce, to rozwiązanie działa świetnie w różnych konfiguracjach, na przykład przy równoważeniu obciążenia czy w systemach wysokiej dostępności. Może być tak, że jedna karta przejmuje funkcję drugiej, gdy ta pierwsza już nie chce działać. Dodatkowo, z dodatkową kartą da się skonfigurować różne sieci, co pomaga w separacji ruchu lokalnego oraz administracyjnego, a także wspiera wirtualizację, gdzie wirtualne maszyny korzystają z dedykowanych interfejsów. No i nie zapominaj, że według dobrych praktyk w IT, ważne jest, żeby serwer miał odpowiednie karty sieciowe – to klucz do bezproblemowego działania usług sieciowych.

Pytanie 30

Jakie miejsce nie powinno być używane do przechowywania kopii zapasowych danych z dysku twardego komputera?

A. Inna partycja dysku tego komputera
B. Płyta CD/DVD
C. Pamięć USB
D. Zewnętrzny dysk
Inna partycja dysku tego komputera nie powinna być miejscem przechowywania kopii bezpieczeństwa danych, ponieważ w przypadku awarii systemu operacyjnego lub problemów z dyskiem twardym, zarówno oryginalne dane, jak i kopie zapasowe mogą zostać utracone. Zgodnie z zasadą 3-2-1, która jest powszechnie stosowana w zarządzaniu danymi, zaleca się posiadanie trzech kopii danych na dwóch różnych nośnikach, z jedną kopią przechowywaną w innym miejscu. Przykładowo, jeśli wszystkie kopie zapasowe znajdują się na tej samej partycji, usunięcie systemu operacyjnego lub uszkodzenie sektora dysku prowadzi do utraty zarówno danych, jak i ich kopii. W praktyce, właściwym podejściem jest przechowywanie kopii na zewnętrznym dysku twardym lub w chmurze, co zapewnia większe bezpieczeństwo. Takie działanie zabezpiecza przed jednoczesnym usunięciem danych i kopii zapasowych, co jest kluczowe w kontekście zachowania integralności danych.

Pytanie 31

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Adapter LAN
B. Przepust szczotkowy
C. Organizer kabli
D. Kabel połączeniowy
Kabel połączeniowy jest kluczowym elementem pasywnym w infrastrukturze sieciowej, który umożliwia fizyczne połączenie różnych komponentów. W przypadku podłączenia okablowania ze wszystkich gniazd abonenckich do panelu krosowniczego w szafie rack, stosowanie kabla połączeniowego jest podstawową praktyką. Takie kable, najczęściej w standardzie Ethernet (np. Cat5e, Cat6), gwarantują odpowiednią przepustowość i jakość sygnału oraz spełniają wymagania norm dotyczących transmisji danych. Dzięki zastosowaniu kabli o odpowiednich parametrach, można zminimalizować straty sygnału oraz zakłócenia elektromagnetyczne. Istotne jest również przestrzeganie zasad organizacji okablowania, co zapewnia nie tylko estetykę, ale również ułatwia przyszłe serwisowanie i diagnostykę sieci. W kontekście organizacji sieci, ważne jest, aby odpowiednio planować układ kabli, co przyczyni się do zwiększenia efektywności i niezawodności całego systemu.

Pytanie 32

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć, w topologii gwiazdy, 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2 m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr
A. 89 zł
B. 252 zł
C. 92 zł
D. 249 zł
Aby obliczyć koszt brutto materiałów do stworzenia sieci w topologii gwiazdy dla trzech komputerów, kluczowe jest zrozumienie, jakie elementy są potrzebne do prawidłowego połączenia. W tym przypadku, do połączenia komputerów niezbędne są: przełącznik, przewody o długości 2 m oraz wtyki RJ-45. Koszt przełącznika jest stały, a koszt przewodów i wtyków można obliczyć na podstawie ich liczby. Każdy komputer wymaga jednego przewodu, co w przypadku trzech komputerów oznacza 3 przewody, czyli 6 m w sumie. Do tego dodajemy koszt przełącznika i wtyków. Po zsumowaniu wszystkich kosztów dochodzimy do kwoty 92 zł, która jest poprawna. Warto pamiętać, że w praktyce, przy projektowaniu sieci, właściwy dobór sprzętu i materiałów ma ogromne znaczenie dla wydajności i stabilności sieci. Wytyczne branżowe zalecają, aby przy budowie sieci lokalnych zwracać uwagę na jakość komponentów oraz ich zgodność z obowiązującymi standardami, co może zapobiec problemom z komunikacją i stabilnością w przyszłości.

Pytanie 33

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11n
C. IEEE 802.11g
D. IEEE 802.11b
Standard IEEE 802.11n, wprowadzony w 2009 roku, pozwala na osiąganie znacznie wyższych prędkości transmisji danych, przekraczających 54 Mbps. Główne cechy tego standardu to zastosowanie technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych przez wiele anten. Dzięki temu, IEEE 802.11n może osiągać przepustowości sięgające 600 Mbps w idealnych warunkach. W praktyce standard ten jest szeroko stosowany w domowych sieciach Wi-Fi, biurach oraz miejscach publicznych, gdzie zróżnicowane urządzenia wymagają stabilnego i szybkiego dostępu do Internetu. Dodatkowo, 802.11n obsługuje szerokość kanału do 40 MHz, co również zwiększa wydajność sieci. Implementacja tego standardu w urządzeniach, takich jak routery, karty sieciowe oraz punkty dostępowe, zgodnie z najlepszymi praktykami branżowymi, zapewnia nie tylko wyższą prędkość, ale również lepszą stabilność połączenia, co jest kluczowe w dobie rosnącej liczby urządzeń mobilnych korzystających z sieci bezprzewodowych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 2.
B. 3.
C. 1.
D. 4.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 36

Protokół TCP (Transmission Control Protocol) funkcjonuje w trybie

A. sekwencyjnym
B. połączeniowym
C. hybrydowym
D. bezpołączeniowym
Pojęcia hybrydowego, sekwencyjnego oraz bezpołączeniowego nie oddają charakterystyki działania protokołu TCP. Tryb hybrydowy nie jest standardowo definiowany w kontekście protokołów transportowych; zazwyczaj odnosi się do architektur, które łączą różne podejścia. W kontekście protokołu TCP, nie ma zastosowania, ponieważ TCP jest zdefiniowany jako protokół połączeniowy. Odpowiedź sekwencyjna mogłaby sugerować, że dane są przesyłane w ustalonej kolejności, co jest prawdą, ale nie oddaje to istoty działania TCP jako protokołu połączeniowego, który zapewnia dodatkowo kontrolę nad jakością połączenia. Z kolei tryb bezpołączeniowy, z którym związany jest protokół UDP (User Datagram Protocol), oznacza, że dane są przesyłane bez ustanawiania połączenia, co prowadzi do większej szybkości, ale bez gwarancji dostarczenia czy kolejności pakietów. Użytkownicy mogą błędnie interpretować TCP jako działający w trybie sekwencyjnym, skupiając się jedynie na kolejności przesyłania danych, nie rozumiejąc, że kluczowym aspektem jest sama natura połączenia i zapewnienie niezawodności. W praktyce, zrozumienie różnicy między połączeniowym a bezpołączeniowym podejściem jest kluczowe dla projektowania aplikacji sieciowych, co często prowadzi do zjawiska pomieszania ról różnych protokołów.

Pytanie 37

Ile bitów o wartości 1 występuje w standardowej masce adresu IPv4 klasy B?

A. 16 bitów
B. 32 bity
C. 8 bitów
D. 24 bity
Odpowiedzi, które wskazują na inne wartości bitów w masce adresu IPv4 klasy B, bazują na mylnych założeniach dotyczących struktury adresacji w sieciach. Przykładowo, stwierdzenie, że maska klasy B zawiera 8 bitów, może wynikać z nieporozumienia dotyczącego ogólnej struktury adresów IPv4. Adres IPv4 składa się z 32 bitów, jednak te bity dzielą się na część identyfikującą sieć oraz część przeznaczoną dla hostów. W przypadku klasy B, mamy do czynienia z podziałem na 16 bitów dla adresu sieci i 16 bitów dla adresów hostów. Wybór 32 bitów jako odpowiedzi może wynikać z błędnej interpretacji, gdzie cały adres IP jest brany pod uwagę, nie zaś maska. Podobnie, błędna odpowiedź wskazująca na 24 bity może sugerować, że osoba odpowiadająca myli maskę z prefiksem CIDR stosowanym w klasie C. Warto pamiętać, że klasy adresowe oraz ich maski są podstawowym elementem projektowania sieci i znajomość ich właściwego przypisania jest kluczowa w kontekście zarządzania infrastrukturą oraz przydzielania adresów IP w sieciach komputerowych. Dlatego istotne jest, aby zrozumieć nie tylko liczby, ale również ich znaczenie i zastosowanie w praktyce.

Pytanie 38

Adres IPv6 pętli zwrotnej to adres

A. ::
B. ::1
C. FE80::
D. FC80::
Wybór innych adresów pokazuje, że coś tu nie zrozumiałeś, jeśli chodzi o IPv6. Adres zerowy, czyli ::, dostaje się w momencie, gdy nie ma konkretnego adresu, więc użycie go jako pętli zwrotnej to duża pomyłka. Przez to nie wiadomo, do jakiego interfejsu to prowadzi. W konfiguracji sieci może być z tym sporo kłopotów. Z kolei adresy FC80:: i FE80:: to lokalne adresy, które są używane w lokalnej sieci, ale nie są przeznaczone do pętli zwrotnej. Wiele osób się w tym myli, co potem rodzi błędne ustawienia i problemy z diagnostyką. Adres pętli zwrotnej jest zupełnie inny, bo chodzi o komunikację wewnętrzną w urządzeniu. Musisz mieć na uwadze, że znajomość różnic między tymi adresami jest kluczowa, kiedy projektujesz coś związanego z siecią. Niewłaściwy adres może naprawdę namieszać w komunikacji i dostępności usług. Więc warto być czujnym na te detale!

Pytanie 39

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Przełącznik warstwy 3
B. Punkt dostępu
C. Konwerter mediów
D. Ruter ADSL
Punkt dostępu, choć użyteczny w kontekście rozbudowy sieci lokalnej, nie jest urządzeniem, które łączy lokalną sieć z Internetem. Jego główną funkcją jest umożliwienie bezprzewodowego dostępu do sieci, jednak nie ma zdolności do bezpośredniego integrowania połączenia internetowego z operatorem telekomunikacyjnym. Z kolei przełącznik warstwy 3, który może kierować ruch pomiędzy różnymi podsieciami, również nie jest zaprojektowany do nawiązywania połączeń z Internetem, a raczej do zarządzania ruchem wewnątrz lokalnej sieci. Takie urządzenie działa na podstawie adresacji IP, ale aby nawiązać połączenie z Internetem, potrzebuje innego urządzenia, takiego jak ruter. Konwerter mediów, który używany jest do konwersji sygnałów pomiędzy różnymi rodzajami mediów transmisyjnych, także nie ma zdolności do zarządzania połączeniami z Internetem. W praktyce, korzystając z tych urządzeń, można popełnić błąd polegający na myleniu ich funkcji z rolą rutera ADSL w kontekście dostępu do Internetu. To prowadzi do nieefektywnego projektowania sieci, co w dłuższej perspektywie może skutkować problemami z łącznością oraz wydajnością. Aby zapewnić prawidłowe połączenie z Internetem, kluczowe jest użycie rutera ADSL, który jest dedykowanym urządzeniem do tej funkcji.

Pytanie 40

Aby uzyskać odpowiedź jak na poniższym zrzucie ekranu, należy wydać polecenie:

Server:  Unknown
Address:  192.168.0.1

Non-authoritative answer:
Name:    microsoft.com
Addresses:  104.215.148.63
          13.77.161.179
          40.76.4.15
          40.112.72.205
          40.113.200.201
A. tracert microsoft.com
B. nslookup microsoft.com
C. ipconfig /displaydns
D. netstat -f
Niestety, polecenia takie jak netstat -f, ipconfig /displaydns czy tracert microsoft.com nie są dobrym wyborem, bo każde z nich ma inny cel w zarządzaniu sieciami. Na przykład netstat -f pokazuje aktywne połączenia sieciowe, a ich pełne nazwy domenowe, co jest spoko do analizy, ale nie pomoże w zapytaniach do DNS o adresy IP. Z kolei ipconfig /displaydns pokazuje tylko lokalną pamięć podręczną DNS, czyli to, co komputer wcześniej zapamiętał, a nie pyta zewnętrznych serwerów. A tracert microsoft.com służy do sprawdzania, przez jakie routery przechodzi pakiet do celu, więc też nie dostarcza informacji o rekordach DNS. Nieznajomość różnic między tymi poleceniami może prowadzić do pomyłek przy diagnozowaniu problemów z dostępnością usług w internecie. Dlatego warto znać te różnice i wiedzieć, kiedy używać którego narzędzia.