Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 18:42
  • Data zakończenia: 17 grudnia 2025 18:56

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie receptury roboczej oblicz, ile żwiru potrzeba do sporządzenia mieszanki betonowej C12/15, jeżeli pojemność robocza betoniarki wynosi 200 litrów.

Receptura robocza
Składniki na 1 m3 mieszanki betonowej
Beton C12/15
cement:275 kg
piasek:590 kg
żwir:1375 kg
woda:165 l
A. 118 kg
B. 275 kg
C. 55 kg
D. 33 kg
Wybór innej odpowiedzi może wynikać z nieprawidłowego przeliczenia lub niezrozumienia receptury roboczej. Wiele osób stara się oszacować potrzebne ilości, bazując na intuicji lub doświadczeniu, co może prowadzić do błędnych wniosków. Na przykład, jeśli ktoś oblicza ilość żwiru, nie biorąc pod uwagę, że 200 litrów to 0,2 m³, może pomylić się przy mnożeniu lub stosować niewłaściwe jednostki miary. Zbyt mała ilość żwiru, jak w przypadku błędnych odpowiedzi, prowadzi do niedoborów w mieszance, co negatywnie wpływa na jej wytrzymałość. W praktyce budowlanej, zgodnie z normami, ważne jest, aby zawsze przeliczać ilości materiałów zgodnie z ich gęstościami i proporcjami ustalonymi w recepturach. Dobrym podejściem jest również użycie kalkulatorów budowlanych lub tabel, które ułatwiają te obliczenia. Ignorowanie tych zasad może skutkować nie tylko słabą jakością betonu, ale także opóźnieniami i dodatkowymi kosztami w projekcie budowlanym.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Do produkcji tynków akrylowych wykorzystuje się jako spoiwo

A. szkło wodne
B. cementy portlandzkie
C. wapno hydratyzowane
D. żywice syntetyczne
Cementy portlandzkie są klasycznym materiałem budowlanym, jednak ich zastosowanie jako spoiwo w tynkach akrylowych jest niewłaściwe. Cement w tynkach ma tendencję do skurczania się podczas wiązania, co prowadzi do pojawiania się rys i pęknięć. Z tego powodu tynki na bazie cementu są bardziej odpowiednie dla zastosowań wewnętrznych lub w miejscach mniej narażonych na działanie zmiennych warunków atmosferycznych. Szkło wodne jest substancją o właściwościach klejących, ale nie jest odpowiednim spoiwem w tynkach akrylowych, ponieważ może powodować trudności w aplikacji oraz nie zapewnia odpowiedniej elastyczności i trwałości wymaganego w tynkach zewnętrznych. Wapień hydratyzowany, pomimo swoich zalet, takich jak naturalne połączenie i łatwość użycia, również nie nadaje się do tynków akrylowych, gdyż brakuje mu elastyczności i odporności na pogodę. Wiele osób może błędnie sądzić, że tynki akrylowe mogą być wykonane na bazie tradycyjnych materiałów budowlanych, lecz ważne jest zrozumienie, że specyfika akrylu wymaga nowoczesnych rozwiązań technologicznych, takich jak żywice syntetyczne, które zapewniają długowieczność i estetykę powierzchni. Zastosowanie niewłaściwych spoiw może prowadzić do poważnych problemów z konstrukcją i estetyką budynku.

Pytanie 4

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. zastosowanie gruntów podkładowych
B. wcześniejsze wysuszenie ściany
C. pomalowanie powierzchni farbą
D. wykonanie tynków dedykowanych
Zastosowanie substancji gruntujących to kluczowy krok w procesie tynkowania, który pozwala na zmniejszenie chłonności podłoża. Gruntowanie ma na celu przygotowanie powierzchni, na którą zostanie nałożony tynk, poprzez poprawę przyczepności oraz wyrównanie chłonności. Dzięki temu tynk nie wchłania wody zbyt szybko, co może prowadzić do problemów z jego wiązaniem i trwałością. Przykładem substancji gruntującej mogą być preparaty na bazie żywic syntetycznych, które tworzą cienką warstwę ochronną, a jednocześnie są przepuszczalne dla pary wodnej. Zastosowanie gruntów jest zgodne z normami i zaleceniami producentów tynków, co podkreśla ich znaczenie w budownictwie. W praktyce, przed nałożeniem tynku, należy nanieść grunt równomiernie na całą powierzchnię, co zapewnia optymalne warunki do dalszych prac. Dobre praktyki wskazują również na konieczność dostosowania rodzaju gruntu do konkretnego materiału podłoża, co zwiększa efektywność całego procesu.

Pytanie 5

Tynk dwu warstwowy składa się z jakich elementów?

A. narzutu i gładzi
B. obrzutki i narzutu
C. obrzutki i gładzi
D. gruntownika i narzutu
Tynk dwuwarstwowy składa się z dwóch kluczowych warstw: obrzutki i narzutu. Obrzutka, będąca pierwszą warstwą, ma na celu przygotowanie podłoża poprzez zwiększenie przyczepności oraz wyrównanie powierzchni. Jest to warstwa o grubszej strukturze, wykonana z materiałów, takich jak zaprawy cementowe, które zapewniają odpowiednią nośność i trwałość. Narzut, będący drugą warstwą, nakładany jest na obrzutkę i pełni rolę estetyczną oraz ochronną. Jego zadaniem jest zapewnienie gładkiej powierzchni, która jest odporniejsza na czynniki atmosferyczne. Praktycznym przykładem zastosowania tynku dwuwarstwowego jest elewacja budynków mieszkalnych, gdzie odpowiednia aplikacja tych warstw wpływa na trwałość ścian zewnętrznych oraz estetykę budynku. Zgodnie z normami budowlanymi, tynk dwuwarstwowy powinien być stosowany w sposób właściwy, aby zapewnić nie tylko wygląd, ale także długowieczność i wytrzymałość elewacji.

Pytanie 6

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Kątowniki stalowe
B. Narożniki aluminiowe
C. Zetowniki zimnogięte
D. Liny nierdzewne
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 7

Jakie narzędzia wykorzystuje się do demontażu murowanych części konstrukcyjnych budynku?

A. młoty udarowe
B. piły tarczowe
C. wiertarki obrotowe
D. wkrętarki
Młoty udarowe są narzędziem, które doskonale nadaje się do rozbiórki murowych elementów konstrukcyjnych budynków. Charakteryzują się one dużą mocą udaru, co umożliwia skuteczne łamanie betonu i cegieł. Działanie młota udarowego polega na generowaniu szybkich uderzeń, które przekładają się na dużą energię uderzenia, co w efekcie pozwala na efektywne rozbijanie twardych materiałów. Przykłady zastosowania młotów udarowych obejmują prace rozbiórkowe w budownictwie, takie jak usuwanie starych ścian, fundamentów czy posadzek. W branży budowlanej rekomenduje się korzystanie z młotów udarowych zgodnie z normami BHP, co zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy. Korzystanie z odpowiednich osłon, rękawic i okularów ochronnych jest kluczowe podczas pracy z tym narzędziem, co potwierdzają najlepsze praktyki w zakresie ochrony zdrowia i bezpieczeństwa w miejscu pracy."

Pytanie 8

Na rysunku przedstawiono

Ilustracja do pytania
A. poziomnicę.
B. kirkę.
C. zdzierak do tynków.
D. przecinak.
Zdzierak do tynków to narzędzie o płaskiej, ząbkowanej powierzchni, które służy do skutecznego usuwania starych tynków z powierzchni ścian. Jego konstrukcja pozwala na łatwe i efektywne skrawanie tynku, co minimalizuje ryzyko uszkodzenia podłoża. W praktyce, zdzierak jest niezastąpiony w pracach remontowych, gdzie często zachodzi potrzeba odnowienia i przygotowania powierzchni przed nałożeniem nowych materiałów wykończeniowych, takich jak gładzie czy farby. Prawidłowe użycie zdzieraka wiąże się z techniką, która pozwala na równomierne usunięcie tynku bez zbędnego wysiłku. Warto również dodać, że stosowanie tego narzędzia zgodnie z zasadami ergonomii przyczynia się do zmniejszenia ryzyka urazów i zwiększa komfort pracy. Zdzieraki do tynków są często wykorzystywane przez profesjonalnych malarzy i ekipy remontowe, co potwierdza ich znaczenie i zastosowanie w branży budowlanej.

Pytanie 9

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
B. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
C. posiadać jednolitą barwę bez smug i plam.
D. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
Odpowiedź 'mieć barwę o jednakowym natężeniu bez smug i plam' jest prawidłowa, ponieważ tynki, które nie są przewidziane do malowania, powinny charakteryzować się równomierną barwą na całej powierzchni. W praktyce oznacza to, że wszelkie niedoskonałości, takie jak smugi czy plamy, mogą wskazywać na niewłaściwe nałożenie tynku, co może prowadzić do estetycznych defektów końcowego wykończenia. W standardach budowlanych oraz w dobrych praktykach związanych z wykończeniem wnętrz, zapewnienie jednolitego wykończenia powierzchni jest kluczowe dla uzyskania wysokiej jakości estetycznej. W przypadku tynków, które mają być później malowane, konieczne jest, aby ich powierzchnia była idealnie gładka i jednolita, co pozwala na równomierne wchłanianie farby i zapobiega powstawaniu plam. Przykładem zastosowania tej zasady może być tynk dekoracyjny, który po nałożeniu powinien być dokładnie wygładzony, aby nie powodować różnic w odcieniach przy późniejszym malowaniu.

Pytanie 10

Najdłuższy czas przydatności do użycia, licząc od momentu połączenia składników, posiada zaprawa

A. wapienna
B. cementowa
C. wapienno-cementowa
D. cementowo-gliniana
Zaprawa wapienna charakteryzuje się najdłuższym okresem przydatności do użycia spośród wszystkich wymienionych rodzajów zapraw. W wyniku reakcji wody z wapnem (tlenkiem wapnia) powstaje węglan wapnia, co prowadzi do procesu twardnienia zaprawy. Ten proces nie jest natychmiastowy i może trwać wiele miesięcy, co sprawia, że zaprawa wapienna może być przechowywana przez dłuższy czas po zmieszaniu składników. Dodatkowo, zaprawy wapienne są znane z wysokiej przepuszczalności pary wodnej, co jest kluczowe w budownictwie, zwłaszcza w obiektach zabytkowych, gdzie ważne jest zachowanie odpowiedniego mikroklimatu. Z tego powodu są one często stosowane do renowacji starych murów, gdzie ich właściwości umożliwiają 'oddychanie' ścian. W praktyce, zastosowanie zaprawy wapiennej w budownictwie odpowiada standardom określonym w normach, takich jak PN-EN 459-1, które definiują wymagania dla wapna budowlanego.

Pytanie 11

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości poniżej 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Rysunek A pokazuje, jak powinna wyglądać rysa do naprawy. Ta głębokość poniżej 0,5 cm jest wręcz idealna do uzupełnienia zaprawą. Kształt trapezu, który tu zastosowano, naprawdę sprzyja dobremu trzymaniu się zaprawy, co jest mega ważne, żeby naprawa była skuteczna. Kiedy rysa ma szerszy dół i węższy górę, jak w tym przypadku, zmniejsza się ryzyko odpryskiwania zaprawy. To też trochę zmniejsza szansę na nowe pęknięcia, co jest super ważne, zwłaszcza w budowlance. W sumie, to co opisałeś, pasuje do najlepszych praktyk w naprawie tynków. Również, jak dobrze przygotujesz rysę–czyli oczyścisz ją z luźnych fragmentów i nałożysz grunt–to połączenie zaprawy z podłożem będzie znacznie lepsze i bardziej trwałe, więc warto o tym pamiętać.

Pytanie 12

Oblicz wydatki na materiał do tynkowania ściany o powierzchni 40 m2, gdy koszt jednego 25-kilogramowego worka suchej mieszanki tynku mineralnego wynosi 35,00 zł, a zużycie tej mieszanki to 2,5 kg/m2?

A. 1 000,00 zł
B. 100,00 zł
C. 1 400,00 zł
D. 140,00 zł
W przypadku błędnych odpowiedzi na to pytanie, często można zauważyć nieprecyzyjne analizy dotyczące zużycia materiałów. Na przykład, jeśli ktoś pomylił zasady obliczania zużycia, może przyjąć, że koszt tynku wynosi 100,00 zł, co wynika z nieprawidłowego założenia o ilości potrzebnego materiału. Zdarza się, że osoby obliczają koszt na podstawie całkowitej powierzchni bez uwzględnienia zużycia na metr kwadratowy, co prowadzi do zaniżenia kosztów. Z kolei odpowiedź wynosząca 1 000,00 zł może wynikać z mnożenia całkowitej ilości materiału bez zrozumienia ciężaru worka, co także jest istotnym błędem. Osoby odpowiedzialne za planowanie budowy powinny dokładnie zapoznawać się z normami dotyczącymi zużycia materiałów budowlanych oraz praktykami branżowymi, aby unikać takich pomyłek. Również niektóre osoby mogą popełniać błąd w obliczeniach, myląc ilość worków z ich wagą, co prowadzi do dodatkowych kosztów. Zrozumienie, jak prawidłowo obliczać koszty materiałów budowlanych, pomoże w efektywniejszym zarządzaniu projektami budowlanymi oraz w utrzymaniu budżetu w ryzach.

Pytanie 13

W jakim momencie powinno się przeprowadzać odbiór robót murarskich?

A. Przed zakończeniem tynków i przed zamontowaniem ościeżnic okien i drzwi
B. Po zakończeniu tynków, lecz przed zamontowaniem ościeżnic okien i drzwi
C. Przed zakończeniem tynków, ale po zamontowaniu ościeżnic okien i drzwi
D. Po zakończeniu tynków oraz zamontowaniu ościeżnic okien i drzwi
Odpowiedzi wskazujące na odbiór robót murarskich po wykonaniu tynków lub przed osadzeniem ościeżnic okien i drzwi opierają się na niewłaściwym zrozumieniu sekwencji prac budowlanych. W przypadku przeprowadzenia odbioru robót murarskich dopiero po wykonaniu tynków, istnieje znaczne ryzyko, że ewentualne wady murów, takie jak pęknięcia, nierówności czy błędne wymiary, będą ukryte pod warstwą tynku. Takie podejście może prowadzić do konieczności przeprowadzania kosztownych poprawek w przyszłości, co jest niezgodne z zasadami efektywnego zarządzania projektem budowlanym. Dodatkowo, jeśli odbiór robót murarskich odbyłby się przed osadzeniem ościeżnic, nie byłoby możliwości oceny, czy otwory na okna i drzwi zostały prawidłowo przygotowane. To może z kolei prowadzić do problemów z ich montażem i wykończeniem. W branży budowlanej kluczowe jest przestrzeganie ustalonych procedur, które pozwalają na wczesne wykrywanie i eliminowanie błędów. Dlatego odbiór robót murarskich powinien odbywać się po osadzeniu ościeżnic, ale przed tynkowaniem, co jest zgodne z zasadami jakości oraz standardami budowlanymi.

Pytanie 14

Na rysunku przedstawiono

Ilustracja do pytania
A. rzut budynku.
B. przekrój budynku.
C. widok budynku.
D. elewację budynku.
Wybór odpowiedzi, który wskazuje na rzut budynku, widok budynku lub elewację budynku, odzwierciedla typowe nieporozumienia związane z interpretacją rysunków technicznych. Rzut budynku jest to przedstawienie obiektu z góry, które nie ujawnia jego wewnętrznego układu. Jego celem jest pokazanie rozmieszczenia pomieszczeń oraz elementów zewnętrznych, co jest zupełnie innym podejściem niż analiza przekroju. Widok budynku, z kolei, koncentruje się głównie na jego elewacjach, czyli zewnętrznych fasadach, co również nie dostarcza informacji o wewnętrznej strukturze. Elewacja budynku to przedstawienie zewnętrzne, które pokazuje detale architektoniczne, ale nie wyraża informacji dotyczących elementów wewnętrznych, co jest kluczowe w kontekście przekroju. Potencjalne błędy myślowe związane z tymi odpowiedziami mogą wynikać z braku zrozumienia funkcji poszczególnych rysunków technicznych w architekturze i inżynierii. Zrozumienie różnicy między tymi rodzajami rysunków jest fundamentalne dla prawidłowej interpretacji dokumentacji budowlanej oraz efektywnego projektowania zgodnie z obowiązującymi normami i standardami w branży budowlanej.

Pytanie 15

Na rysunku przedstawiono rusztowanie

Ilustracja do pytania
A. wspornikowe.
B. stojakowe.
C. koszowe.
D. warszawskie.
Rusztowanie warszawskie, które zostało przedstawione na zdjęciu, to konstrukcja charakteryzująca się prostym układem elementów oraz wysoką ergonomią montażu i demontażu. Jego budowa opiera się na systemie poziomych i pionowych rur, które są ze sobą połączone w sposób zapewniający stabilność i bezpieczeństwo. W praktyce, rusztowanie to jest niezwykle popularne w budownictwie, zwłaszcza w pracach wysokościowych, gdzie niezbędne jest uzyskanie dostępu do trudno dostępnych miejsc. Warto zaznaczyć, że zastosowanie rusztowania warszawskiego wiąże się z przestrzeganiem odpowiednich norm, takich jak PN-EN 12810 oraz PN-EN 12811, które regulują kwestie bezpieczeństwa konstrukcji oraz obciążeń, jakie mogą być na nie nałożone. Dzięki prostej konstrukcji, rusztowanie to można szybko zmontować i zdemontować, co pozwala na efektywne zarządzanie czasem pracy na budowie. Co więcej, jego zastosowanie w różnych projektach budowlanych, od renowacji po nowe konstrukcje, czyni go wszechstronnym rozwiązaniem w branży budowlanej.

Pytanie 16

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Gipsowa
B. Cementowo-gliniana
C. Wapienna
D. Cementowo-wapienna
Wybór innych zapraw, takich jak cementowo-wapienna, gipsowa czy cementowo-gliniana, prowadzi do kilku istotnych nieporozumień dotyczących ich właściwości plastycznych. Zaprawa cementowo-wapienna, mimo że łączy w sobie zalety obu materiałów, w praktyce charakteryzuje się mniejszą plastycznością w porównaniu do czystej zaprawy wapiennej. Cement, jako składnik, wprowadza twardość, co ogranicza elastyczność zaprawy, co jest niekorzystne w kontekście aplikacji wymagających łatwego formowania i deformations. Gipsowa zaprawa, choć posiada dobre właściwości plastyczne, ma ograniczone zastosowanie w wilgotnych warunkach, co czyni ją mniej uniwersalną. Ponadto, jej zdolność do twardnienia jest znacznie szybsza, co może prowadzić do problemów z równomiernym rozprowadzeniem i aplikacją. Cementowo-gliniana zaprawa z kolei, mimo że oferuje pewne właściwości plastyczne, nie osiąga poziomu elastyczności, jaki zapewnia wapno. W ogólnym ujęciu, powszechnym błędem jest zatem mylenie twardości z plastycznością, co prowadzi do niewłaściwych wyborów materiałowych w budownictwie. Dobór odpowiedniej zaprawy powinien być uzależniony od specyfiki projektu oraz warunków, w jakich ma być stosowana, a zaprawy oparte na wapnie są najbardziej odpowiednie do zastosowań wymagających wysokiej plastyczności i paroprzepuszczalności.

Pytanie 17

Do czego jest używana poziomica wężowa?

A. Do określania zewnętrznej krawędzi warstw muru
B. Do kontrolowania grubości muru w ścianie
C. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
D. Do sprawdzania pionowości murowanej ściany
Poziomica wężowa to naprawdę przydatne narzędzie, które pozwala na precyzyjne wyznaczanie poziomu murowanych ścian. Działa na zasadzie hydrostatyki, co oznacza, że woda w rurce ustawia się na równym poziomie, niezależnie od tego, jak trzymamy poziomicę. To mega ważne, zwłaszcza przy dużych budowach, gdzie precyzja ma kluczowe znaczenie. Czasem tradycyjne poziomice nie są wystarczające, szczególnie w trudnym terenie. Dobrze jest wiedzieć, że poziomica wężowa świetnie sprawdzi się przy ustawianiu fundamentów, bo dokładne przeniesienie poziomu z jednego miejsca na drugie zabezpiecza stabilność budowli. W branży budowlanej trzymanie się norm i dobrych praktyk to podstawa, żeby zbudować coś, co posłuży przez lata i będzie bezpieczne.

Pytanie 18

Na fotografii przedstawiono sposób rozmieszczenia i podparcia elementów stropu

Ilustracja do pytania
A. Porotherm.
B. Teriva.
C. Fert.
D. Ceram.
Odpowiedzi takie jak Ceram, Fert czy Porotherm nie odzwierciedlają charakterystyki przedstawionego na zdjęciu systemu stropowego. Ceram to technologia budowlana oparta na ceramice, która jest stosowana głównie w kontekście murowania, a nie jako system stropowy. Fert natomiast odnosi się do systemów stropowych wykonanych z betonu kompozytowego, które nie są zgodne z wyraźnymi cechami żebrowych płyt stropowych. Porotherm, z kolei, to system budowlany z wykorzystaniem pustaków ceramicznych, przeznaczony głównie do budowy ścian, a nie stropów. Nie uwzględniają one specyficznych aspektów związanych z rozkładem obciążeń i wsparciem stropu, co jest kluczowym zagadnieniem w kontekście analizy konstrukcji budowlanych. Typowe błędy związane z tymi odpowiedziami dotyczą braku zrozumienia różnic pomiędzy różnymi technologiami budowlanymi oraz ich przeznaczeniem. Wybierając odpowiedzi, ważne jest, aby rozważyć nie tylko nazwę systemu, ale także jego właściwości techniczne i zastosowanie w praktyce budowlanej. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru technologii w projektach budowlanych.

Pytanie 19

Aby naprawić pęknięcie zwykłego tynku o głębokości przekraczającej 0,5 cm, należy poszerzyć rysę i nawilżyć ją wodą, a następnie

A. zatarć gęstoplastyczną zaprawą cementową
B. zatarć gęstoplastyczną zaprawą gipsową
C. wypełnić dwiema warstwami zaprawy, z której tynk został wykonany
D. wypełnić dwiema warstwami gipsowego zaczynu
Odpowiedź dotycząca wypełnienia pęknięcia dwiema warstwami zaprawy, z której wykonano tynk, jest prawidłowa, ponieważ zapewnia ona najlepszą zgodność z istniejącą strukturalną i estetyczną charakterystyką tynku. Proces naprawy pęknięcia powinien rozpocząć się od starannego poszerzenia rysy, co umożliwia lepszą przyczepność materiałów naprawczych. Następnie, po zwilżeniu rysy wodą, ważne jest, aby zastosować zaprawę, która jest zgodna z oryginalnym materiałem tynku. Wypełniając pęknięcie dwiema warstwami zaprawy, która była użyta do wykonania tynku, zapewniamy jednolitość w składzie chemicznym oraz w strukturze materiału, co zmniejsza ryzyko wystąpienia dalszych pęknięć. Praktyka ta jest szeroko stosowana w budownictwie, gdyż umożliwia uzyskanie lepszej trwałości i estetyki naprawy. Ponadto, przy użyciu odpowiednich technik aplikacji, takich jak zatarcie, można uzyskać równą powierzchnię, co jest istotne dla zachowania estetyki i funkcjonalności ściany.

Pytanie 20

Jaką cegłę należy zastosować do budowy murowanych ścianek działowych o grubości do 12 cm, aby uzyskać jak najniższy ciężar objętościowy?

A. ceramiczną pełną
B. klinkierową
C. wapienno-piaskową pełną
D. dziurawki
Dziurawki, czyli cegły ceramiczne o dużej liczbie otworów, charakteryzują się niskim ciężarem objętościowym, co czyni je idealnym materiałem do budowy ścianek działowych o grubości do 12 cm. Dzięki swojej strukturze, dziurawki nie tylko obniżają całkowity ciężar konstrukcji, ale również zapewniają dobrą izolacyjność akustyczną i termiczną. W praktyce, zastosowanie dziurek w budownictwie pozwala na optymalizację kosztów transportu oraz ułatwia prace murarskie, ponieważ są one lżejsze od cegły pełnej. Zgodnie z normami budowlanymi, cegły te powinny być używane tam, gdzie priorytetem jest redukcja masy konstrukcyjnej, a jednocześnie zachowanie wymagań dotyczących wytrzymałości i izolacji. Przykłady zastosowania obejmują budowę ścianek działowych w biurach, domach mieszkalnych oraz innych obiektach, gdzie ograniczenie ciężaru konstrukcji jest kluczowe.

Pytanie 21

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. ciepłochronnych
B. szamotowych
C. kwasoodpornych
D. krzemionkowych
Keramzyt to innowacyjne lekkie kruszywo budowlane, które ze względu na swoje właściwości doskonale sprawdza się w produkcji zapraw ciepłochronnych. Jego niska gęstość oraz porowata struktura pozwalają na skuteczną izolację termiczną, co jest kluczowe w tworzeniu energooszczędnych budynków. Przykładem zastosowania keramzytu może być jego użycie w warstwie izolacyjnej w budynkach jednorodzinnych, gdzie przyczynia się do minimalizacji strat ciepła. W standardach budowlanych, takich jak PN-EN 13055, podkreśla się znaczenie stosowania materiałów, które nie tylko spełniają normy wytrzymałościowe, ale również przyczyniają się do efektywności energetycznej budynków. Keramzyt, dzięki swoim właściwościom, jest także materiałem ekologicznym, co wpisuje się w trendy zrównoważonego budownictwa, dążącego do ograniczenia wpływu na środowisko. Stosując keramzyt w zaprawach ciepłochronnych, inwestorzy mogą znacząco obniżyć koszty ogrzewania, co jest szczególnie istotne w kontekście rosnących cen energii.

Pytanie 22

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Poręcz środkowa
B. Poręcz górna
C. Bortnica
D. Ograniczniki ochronne
Ograniczniki ochronne, poręcz górna oraz bortnica to elementy, które stanowią część trzyczęściowego zabezpieczenia bocznego rusztowań. Ograniczniki ochronne są kluczowe w zapobieganiu wypadkom związanym z upadkiem przedmiotów, co jest niezmiernie istotne w kontekście pracy w rejonach miejskich. Poręcz górna, zapewniając stabilność, usztywnia konstrukcję rusztowania i chroni pracowników przed upadkiem. Z kolei bortnica działa jako fizyczna bariera, ograniczając przestrzeń roboczą i redukując ryzyko upadku narzędzi czy materiałów budowlanych na osoby znajdujące się poniżej. Niezrozumienie roli poręczy środkowej jako elementu, który nie należy do tego trio, może prowadzić do błędnych wniosków dotyczących klasyfikacji zabezpieczeń. Poręcz środkowa, mimo że jest istotnym elementem w kontekście ogólnych zabezpieczeń na rusztowaniach, nie wchodzi w skład standardowego zestawienia zabezpieczeń bocznych. Takie nieprawidłowe zrozumienie może prowadzić do niewłaściwego planowania i realizacji bezpieczeństwa na budowach. Prawidłowe rozszyfrowanie i zastosowanie elementów zabezpieczeń jest niezbędne do przestrzegania standardów branżowych, takich jak PN-EN 12811, które określają zasady projektowania i montażu rusztowań.

Pytanie 23

Ścianę nośną w piwnicy powinno się wymurować z

A. cegieł dziurawek
B. bloczków z betonu komórkowego
C. bloczków z betonu zwykłego
D. cegieł kratówek
Ściany nośne kondygnacji piwnicznej powinny być wymurowane z bloczków z betonu zwykłego z kilku powodów. Po pierwsze, beton zwykły charakteryzuje się wysoką nośnością, co jest niezbędne w przypadku ścian, które muszą przenosić obciążenia z wyższych kondygnacji budynku. Ponadto, bloczki te są odporne na wilgoć, co jest kluczowe w przypadku piwnic, gdzie istnieje ryzyko podciągania wilgoci z gruntu. W praktyce, zastosowanie bloczków z betonu zwykłego pozwala na uzyskanie solidnej i trwałej konstrukcji, która spełnia wymagania norm budowlanych, takich jak PN-EN 1992-1-1 dotycząca projektowania konstrukcji betonowych. Dodatkowo, bloczki te są stosunkowo łatwe w obróbce i montażu, co przyspiesza proces budowy. W kontekście praktycznych zastosowań, wiele nowoczesnych budynków mieszkalnych i komercyjnych opiera swoje fundamenty na solidnych ścianach piwnicznych wykonanych z bloczków z betonu zwykłego, co potwierdza ich efektywność i niezawodność w długoterminowym użytkowaniu.

Pytanie 24

Na fotografii przedstawiono narzędzie przeznaczone do ręcznego

Ilustracja do pytania
A. wygładzania powierzchni ściany z betonu komórkowego.
B. wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego.
C. wyrównywania powierzchni bloczków z betonu komórkowego.
D. przycinania bloczków z betonu komórkowego.
Poprawna odpowiedź to "wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego". Narzędzie przedstawione na fotografii to drut do cięcia betonu komórkowego, które jest specjalistycznym narzędziem wykorzystywanym w budownictwie. Jego główną funkcją jest precyzyjne wykonywanie bruzd w ścianach, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych i hydraulicznych. W praktyce, narzędzie to pozwala na szybkie i dokładne usunięcie materiału w odpowiednich miejscach, co znacząco ułatwia późniejsze przeprowadzenie kabli czy rur przez ściany z betonu komórkowego. Warto zaznaczyć, że używanie odpowiednich narzędzi, takich jak drut do cięcia, zgodnie z normami budowlanymi, zwiększa efektywność pracy i minimalizuje ryzyko uszkodzenia materiałów budowlanych. Ponadto, stosowanie tego narzędzia jest zgodne z dobrymi praktykami w zakresie budowy instalacji, co zapewnia trwałość i bezpieczeństwo wykonanych prac.

Pytanie 25

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. cementu portlandzkiego
B. wapna hydraulicznego
C. cementu hutniczego
D. wapna hydratyzowanego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 26

Jaki będzie koszt mieszanki betonowej potrzebnej do zbudowania dwóch słupów o wymiarach 60×60 cm i wysokości 3 m każdy, zakładając, że norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena 325,00 zł/m3?

A. 702,00 zł
B. 351,00 zł
C. 716,04 zł
D. 358,02 zł
Obliczanie kosztu mieszanki betonowej do zrobienia dwóch słupów o wymiarach 60 na 60 cm i wysokości 3 metry zaczynamy od wyliczenia objętości jednego słupa. Tak więc 60 cm na 60 cm daje nam 0,6 metra na 0,6 metra, co w rezultacie to 0,36 metra kwadratowego. Potem mnożymy to przez wysokość, czyli 0,36 m² pomnożone przez 3 metry daje 1,08 metra sześciennego. Ponieważ mamy dwa słupy, całkowita objętość betonu wynosi 1,08 metra sześciennego razy 2, co daje 2,16 metra sześciennego. Właściwie licząc zużycie mieszanki betonowej, zakładając normę 1,02 m³/m³, wychodzi nam 2,16 metra sześciennego razy 1,02, co daje około 2,20 metra sześciennego mieszanki. Na końcu, żeby obliczyć koszt, mnożymy to przez cenę za m³ betonu, na przykład 2,20 m³ razy 325 zł za m³ wychodzi 716,04 zł. Dobre obliczenia i znajomość norm w budownictwie są na prawdę istotne, bo to pomaga zaplanować wydatki na materiały budowlane w projekcie.

Pytanie 27

Przedstawiona na rysunku łata typu H służy do

Ilustracja do pytania
A. nakładania poszczególnych warstw tynku.
B. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
C. wyrównywania tynku po lekkim związaniu.
D. gładzenia tynku po zwilżeniu jego powierzchni.
Łata typu H jest narzędziem kluczowym w procesie zaciągania tynku. Używa się jej tuż po nałożeniu zaprawy, co pozwala na efektywne rozprowadzenie materiału po powierzchni. Dzięki odpowiedniemu kształtowi, który zapewnia równą i gładką powierzchnię, łata ułatwia pracę i przyspiesza proces tynkowania. W praktyce, zastosowanie łaty H pozwala na osiągnięcie lepszej jakości wykończenia, co jest zgodne z normami budowlanymi, które zalecają uzyskiwanie równości powierzchni. Użycie łaty podczas tynkowania jest szczególnie ważne w kontekście późniejszych prac wykończeniowych, takich jak malowanie czy kładzenie płytek, gdzie wszelkie nierówności mogą wpłynąć na finalny efekt. Ponadto, stosowanie tego narzędzia sprzyja zmniejszeniu ilości zużywanego materiału, gdyż pozwala na dokładniejsze i bardziej efektywne wykorzystanie zaprawy.

Pytanie 28

Na podstawie danych zawartych w tabeli oblicz całkowity koszt wykonania 1 m² tynku mozaikowego drobnoziarnistego wraz z gruntowaniem podłoża.

Tynk mozaikowy drobnoziarnisty:
cena opakowania 25 kg:187,50 zł
zużycie:4 kg/m²
Preparat gruntujący:
cena opakowania 12 l:90,00 zł
zużycie:0,4 l/m²
Robocizna (wykonanie tynku wraz z gruntowaniem):55,00 zł/m²
A. 82,00 zł
B. 88,00 zł
C. 85,00 zł
D. 58,00 zł
Wybór innych odpowiedzi, jak 82,00 zł, 58,00 zł czy 85,00 zł, często wynika z błędnego oszacowania kosztów materiałów i robocizny przy tynku mozaikowym. Możliwe, że w takich przypadkach pomijasz ważne elementy, jak przygotowanie podłoża, które ma duże znaczenie dla przyczepności tynku. Koszt gruntowania, które jest często konieczne przed nałożeniem tynku, mógł nie zostać wzięty pod uwagę w niektórych obliczeniach, co prowadzi do zaniżenia całości. Zdarza się też, że błędne wyniki wynikają z pomyłek w jednostkowych kosztach materiałów lub robocizny. Często nie uwzględnia się również dodatkowych wydatków na narzędzia, transport czy straty materiałów. Niedostateczna znajomość standardów i praktyk w branży też może przyczyniać się do błędnych oszacowań. Dlatego przed zaczęciem kalkulacji dobrze jest przemyśleć wszystkie składniki kosztów, żeby wyjść z rzetelnymi obliczeniami.

Pytanie 29

Który etap wykonywania tynku gipsowego przedstawiono na fotografii?

Ilustracja do pytania
A. Wstępne gładzenie tzw. piórowanie.
B. Wstępne wyrównanie tzw. zaciąganie.
C. Ręczne nakładanie.
D. Ostateczne gładzenie.
Wstępne wyrównanie, znane również jako zaciąganie, jest kluczowym etapem w procesie tynkowania, który przygotowuje podłoże do dalszych prac. Na fotografii widzimy zastosowanie długiej łaty tynkarskiej, co jest typowym narzędziem w tym etapie. Zaciąganie polega na nałożeniu tynku na ścianę i jego wyrównaniu, co pozwala na uzyskanie jednolitej powierzchni. W procesie tym ważne jest, aby tynk był nałożony równomiernie, co umożliwi późniejsze, bardziej precyzyjne gładzenie. Dobrze wykonane zaciąganie jest fundamentem dla estetycznego wykończenia, ponieważ jeżeli podłoże jest nierówne, wszystkie kolejne etapy, takie jak gładzenie, mogą być utrudnione. Praktycznym przykładem zastosowania tej techniki jest przygotowanie ściany pod malowanie lub tapetowanie, gdzie gładka powierzchnia jest niezbędna, aby uzyskać satysfakcjonujący efekt końcowy. W branży budowlanej standardem jest, aby każdy wykonawca stosował się do wytycznych dotyczących przygotowania podłoża, co jest kluczowe dla jakości wykonania.

Pytanie 30

Tynk należący do kategorii IV jest tynkiem

A. 2-warstwowym
B. 3-warstwowym
C. 1-warstwowym
D. 4-warstwowym
Wybór tynku jako 4-warstwowego, 2-warstwowego czy 1-warstwowego to czasem nieporozumienie, bo można nie wiedzieć, jak to wszystko działa. Tynki 1-warstwowe są prostą wersją, ale często nie są wystarczająco mocne, szczególnie w trudnych warunkach. Zwykle używa się ich tam, gdzie nie ma dużych wymagań co do estetyki i techniki, co może prowadzić do szybkiego uszkodzenia. Tynk 2-warstwowy także nie spełnia standardów tynków kategorii IV, bo nie ma tych trzech kluczowych warstw, które są potrzebne, żeby tynk był naprawdę trwały. Z kolei tynki 4-warstwowe to rzadkość i wynikają z mylenia cech tynków z ich warstwowością. Tynk trójwarstwowy łączy technologie i materiały zgodne z aktualnymi standardami budowlanymi, przez co jest najlepszym wyborem dla większości nowoczesnych projektów. Zrozumienie różnic między typami tynków to klucz do sukcesu w każdym projekcie, a przestrzeganie norm jest niezbędne, żeby nie mieć problemów z trwałością i wyglądem.

Pytanie 31

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.
A. 10 palet
B. 9 palet
C. 12 palet
D. 13 palet
Analizując inne odpowiedzi, można zauważyć typowe błędy związane z obliczaniem potrzebnej ilości pustaków. Często błędne podejście polega na nieuwzględnieniu pełnej powierzchni ścian lub niepoprawnym obliczeniu ilości pustaków na metr kwadratowy. Na przykład, jeżeli ktoś obliczał jedynie powierzchnię jednej ściany, mógłby dojść do błędnego wniosku, że potrzebuje mniej palet. Inne możliwe pomyłki obejmują zaokrąglanie wyniku przed dokonaniem podziału lub błędne przyjęcie liczby pustaków na paletę. Kluczowym elementem w takich obliczeniach jest również zrozumienie, że w budownictwie nie tylko sama liczba pustaków, ale i ich właściwe rozmieszczenie oraz przygotowanie podłoża mają ogromne znaczenie. W praktyce, błędne obliczenia mogą prowadzić do nie tylko do nadmiaru materiałów, ale również do opóźnień w realizacji budowy, co w rezultacie generuje dodatkowe koszty. Właściwe podejście do obliczeń materiałowych powinno być zgodne z normami budowlanymi i standardami stosowanymi w branży, które zalecają dokładne planowanie i przewidywanie potrzeb materiałowych przed rozpoczęciem prac budowlanych.

Pytanie 32

Na podstawie przedstawionej instrukcji producenta zaprawy murarskiej oblicz, ile wody należy użyć do wymieszania 200 kg suchej mieszanki.

Instrukcja producenta zaprawy murarskiej (fragment)
Gęstość nasypowa (suchej mieszanki)ok. 1,5 kg/dm³
Gęstość w stanie suchym (po związaniu)ok. 2,0 kg/dm³
Proporcje mieszania woda/sucha mieszanka3,5 l/25 kg
Min./max. grubość warstwy zaprawy6 mm/40 mm
Czas gotowości zaprawy do pracyok. 4 godzin
A. 21 litrów.
B. 35 litrów.
C. 14 litrów.
D. 28 litrów.
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia proporcji zalecanych przez producenta zaprawy murarskiej. Niektórzy mogą myśleć, że ilość wody potrzebna do wymieszania suchej mieszanki jest liniowo związana z jej wagą, natomiast kluczowe jest zrozumienie, że producenci podają specyficzne proporcje, które są zoptymalizowane dla danej mieszanki. Odpowiedzi takie jak 35 litrów, 21 litrów czy 14 litrów nie uwzględniają właściwego przeliczenia proporcji podanych w instrukcji. Użycie zbyt dużej ilości wody, na przykład 35 litrów, może prowadzić do powstania zbyt rzadkiej zaprawy, co skutkuje obniżeniem jej wytrzymałości oraz przyczepności do podłoża. Z drugiej strony, niewystarczająca ilość wody, jak w przypadku 14 litrów, może skutkować zaprawą o zbyt gęstej konsystencji, co utrudnia aplikację i może prowadzić do problemów z wytrzymałością na spoinach. Kluczowe jest, aby podczas pracy z materiałami budowlanymi stosować się do zaleceń producentów, aby uniknąć takich błędów, które mogą wpłynąć na jakość i trwałość realizowanych prac budowlanych. Warto pamiętać, że dokładne obliczenia i stosowanie się do norm jakościowych przyczyniają się do dłuższej żywotności konstrukcji.

Pytanie 33

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 480 kg
B. 645 kg
C. 320 kg
D. 867 kg
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego proporcji składników betonu. Obliczając ilość piasku potrzebną do wykonania 1,5 m³ mieszanki betonowej, kluczowe jest zrozumienie, że ilość piasku na jednostkę objętości (czyli na 1 m³) powinna być pomnożona przez objętość, którą chcemy uzyskać. Wiele osób mogą mylić całkowitą objętość mieszanki z ilościami poszczególnych składników, co prowadzi do błędnych wyników. Na przykład, wybór 645 kg zakłada zbyt dużą ilość piasku, co może skutkować zbyt „mokrym” betonem, a tym samym obniżoną wytrzymałością po wyschnięciu. Z kolei 320 kg wskazuje na zbyt małą ilość, co również będzie negatywnie wpływać na jakość betonu, prowadząc do jego pęknięć i osłabienia struktury. Odpowiednie proporcje są nie tylko ważne dla uzyskania betonu o pożądanych właściwościach, ale również są one zgodne z najlepszymi praktykami inżynieryjnymi. Standardy branżowe, takie jak PN-EN 206, podkreślają znaczenie precyzyjnych obliczeń, które muszą być przeprowadzane na podstawie receptur roboczych. Dlatego tak istotne jest zrozumienie procesu obliczeń i stosowanie się do sprawdzonych metod, aby uniknąć typowych błędów oraz zapewnić optymalną jakość mieszanki betonowej.

Pytanie 34

Nierównomierne osiadanie budynków może prowadzić do

A. korozji murów
B. pęknięcia murów
C. erozji fundamentów
D. zawilgocenia murów
Odpowiedź "pęknięcie murów" jest poprawna, ponieważ nierównomierne osiadanie budynków prowadzi do powstawania naprężeń w konstrukcji, co może skutkować pęknięciami murów. Gdy różne części budynku osiadają w różnym tempie, powstają siły działające na elementy nośne i ściany, które mogą przekraczać ich nośność. W praktyce, aby zminimalizować ryzyko pęknięć, zaleca się przeprowadzanie odpowiednich badań geotechnicznych przed budową oraz monitorowanie stanu obiektów w trakcie ich użytkowania. Dobrą praktyką jest także stosowanie fundamentów dostosowanych do warunków gruntowych, które mogą pomóc w równomiernym rozkładzie obciążeń. Przykładem zastosowania tej wiedzy może być użycie pali fundamentowych w gruntach o niskiej nośności, co zapewnia stabilność całej konstrukcji i minimalizuje ryzyko osiadania. W standardach budowlanych zwraca się uwagę na znaczenie odpowiedniego projektowania oraz regularnych przeglądów, aby w porę wykrywać i eliminować zagrożenia związane z osiadaniem.

Pytanie 35

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. kozłowego
B. stojakowego teleskopowego
C. warszawskiego
D. drabinowego
Odpowiedzi 'stojakowego teleskopowego', 'warszawskiego' oraz 'kozłowego' są niewłaściwe z kilku kluczowych powodów. Rusztowania stojakowe teleskopowe, choć oferują stabilność i dużą powierzchnię roboczą, są przeznaczone do znacznie wyższych konstrukcji, co czyni je niepraktycznymi i nieefektywnymi przy pracy na wysokości do 2,5 m. Ich skomplikowana konstrukcja wymaga także znacznie więcej miejsca do rozstawienia, co może być problematyczne w wąskich pomieszczeniach. Rusztowanie warszawskie, z kolei, jest bardziej skomplikowane w montażu i demontażu, co w przypadku niskich wysokości mija się z celem, a jego użycie wiąże się z większym ryzykiem niewłaściwego zabezpieczenia. Zastosowanie rusztowania kozłowego jest również nieodpowiednie, ponieważ, mimo że jest ono stabilne, jego konstrukcja nie jest dostosowana do wykonywania precyzyjnych prac murarskich na niższych wysokościach. Często błędnym podejściem jest myślenie, że większa stabilność rusztowania będzie korzystna w każdej sytuacji, gdy w rzeczywistości proste rozwiązania, takie jak drabina, mogą być bardziej odpowiednie. Z kolei zbyt duża ilość sprzętu na małej przestrzeni może prowadzić do zagrożeń związanych z bezpieczeństwem natomiast użycie drabiny, w połączeniu z przestrzeganiem zasad BHP, pozwala na efektywniejszą i bezpieczniejszą pracę.

Pytanie 36

Koszty bezpośrednie materiałów, potrzebnych do wykonania zaprawy ciepłochronnej M5 z żużlem granulowanym 1200, wynoszą

L
p.
PodstawaOpisjmNakładyKoszt
jedn.
RMS
2KNR 2-02
1754-02
Zaprawa ciepłochronna M5 z żużlem granulo-
wanym 1200
obmiar = 50m³
1*-- R --
robocizna
2.33r-g/m³ * 29.00zł/r-g
r-g116.500067.5703378.50
2*-- M --
cement CEM II z dodatkami
0.321t/m³ * 462.56zł/t
t16.0500148.4827424.09
3*wapno suchogaszone
0.08t/m³ * 459.02zł/t
t4.000036.7221836.08
4*żużel wielkopiecowy granulowany półsuchy
1.04t/m³ * 48.38zł/t
t52.000050.3152515.76
5*abiesod P-1
1.21kg/m³ * 22.42zł/kg
kg60.500027.1281356.41
6*woda
0.45m³/m³ * 20.06zł/m³
22.50009.027451.35
7*materiały pomocnicze
1.5% * 13583.69zł
%1.50004.075203.76
8*-- S --
betoniarka 150 lub 250 dm3
0.74m-g/m³ * 49.00zł/m-g
m-g37.000036.2601813.00
Razem koszty bezpośrednie: 18978.953378.5013787.451813.00
Ceny jednostkowe379.57967.570275.74936.260
A. 13 787,45 zł
B. 18 978,95 zł
C. 3 378,50 zł
D. 1813,00 zł
Odpowiedź 13 787,45 zł jest prawidłowa, ponieważ stanowi rzeczywisty koszt bezpośredni materiałów niezbędnych do wykonania zaprawy ciepłochronnej M5 z żużlem granulowanym 1200, jak przedstawiono w tabeli na zdjęciu. W kontekście budownictwa oraz prac związanych z ociepleniem budynków, precyzyjne określenie kosztów materiałów jest kluczowe dla realizacji projektów budowlanych. Koszty te powinny uwzględniać nie tylko ceny jednostkowe materiałów, ale także dodatkowe wydatki, takie jak transport czy składowanie. W praktyce, każda inwestycja budowlana wymaga starannego planowania i analizy kosztów, co jest zgodne z najlepszymi praktykami branżowymi, takimi jak metodyka zarządzania kosztami w budownictwie. Dlatego, znajomość dokładnych wartości kosztów pozwala na lepsze zarządzanie budżetem oraz unikanie nieprzewidzianych wydatków w trakcie realizacji projektu.

Pytanie 37

W trakcie murowania ścian w zimowych warunkach należy podgrzać

A. tylko wodę i piasek
B. zaprawę po połączeniu wszystkich składników
C. wszystkie składniki zaprawy przed ich połączeniem
D. jedynie piasek
Odpowiedzi wskazujące na podgrzewanie wszystkich składników zaprawy lub tylko piasku bazują na nieporozumieniu dotyczących właściwego procesu przygotowania zaprawy w zimie. Podgrzewanie wszystkich składników przed wymieszaniem, mimo że teoretycznie mogłoby wydawać się sensowne, może prowadzić do problemów z kontrolą temperatury oraz niejednorodnością mieszanki. W rzeczywistości kluczowe jest, aby podgrzać tylko wodę oraz piasek, ponieważ to właśnie te składniki mają największy wpływ na szybkość wiązania i jakość zaprawy. Podgrzewanie zaprawy po wymieszaniu wszystkich składników jest również niewłaściwym podejściem, ponieważ nie można w ten sposób efektywnie kontrolować temperatury i jednorodności mieszanki, co może prowadzić do powstawania pęknięć i osłabienia muru. Ogrzewanie tylko piasku nie zapewnia odpowiedniej temperatury dla wody, która jest kluczowym składnikiem zaprawy. W przypadku niskiej temperatury, zmniejszenie ilości ciepła w mieszance może skutkować opóźnieniami w procesie wiązania i zwiększeniem ryzyka uszkodzeń, co jest sprzeczne z najlepszymi praktykami budowlanymi. Dlatego ważne jest, aby rozumieć zasady zachowania ciepła i optymalizacji procesu murowania, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji w późniejszym okresie eksploatacji budowli.

Pytanie 38

Warstwę konstrukcyjną ściany przedstawionej na rysunku wykonano z betonu

Ilustracja do pytania
A. zwykłego niezbrojonego.
B. komórkowego zbrojonego.
C. zwykłego zbrojonego.
D. komórkowego niezbrojonego.
Wybór odpowiedzi związanych z betonem zbrojonym, zarówno zwykłym, jak i komórkowym, może wynikać z nieporozumienia dotyczącego zastosowania zbrojenia w konstrukcjach budowlanych. Zbrojenie betonu ma na celu zwiększenie jego wytrzymałości na rozciąganie, co jest szczególnie istotne w elementach narażonych na większe obciążenia, jak belki czy słupy. Jednakże w przypadku ścian wykonanych z betonu komórkowego, który jest lekki i stosunkowo mało podatny na zjawiska związane z rozciąganiem, często nie zachodzi potrzeba stosowania zbrojenia. Niezrozumienie tej kwestii prowadzi do błędnych wniosków, że każda konstrukcja musi być zbrojona. Ponadto, nie uwzględnienie charakterystyki pustaków betonowych komórkowych w analizie rysunku może skutkować błędnym przypisaniem materiału budowlanego. Odpowiedzi wskazujące na beton zwykły niezbrojony lub komórkowy zbrojony są nietrafione, ponieważ nie odzwierciedlają rzeczywistych właściwości materiałów oraz ich zastosowania w kontekście przedstawionej konstrukcji. W praktyce, beton komórkowy niezbrojony jest coraz częściej wykorzystywany ze względu na swoje właściwości izolacyjne i ekonomiczne, co czyni go bardziej odpowiednim rozwiązaniem w wielu projektach budowlanych, zwłaszcza tam, gdzie kluczowe są parametry energetyczne budynku.

Pytanie 39

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. stalowe pręty oraz zaprawę gipsową
B. klamry stalowe oraz zaczyn cementowy
C. cegły dziurawe wraz z zaczynem gipsowym
D. cegły kominowe i zaprawę cementową
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 40

Na której ilustracji przedstawiono chwytak do przenoszenia cegieł?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.
Ilustracja 2 przedstawia chwytak do przenoszenia cegieł, co czyni ją poprawną odpowiedzią w tym pytaniu. Chwytaki tego typu są niezwykle istotnym narzędziem w branży budowlanej, umożliwiającym szybki i efektywny transport cegieł z miejsca na miejsce. Ich konstrukcja opiera się na mechanizmie zaciskowym, który pozwala na pewne i bezpieczne uchwycenie cegły, co znacznie minimalizuje ryzyko uszkodzenia materiału oraz obrażeń pracowników. W praktyce, chwytaki do przenoszenia cegieł są często stosowane na placach budowy, gdzie zwiększają wydajność pracy, a także redukują czas potrzebny na transport ciężkich materiałów. Warto zaznaczyć, że zgodność z normami BHP oraz standardami pracy odgrywa kluczową rolę w zapewnieniu bezpieczeństwa podczas używania takich narzędzi. Właściwe techniki przenoszenia materiałów, jak również znajomość właściwości cegieł, to aspekty, które każdy pracownik budowlany powinien znać, aby efektywnie i bezpiecznie wykonywać swoje zadania.