Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 14:19
  • Data zakończenia: 18 grudnia 2025 14:20

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 4 i 8
B. 1 i 7
C. 7 i 8
D. 1 i 4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 2

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest prawidłowa, ponieważ symbol graficzny przedstawiony w tej opcji najdokładniej odwzorowuje łącznik ze schematu wieloliniowego. W standardach dotyczących projektowania instalacji elektrycznych, takich jak norma PN-EN 60617, łącznik jest reprezentowany w sposób, który zapewnia jasność i jednoznaczność w interpretacji schematów. W tym przypadku, symbol składający się z okręgu z przecinającą go linią pod kątem jest powszechnie akceptowanym sposobem graficznej reprezentacji łącznika. Zastosowanie takich symboli w praktyce inżynierskiej ułatwia komunikację pomiędzy projektantami, wykonawcami i inspektorami. Przy projektowaniu instalacji elektrycznych, znajomość tych symboli jest kluczowa dla zapewnienia bezpieczeństwa i efektywności działania systemów. Dobre praktyki wskazują, że każdy projektant powinien nie tylko znać te symbole, ale także rozumieć ich znaczenie i kontekst, w którym są używane.

Pytanie 3

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 4

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Stojan silnika komutatorowego.
B. Stojan silnika pierścieniowego.
C. Wirnik silnika komutatorowego.
D. Wirnik silnika pierścieniowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to wirnik silnika pierścieniowego, co wynika z analizy przedstawionych ilustracji oraz schematów. Wirnik ten charakteryzuje się pierścieniami ślizgowymi, które są kluczowym elementem jego konstrukcji, umożliwiającym efektywne przechodzenie prądu do uzwojeń wirnika. W silnikach pierścieniowych prąd jest dostarczany do wirnika przez szczotki stykające się z pierścieniami, co pozwala na regulację obrotów silnika, a także na jego rozruch. W praktyce, wirniki silników pierścieniowych są szeroko stosowane w aplikacjach wymagających dużej mocy i momentu obrotowego, takich jak wciągniki, przemysłowe maszyny oraz w pojazdach elektrycznych. Zrozumienie tego elementu jest istotne, ponieważ jego właściwe działanie ma kluczowy wpływ na ogólną wydajność silnika. W branży istnieją standardy dotyczące projektowania i testowania wirników, które zapewniają ich niezawodność i skuteczność w długotrwałej eksploatacji.

Pytanie 5

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Samoczynne wyłączenie zasilania
B. Dodatkowe miejscowe wyrównawcze połączenia ochronne
C. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
D. Bardzo niskie napięcie ze źródła bezpiecznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 6

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ przedstawia schemat montażowy, który spełnia wszystkie wymagania dotyczące połączeń przewodów w obwodach oświetleniowych. W tym przypadku przewody fazowe (L), neutralne (N) oraz ochronne są podłączone zgodnie z zasadami montażu, co zapewnia prawidłowe działanie układu oświetleniowego. W praktyce oznacza to, że przewód fazowy jest podłączony do odpowiednich łączników, a przewód neutralny do źródła zasilania. To podejście nie tylko zapewnia bezpieczeństwo użytkowania, ale także eliminuje ryzyko zwarcia czy uszkodzenia elementów instalacji. W branży elektroinstalacyjnej kluczowe jest przestrzeganie norm takich jak PN-IEC 60364, które regulują kwestie bezpieczeństwa w instalacjach elektrycznych. Poprawne połączenie przewodów jest również istotne w kontekście efektywności energetycznej, co ma znaczenie w obliczeniach kosztów eksploatacyjnych układów oświetleniowych.

Pytanie 7

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 10 mm2
B. 4,0 mm2
C. 16 mm2
D. 25 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 8

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 1,3 Ω
B. 766,7 Ω
C. 6,0 Ω
D. 166,7 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 166,7 Ω jest prawidłowa, ponieważ określa maksymalną wartość rezystancji uziemienia, która zapewnia skuteczną ochronę przed porażeniem elektrycznym w systemie TT. W układzie tym, przy zastosowaniu wyłącznika różnicowoprądowego o znamionowym prądzie różnicowym 300 mA oraz długotrwale dopuszczalnym napięciu dotykowym wynoszącym 50 V, stosuje się wzór: Rmax = U / I, gdzie U to wartość napięcia dotykowego, a I to prąd różnicowy. Podstawiając wartości, otrzymujemy Rmax = 50 V / 0,3 A = 166,67 Ω, co zaokrąglamy do 166,7 Ω. W praktyce, przestrzeganie tego ograniczenia pozwala na zminimalizowanie ryzyka wystąpienia niebezpiecznych napięć dotykowych w przypadku uszkodzenia izolacji. Wiele norm, takich jak PN-EN 61008 i PN-EN 61140, wskazuje na konieczność przeprowadzania takich obliczeń, co potwierdza ich znaczenie w pracy projektantów instalacji elektrycznych. W związku z tym, odpowiednia wartość rezystancji uziemienia w systemie TT jest kluczowa dla zapewnienia bezpieczeństwa użytkowników i ochrony przed skutkami porażenia elektrycznego.

Pytanie 9

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 10

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 5 szt., Y - 4 szt.
B. X - 4 szt., Y - 5 szt.
C. X - 4 szt., Y - 4 szt.
D. X - 5 szt., Y - 5 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź, czyli 4 przewody w miejscu X i 5 w miejscu Y, wynika z analizy struktury instalacji oświetleniowej z łącznikami schodowymi i krzyżowymi. W miejscu X, 4 przewody są niezbędne, aby umożliwić prawidłowe połączenie pomiędzy łącznikami schodowymi, gdzie wymagane są dwa przewody zwrotne, faza oraz przewód neutralny. Warto podkreślić, że stosowanie odpowiedniej liczby przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji. W miejscu Y konieczność wykorzystania 5 przewodów wynika z tego, że wymaga ono połączeń między łącznikiem schodowym a krzyżowym. W tym przypadku również potrzebna jest faza, przewód neutralny, przewód zwrotny oraz dwa przewody do komunikacji między łącznikiem krzyżowym a pozostałymi. Praktyczne zastosowanie tych zasad znajduje potwierdzenie w normach IEC dotyczących instalacji elektrycznych, które zalecają stosowanie odpowiednich ilości przewodów w zależności od funkcji i układu łączników. Prawidłowe zrozumienie tych zasad jest niezbędne do projektowania bezpiecznych i efektywnych systemów oświetleniowych.

Pytanie 11

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F1:2 i F2:1
B. Fazowy między zaciskami F2:2 i 1
C. Neutralny między zaciskami N i F1:N1
D. Neutralny między zaciskami F1:N2 i 2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 12

Narzędzie z rysunku służy do

Ilustracja do pytania
A. profilowania przewodów.
B. zaciskania końcówek tulejkowych.
C. tworzenia oczek na przewodzie.
D. ściągania izolacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 13

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 14

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Odłączony przewód ochronny
D. Zamieniony przewód fazowy z neutralnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 15

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 2.
C. Narzędzie 4.
D. Narzędzie 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 16

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 700
B. DYc 750
C. DY 100
D. DYc 150

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 17

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest poprawna, ponieważ przedstawia prawidłowe połączenie łącznika świecznikowego z żyrandolem. W tym układzie przewód fazowy L został poprawnie podłączony do łącznika, co pozwala na kontrolowanie zasilania żyrandola. Przewód neutralny N łączy łącznik z żarówką, co jest kluczowe dla prawidłowego działania obwodu elektrycznego. W praktyce, takie połączenie zapewnia nie tylko funkcjonalność, ale także bezpieczeństwo użytkowania systemu oświetleniowego. Zgodnie z obowiązującymi normami, instalacje elektryczne powinny być wykonane w sposób, który minimalizuje ryzyko zwarcia czy uszkodzenia sprzętu. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak bezpieczniki, które chronią obwody przed przeciążeniem. Znajomość zasad poprawnego podłączania elementów instalacji elektrycznej jest niezbędna dla zapewnienia ich efektywności oraz długotrwałej eksploatacji.

Pytanie 18

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 19

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony uzupełniającej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony podstawowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 20

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Brąz
B. Stal
C. Miedź
D. Aluminium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 21

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Tuleja kołnierzowa
B. Podkładka dystansowa
C. Podkładka sprężysta
D. Tuleja redukcyjna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 22

Który przewód oznacza symbol PE?

A. Wyrównawczy
B. Ochronno-neutralny
C. Uziemiający
D. Ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 23

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy B
B. Klasy D
C. Klasy A
D. Klasy C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 24

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 6,10%
B. 0,62%
C. 0,74%
D. 0,07%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 25

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 26

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 3 A i 0,03 A
B. 0,003 A i 30 A
C. 0,03 A i 30 A
D. 30 A i 0,03 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 27

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. weryfikacja oznaczeń obwodów oraz zabezpieczeń
B. pomiar rezystancji uziemienia
C. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 28

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Szczypce długie, nóż monterski, szczypce czołowe
B. Nóż monterski, szczypce boczne, zestaw wkrętaków
C. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
D. Nóż monterski, szczypce boczne, szczypce monterskie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 29

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. rezystancji izolacji.
B. impedancji pętli zwarcia.
C. ciągłości połączeń.
D. parametrów wyłączników RCD.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to rezystancja izolacji, ponieważ miernik przedstawiony na rysunku nie posiada zakresu do jej pomiaru. Rezystancja izolacji jest kluczowym parametrem, który pozwala ocenić jakość izolacji przewodów i urządzeń elektrycznych. W praktyce, pomiar ten jest realizowany za pomocą specjalistycznych mierników, które generują napięcia o wysokiej wartości, co umożliwia dokładne zbadanie stanu izolacji. Wartości rezystancji izolacji powinny być zgodne z normami, takimi jak PN-EN 60204-1, które określają minimalne wymagania dla sprzętu elektrycznego stosowanego w maszynach. Regularne pomiary rezystancji izolacji są istotne dla zapewnienia bezpieczeństwa użytkowników oraz zapobiegania potencjalnym zagrożeniom, takim jak porażenie prądem czy zwarcia. Dlatego kluczowe jest posiadanie odpowiedniego wyposażenia, które pozwoli na przeprowadzenie tych pomiarów.

Pytanie 30

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 31

Na którym rysunku przedstawiono prawidłowy sposób wykorzystania zacisku śrubowego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek A przedstawia prawidłowy sposób wykorzystania zacisku śrubowego, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa połączenia. W tej konfiguracji śruba jest odpowiednio dokręcona do elementu, co pozwala na zminimalizowanie luzów oraz zwiększa trwałość połączenia. Zaciski śrubowe są powszechnie stosowane w przemyśle i rzemiośle do łączenia różnych elementów, takich jak deski w meblarstwie czy elementy metalowe w konstrukcjach. Przy prawidłowym użyciu, zaciski te mogą wytrzymać znaczne obciążenia, co czyni je niezastąpionymi w wielu zastosowaniach. Ważne jest również, aby podczas dokręcania śruby zachować odpowiedni moment obrotowy, aby nie uszkodzić materiału. Dobre praktyki obejmują również regularne sprawdzanie stanu zacisków oraz ich ponowne dokręcanie w miarę potrzeb, co zapewnia długotrwałe i niezawodne użytkowanie.

Pytanie 32

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem 3 listwy zaciskowej X1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 33

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Praski hydraulicznej.
B. Szczypiec uniwersalnych.
C. Lutownicy.
D. Wkrętaka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 34

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Ciągłości przewodów.
B. Impedancji zwarciowej.
C. Napięcia dotykowego.
D. Rezystancji izolacji stanowiska.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.

Pytanie 35

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C
B. IT
C. TN-C-S
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 36

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
B. Prąd znamionowy 16 A oraz charakterystykę B
C. Prąd znamionowy 10 A oraz charakterystykę B
D. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 37

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Typ instalacji
B. Liczba odbiorników zasilanych z instalacji
C. Warunki atmosferyczne, którym podlega instalacja
D. Funkcja budynku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba odbiorników zasilanych z instalacji elektrycznej nie ma bezpośredniego wpływu na wymagania dotyczące częstotliwości sprawdzeń okresowych instalacji. Częstotliwość tych sprawdzeń jest przede wszystkim zależna od warunków zewnętrznych, w jakich funkcjonuje instalacja, przeznaczenia budynku oraz rodzaju instalacji. Na przykład, instalacje znajdujące się w warunkach trudnych, takich jak wysokie wilgotności czy narażenie na agresywne substancje chemiczne, wymagają częstszych przeglądów niż te w standardowych warunkach. Praktyka pokazuje, że zarówno w budynkach mieszkalnych, jak i przemysłowych, kluczowe jest, aby dostosować harmonogram kontrolowania stanu technicznego do specyfiki obiektów. Zgodnie z normami IEC 60364 oraz PN-EN 50110-1, kategorie ryzyka i warunki pracy powinny być brane pod uwagę przy ustalaniu częstotliwości przeglądów. Na przykład, w obiektach użyteczności publicznej i przemysłowych, gdzie występuje wyższe ryzyko uszkodzenia sprzętu elektrycznego, sprawdzenia powinny być przeprowadzane regularnie, nawet niezależnie od liczby odbiorników.

Pytanie 38

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Przesunięcie miejsc montażu opraw oświetleniowych
B. Zamiana zużytych urządzeń na nowe
C. Wymiana uszkodzonych gniazd wtyczkowych
D. Instalacja nowych punktów świetlnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 39

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy oznaczony literą C. jest właściwym wyborem do detekcji prądów różnicowych o zwiększonej częstotliwości, które zawierają wyższe harmoniczne. W kontekście układów energoelektronicznych, które często operują przy dużych częstotliwościach, standardowe wyłączniki mogą nie być wystarczające. Wyłącznik C. został zaprojektowany zgodnie z normami EN 61008 i EN 61009, które określają wymagania dla wyłączników różnicowoprądowych. Jego budowa umożliwia wykrywanie różnic prądowych przy częstotliwościach, które są typowe dla aplikacji przemysłowych czy systemów zasilania opartego na falownikach. Takie wyłączniki są często stosowane w instalacjach zasilających silniki elektryczne, gdzie prądy harmoniczne generowane przez przetwornice częstotliwości są powszechne. Dzięki odpowiedniej konstrukcji i oznaczeniom, wyłącznik C. skutecznie chroni przed ryzykiem pożaru i porażenia prądem, co czyni go kluczowym elementem bezpieczeństwa w nowoczesnych systemach energoelektronicznych.

Pytanie 40

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Serwis styków oraz połączeń śrubowych
B. Czyszczenie izolatorów
C. Weryfikacja poziomu oleju w olejowskazie konserwatora
D. Obsługa przełącznika zaczepów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.