Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 10:12
  • Data zakończenia: 17 grudnia 2025 10:23

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Ściągacz izolacji, nóż monterski, wkrętak
B. Nóż monterski, praskę, ściągacz izolacji
C. Lutownicę, zestaw wkrętaków, ściągacz izolacji
D. Nóż monterski, praskę, zestaw kluczy
Odpowiedź, którą zaznaczyłeś, to 'Nóż monterski, praskę, komplet kluczy'. Nóż monterski jest super ważny do precyzyjnego cięcia kabli i ich przygotowania do podłączenia. Praska to kluczowe narzędzie, które pozwala na solidne łączenie przewodów elektrycznych z użyciem złączek. Przecież jakość tych połączeń jest mega istotna w instalacjach elektrycznych, bo ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemu. No i kompletny zestaw kluczy też się przydaje, bo czasami trzeba dokręcić lub odkręcić śruby mocujące przy podłączaniu kabli do rozdzielnicy. Używanie odpowiednich narzędzi według branżowych norm, jak PN-IEC 60364, zapewnia, że prace montażowe są bezpieczne i efektywne. Kiedy korzystasz z tych narzędzi, monter ma możliwość szybkiego i dokładnego wykonania podłączeń, co jest ważne, zwłaszcza przy realizacji projektów budowlanych czy modernizacyjnych.

Pytanie 2

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 3

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 350W
B. 1150W
C. 450W
D. 800W
Poprawna odpowiedź to 450W, co wynika z analizy sytuacji w układzie z dwoma watomierzami. W1 wskazuje moc ujemną przed zamianą zacisków, co sugeruje, że urządzenie odbierające energię pracuje w trybie, w którym moc oddawana przez źródło przewyższa moc pobieraną przez odbiornik. Po zamianie zacisków, watomierz W1 wykazuje moc 350W, co oznacza, że odbiornik pobiera tę moc od źródła. Z kolei watomierz W2 wskazuje moc 800W, co wskazuje na całkowity pobór mocy przez system. W takim przypadku, aby obliczyć całkowitą moc pobieraną przez odbiornik, należy uwzględnić, że moc wskazywana przez W1 była wcześniej negatywna. Zatem całkowita moc wynosi 350W + 800W = 1150W, jednakże z uwagi na negatywny pomiar W1, rzeczywista moc wynosi 450W. To podejście jest zgodne z zasadami analizy obwodów elektrycznych i pokazuje, jak ważne jest rozumienie wskazań urządzeń pomiarowych oraz ich interpretacja w kontekście działania całego układu. Takie analizy są kluczowe w inżynierii elektrycznej, gdzie dokładność pomiarów i ich interpretacja wpływają na optymalizację pracy systemów energetycznych.

Pytanie 4

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 5

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 6

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
C. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
D. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
Wybór odpowiedzi dotyczący wyłącznie obwodów prądu przemiennego lub zbyt wąskie definiowanie zakresu zabezpieczenia wskazuje na niepełne zrozumienie funkcji wkładek topikowych. Obwody prądu stałego i przemiennego różnią się pod względem zachowania prądu i napięcia, co wpływa na sposób, w jaki zabezpieczenia, takie jak wkładki topikowe, funkcjonują. Odpowiedzi sugerujące, że wkładki te chronią jedynie przed zwarciami lub tylko w obwodach prądu przemiennego, pomijają kluczowy aspekt ich zastosowania. W praktyce, wkładki topikowe są nie tylko stosowane w obwodach prądu przemiennego, ale także w prądzie stałym, co jest szczególnie istotne w kontekście nowoczesnych systemów energetycznych i odnawialnych źródeł energii, które wykorzystują obwody stałoprądowe. Zastosowanie wkładek w obu typach obwodów jest zgodne z międzynarodowymi standardami ochrony, takimi jak IEC 60269, które kładą nacisk na wszechstronność tych zabezpieczeń. Niewłaściwe pojmowanie funkcji wkładek topikowych prowadzi do błędnych wniosków i może skutkować brakiem odpowiedniej ochrony w instalacjach elektrycznych, co w ekstremalnych przypadkach może prowadzić do poważnych awarii czy zagrożeń bezpieczeństwa.

Pytanie 7

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór jednej z innych odpowiedzi na to pytanie może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa pracy z instalacjami elektrycznymi. Nóż, szczypce izolowane i kombinerki są narzędziami, które mogą być używane w odpowiednich sytuacjach, ale ich zastosowanie wymaga szczególnej ostrożności i zrozumienia ich funkcji. Użycie noża podczas pracy z przewodami elektrycznymi wiąże się z ryzykiem uszkodzenia izolacji, co może prowadzić do zwarcia lub porażenia prądem. Narzędzia, które nie są izolowane, mogą stwarzać dodatkowe zagrożenie, zwłaszcza jeżeli są używane w wilgotnym środowisku. Ponadto, błędne założenie, że każde narzędzie, które może przecinać lub manipulować przewodami, nadaje się do pracy z instalacjami elektrycznymi, jest typowym błędem myślowym. W rzeczywistości, narzędzia izolowane są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem, a ich użycie jest zgodne z zasadami bezpieczeństwa i normami branżowymi. Ważne jest, aby zawsze stosować odpowiednie narzędzia do danego zadania oraz dokładnie przestrzegać najlepszych praktyk, co nie tylko zwiększa efektywność pracy, ale również chroni zdrowie i życie osób wykonujących te zadania.

Pytanie 8

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik zmierzchowy.
B. Ogranicznik przepięć.
C. Przekaźnik bistabilny.
D. Prostownik dwupołówkowy.
Wybór odpowiedzi innej niż ogranicznik przepięć może wynikać z kilku błędów w analizie charakterystyki przedstawionego urządzenia. Na przykład, wyłącznik zmierzchowy jest urządzeniem, które reaguje na zmiany natężenia światła, co nie ma zastosowania w kontekście przedstawionym na rysunku. Przekaźnik bistabilny, z kolei, służy do utrzymania stanu obwodu elektrycznego w jednym z dwóch stanów, co również nie odpowiada funkcji ogranicznika przepięć. Ograniczniki przepięć i prostowniki dwupołówkowe różnią się znacznie w budowie i zastosowaniu – prostowniki są używane do konwersji prądu zmiennego na stały, co jest zupełnie inną funkcjonalnością. Typowe myślenie prowadzące do błędnych wyborów opiera się na nieznajomości zastosowania poszczególnych urządzeń w praktyce. W kontekście ochrony przed przepięciami, jednym z kluczowych aspektów jest dobra znajomość oznaczeń i specyfikacji technicznych, które wskazują na przeznaczenie urządzenia. Niezrozumienie podstawowych różnic pomiędzy tymi urządzeniami oraz ich właściwego zastosowania w systemach elektrycznych może prowadzić do nieodpowiednich decyzji, co w konsekwencji zwiększa ryzyko uszkodzeń sprzętu oraz naruszenia norm bezpieczeństwa. Warto zainwestować czas w zapoznanie się z dokumentacją techniczną i normami branżowymi, aby uniknąć takich sytuacji w przyszłości.

Pytanie 9

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-S
B. TN-C
C. IT
D. TT
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 10

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Rezystancja uziemienia.
B. Impedancja przewodu neutralnego.
C. Rezystancja przewodu ochronnego.
D. Impedancja pętli zwarcia.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących różnych rodzajów rezystancji i impedancji w instalacjach elektrycznych. Impedancja pętli zwarcia odnosi się do całkowitego oporu w obwodzie w przypadku zwarcia, a jej pomiar jest istotny, by zapewnić odpowiednie działanie zabezpieczeń, ale nie jest to to samo, co rezystancja przewodu ochronnego. Odpowiedź dotycząca rezystancji uziemienia również może być mylnie utożsamiana z pomiarem rezystancji przewodu ochronnego. Uziemienie ma na celu ochronę przed niebezpiecznymi napięciami, natomiast przewód ochronny pełni rolę zabezpieczającą w kontekście porażenia prądem. Impedancja przewodu neutralnego również nie jest związana z pomiarem rezystancji przewodu ochronnego; w zasadzie odnosi się do oporu, który występuje w przewodzie neutralnym w trakcie normalnej pracy instalacji. Typowym błędem myślowym jest mylenie tych pojęć i branie pod uwagę nieodpowiednich parametrów podczas pomiarów. Kluczowe jest zrozumienie specyfikacji oraz funkcji poszczególnych przewodów w systemach elektrycznych, co jest niezbędne do prawidłowego diagnozowania i konserwacji instalacji. Znajomość różnic między tymi wielkościami jest fundamentalna dla bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 11

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YLY 2,5 mm2
C. YDY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 12

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. kuchni i pokoju 2
B. łazience i pokoju 1
C. łazience i pokoju 2
D. pokoju 1 i pokoju 2
Twoje odpowiedzi dotyczące gniazd w kuchni, łazience, czy też różnych kombinacji tych pomieszczeń są błędne. Wydaje mi się, że myślisz, że obwody w tych miejscach są objęte ochroną RCD, ale to nie jest prawda. RCD powinno się stosować tam, gdzie ryzyko kontaktu z wodą jest wysokie, co jest naprawdę istotne, żeby zapewnić bezpieczeństwo. Kuchnia i łazienka to miejsca, gdzie wilgoć jest na porządku dziennym, więc ochrona RCD to konieczność. Z kolei twierdzenie, że obwody w pokojach mają taką samą ochronę, może wprowadzać w błąd, bo te przestrzenie nie są tak narażone jak kuchnie czy łazienki. Często też ludzie mogą mylnie sądzić, że RCD powinno być wszędzie w mieszkaniu, co nie zawsze ma sens w praktyce. Dobrze jest montować RCD w obwodach, gdzie mogą być urządzenia używane w wilgotnych warunkach, ale w pokojach, które nie mają tyle wilgoci, można je zabezpieczyć w inny sposób. Ignorowanie tego bezpieczeństwa to ryzykowna sprawa, dlatego istotne jest, by instalacja elektryczna była zgodna z normami.

Pytanie 13

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 14

Ochronnik oznaczony symbolem graficznym pokazanym na rysunku reaguje na

Ilustracja do pytania
A. upływ prądu.
B. przeciążenie.
C. przepięcie.
D. zwarcie doziemne.
Odpowiedź 'przepięcie' jest prawidłowa, ponieważ symbol graficzny przedstawiony na rysunku wskazuje na ochronnik przepięciowy, który ma za zadanie chronić instalację elektryczną przed nagłymi wzrostami napięcia. Przepięcia mogą wynikać z różnych źródeł, takich jak uderzenia pioruna, nagłe zmiany obciążenia w sieci lub awarie sprzętu. Ochronniki przepięciowe są projektowane w taki sposób, aby szybko odprowadzać nadmiar napięcia do ziemi, co minimalizuje ryzyko uszkodzeń urządzeń podłączonych do instalacji. W praktyce, stosowanie takich ochronników jest kluczowe w systemach elektrycznych, szczególnie w obiektach o wysokiej wartości sprzętu, jak serwerownie czy laboratoria. Ważne jest, aby pamiętać, że regularne przeglądy i konserwacja tych urządzeń są niezbędne dla zapewnienia ich prawidłowego działania. Ochronniki przepięciowe powinny być zgodne z odpowiednimi normami, takimi jak PN-EN 61643-11, co zapewnia ich skuteczność oraz bezpieczeństwo użytkowania.

Pytanie 15

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/500 V
B. 600/1000 V
C. 300/300 V
D. 450/750 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 16

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Redukuje hałas podczas eksploatacji
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Tworzy nieruchome, stałe pole magnetyczne
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 17

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. wyzwalanie cieplne.
B. wyzwalanie elektroniczne.
C. cewkę przekaźnika z opóźnionym odpadaniem.
D. cewkę przekaźnika z opóźnionym działaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 18

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie C
B. W punkcie A
C. W punkcie D
D. W punkcie B
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 19

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B10
B. C10
C. B16
D. C16
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 20

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Jednofazowego z kondensatorem pracy.
B. Komutatorowego prądu stałego.
C. Indukcyjnego pierścieniowego.
D. Indukcyjnego klatkowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 21

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
C. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
D. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 22

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Odkształceń przebiegu napięcia.
B. Spadku napięcia.
C. Częstotliwości.
D. Współczynnika mocy.
Miernik zaprezentowany na ilustracji nie służy do pomiaru odkształceń przebiegu napięcia, spadku napięcia ani częstotliwości, co może prowadzić do nieporozumień w zrozumieniu jego funkcji. Odkształcenia przebiegu napięcia odnoszą się do różnic między rzeczywistym a idealnym przebiegiem napięcia, co jest kluczowe w analizie jakości energii. W przypadku obciążeń nieliniowych, takich jak zasilacze impulsowe, występują harmoniczne, które mogą wpływać na efektywność energetyczną. Z drugiej strony, spadek napięcia, czyli różnica między napięciem zasilającym a napięciem na obciążeniu, jest ważny w kontekście projektowania instalacji elektrycznych, ale nie jest bezpośrednio związany z pomiarem współczynnika mocy. Częstotliwość, z kolei, odnosi się do liczby cykli na sekundę w przebiegu elektrycznym i jest istotna w kontekście systemów zasilania przemysłowego, jednak nie ma związku z miernikiem współczynnika mocy. Należy unikać typowych błędów myślowych, takich jak mylenie funkcji różnych urządzeń pomiarowych. W praktyce, odpowiednia wiedza na temat funkcji i zastosowań różnych mierników jest kluczowa dla efektywnego zarządzania systemami elektrycznymi oraz optymalizacji ich wydajności.

Pytanie 23

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla urządzeń gospodarstwa domowego
B. zasilającego gniazdka jedynie w kuchni
C. zasilającego gniazdka w łazience oraz kuchni
D. oddzielnego dla zmywarki
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 24

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór przewodu D do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest właściwy z kilku powodów. Przewód ten charakteryzuje się odpowiednią izolacją, która jest niezbędna do pracy w warunkach napięcia stałego. W przypadku prądu stałego, szczególnie przy wyższych napięciach, kluczowe jest, aby przewód był odporny na przepięcia oraz miał właściwości dielektryczne, które zapobiegają przebiciu izolacji. W praktyce oznacza to, że przewody stosowane w instalacjach DC muszą być zgodne z normami, takimi jak IEC 60228 oraz IEC 60529, które określają wymagania dotyczące izolacji i ochrony przed wodą i ciałami stałymi. Przykładem zastosowania przewodu D mogą być instalacje w fotowoltaice, gdzie również wykorzystywane są wysokie napięcia stałe. Odpowiedni dobór przewodu wpływa nie tylko na bezpieczeństwo, ale także na efektywność energetyczną całego systemu. Dlatego korzystanie z przewodów zgodnych ze specyfikacjami producentów oraz standardami branżowymi jest kluczowe.

Pytanie 25

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 1.
C. Symbol 4.
D. Symbol 3.
Wybór symbolu innego niż Symbol 1 wiąże się z nieporozumieniem w zakresie graficznych przedstawień przycisków zwiernych. Wiele osób może mylnie utożsamiać inne symbole z funkcjami przycisków, nie zwracając uwagi na szczegóły ich graficznej reprezentacji. Na przykład, niektóre symbole mogą przedstawiać przyciski rozwierne, które działają na przeciwnych zasadach – otwierają obwód w momencie naciśnięcia. Zrozumienie różnic między tymi symbolami jest kluczowe dla zapewnienia poprawności wizualizacji systemów elektrycznych i automatyzacyjnych. Często błędy te wynikają z braku znajomości standardów, takich jak IEC 60417, które dokładnie definiują sposób, w jaki różne typy przycisków powinny być przedstawiane graficznie. Niezrozumienie tej kwestii może prowadzić do poważnych problemów w projektowaniu systemów, które opierają się na prawidłowym użyciu przycisków. Dlatego istotne jest, aby każdy projektant lub inżynier miał solidne podstawy dotyczące symboli graficznych oraz ich zastosowania. Używanie nieodpowiednich symboli może wprowadzać w błąd zarówno użytkowników, jak i techników serwisowych, co w efekcie prowadzi do nieprawidłowej obsługi urządzeń i potencjalnych zagrożeń w pracy systemów elektrycznych.

Pytanie 26

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 1000 W
B. 100 W
C. 50 W
D. 500 W
Poprawna odpowiedź to 500 W. Watomierz, który analizujemy, wskazuje wartość mocy w oparciu o dane pomiarowe, które musimy prawidłowo zinterpretować. Wartość mocy obliczamy, mnożąc napięcie przez prąd, co jest zgodne z zasadą Ohma i podstawowymi zasadami elektrotechniki. W tym przypadku, jeśli zakres napięcia wynosi 500 V, a prąd to 5 A, obliczenia wyglądają następująco: moc (P) = napięcie (U) x prąd (I). Zatem P = 500 V x 5 A = 2500 W. Jednakże, watomierz może przedstawiać wartość mocą do mocy rzeczywistej, co wprowadza pewne niejasności. Ważne jest, aby podczas korzystania z takich urządzeń zwracać uwagę na zakresy pomiarowe oraz jednostki, które mogą wpływać na odczyty. W praktyce, znajomość tych zasad jest kluczowa w pracy z instalacjami elektrycznymi, gdzie błędne odczyty mogą prowadzić do nieprawidłowej oceny wydajności systemu. Dlatego zawsze warto upewnić się, że przyrząd jest poprawnie skonfigurowany i że rozumiemy, jakie wartości są przedstawiane.

Pytanie 27

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko metalowe
B. Z PVC lub gumowe
C. Metalowe lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 28

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Z-MS-16/3
B. Ex9BP-N 4P C10
C. SM 25-40
D. FRCdM-63/4/03
Oznaczenie Z-MS-16/3 odnosi się do wyłącznika silnikowego, który jest kluczowym elementem w instalacjach elektrycznych zasilających silniki. Wyłączniki silnikowe są zaprojektowane, aby zabezpieczać silniki przed przeciążeniem, zwarciem oraz innymi nieprawidłowościami w pracy. Z-MS-16/3 to przykład wyłącznika, który może być stosowany w instalacjach przemysłowych, gdzie ochrona silników jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. Wyłączniki te działają na zasadzie automatycznego wyłączenia zasilania w przypadku wykrycia nieprawidłowego prądu, co zapobiega uszkodzeniom zarówno silnika, jak i samej instalacji elektrycznej. W praktyce, ich zastosowanie jest szczególnie istotne w aplikacjach takich jak pompy, wentylatory, kompresory czy maszyny robocze. Przykładowo, w przypadku silnika napędzającego dużą maszynę, zastosowanie Z-MS-16/3 pozwala na szybkie odłączenie zasilania, co minimalizuje ryzyko kosztownych awarii i przestojów. Ponadto, wyłączniki te powinny być zgodne z normami IEC 60947-4-1, co zapewnia ich wysoką jakość oraz niezawodność.

Pytanie 29

Narzędzie z rysunku służy do

Ilustracja do pytania
A. tworzenia oczek na przewodzie.
B. profilowania przewodów.
C. ściągania izolacji.
D. zaciskania końcówek tulejkowych.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 30

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów sterowania i sygnalizacji
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 31

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Niepalność
B. Zwiększenie wytrzymałości mechanicznej
C. Odporność na olej
D. Odporność na ciepło
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 32

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BK, BU, GY
B. BN, BK, GNYE
C. BN, BK, GY
D. BU, GY, GNYE
Wybranie odpowiedzi "BN, BK, GY" jest poprawne, ponieważ zgodnie z polskimi normami dotyczącymi oznaczeń kolorystycznych przewodów elektrycznych, brązowy (BN) jest kolorem przewodu fazowego, czarny (BK) to przewód neutralny, a żółto-zielony (GY) identyfikuje przewód ochronny. Ta kolorystyka ma kluczowe znaczenie dla bezpieczeństwa i poprawnego działania instalacji elektrycznych. Praktyczne przykłady zastosowania tych zasad można znaleźć w projektach instalacji w budynkach mieszkalnych i przemysłowych, gdzie właściwe oznaczenie przewodów pomoże uniknąć błędów podczas montażu oraz konserwacji. Użycie odpowiednich kolorów pozwala na szybką identyfikację funkcji każdego przewodu, co jest niezbędne w przypadku awarii czy modernizacji. Współczesne standardy, takie jak PN-IEC 60446, podkreślają wagę przestrzegania tych norm w celu zapewnienia bezpieczeństwa osób pracujących z instalacjami elektrycznymi oraz zapobiegania ryzyku porażenia prądem.

Pytanie 33

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie neutralnym
B. Uszkodzenie izolacji przewodu ochronnego
C. Przerwa w przewodzie ochronnym
D. Zwarcie doziemne przewodu neutralnego
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 34

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Tworząc zwarcie w obwodzie zabezpieczonym
B. Naciskając przycisk "TEST"
C. Zmieniając ustawienie dźwigni "ON-OFF"
D. Sprawdzając napięcie oraz prąd wyłącznika
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 35

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 700
B. DY 100
C. DYc 750
D. DYc 150
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 36

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 1.
D. Schemat 4.
Błędy w doborze schematu oświetleniowego często wynikają z braku zrozumienia zasad działania układów sterujących. Wiele osób może błędnie założyć, że zastosowanie jednego przełącznika do włączania i wyłączania oświetlenia w każdym z miejsc jest wystarczające. Takie podejście pomija kluczowy aspekt, jakim jest możliwość sterowania oświetleniem z dwóch niezależnych lokalizacji, co jest istotne w kontekście komfortu i funkcjonalności. Użytkownik może mylnie sądzić, że dowolny schemat, który umożliwia włączenie światła, będzie odpowiedni, podczas gdy niektóre z nich mogą nie umożliwiać wyłączenia go z drugiego miejsca. Ponadto, stosowanie przełączników w układach, które nie są dostosowane do pracy w trybie schodowym, może prowadzić do sytuacji, w której jedno naciśnięcie przycisku skutkuje nieprzewidzianym efektem, np. włączeniem świateł w jednym pomieszczeniu, podczas gdy w innym pozostają one wyłączone. Tego typu błędy wynikają często z niedostatecznej wiedzy na temat schematów elektrycznych oraz ich praktycznych zastosowań w różnych warunkach. Ważne jest, aby przed wykonaniem jakiejkolwiek instalacji nie tylko znać teorię, ale także rozumieć praktyczne implikacje i zastosowanie norm oraz standardów branżowych, co pozwoli uniknąć nieefektywnych rozwiązań.

Pytanie 37

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór odpowiedzi, która nie przedstawia poprawnego połączenia łącznika świecznikowego z żyrandolem, może wynikać z kilku typowych nieporozumień związanych z zasadami działania obwodów elektrycznych. W przypadku, gdy przewód fazowy L nie jest podłączony do łącznika, a zamiast tego łącznik jest połączony bezpośrednio z przewodem neutralnym N, obwód nie będzie działał prawidłowo. Taki układ może prowadzić do sytuacji, w której żyrandol nie świeci, ponieważ brak jest możliwości włączenia zasilania. Ponadto, jeśli przewód neutralny jest podłączony tylko do żarówki, a nie do łącznika, dochodzi do nieprawidłowego rozdzielenia obwodu, co może prowadzić do uszkodzeń instalacji oraz zwiększonego ryzyka pożaru. Innym typowym błędem jest pominięcie istotnych zasad bezpieczeństwa, takich jak stosowanie odpowiednich izolacji czy zabezpieczeń. To może skutkować nie tylko nieprawidłowym działaniem obwodu, ale również stwarzać zagrożenie dla użytkowników. Niezrozumienie roli przewodów fazowych i neutralnych w obwodzie elektrycznym jest kluczowym czynnikiem prowadzącym do tych błędów. W każdym przypadku, fundamentalne zasady dotyczące instalacji elektrycznych powinny być przestrzegane, aby zapewnić ich bezpieczeństwo i niezawodność.

Pytanie 38

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 18W
B. L 22W
C. L 32W
D. L 36W
Dobrze wybrałeś dławik L 36W, bo idealnie pasuje do zasilania dwóch świetlówek T8, każda po 18W, więc wszystko gra. Ten dławik zapewnia odpowiednią moc i parametry, które są niezbędne, żeby świetlówki działały jak należy. Warto zwrócić uwagę, że przy wyborze dławika trzeba myśleć o łącznej mocy świetlówek oraz ich typie, bo źle dobrany dławik może sprawić, że lampy będą migotać albo w ogóle nie będą działać. Dławik L 36W ma parametry zgodne z normami, co gwarantuje, że będzie działać długo i oszczędnie. Użycie go w oprawach z dwoma świetlówkami T8 to naprawdę dobra praktyka - zyskujesz nie tylko efektywność, ale też bezpieczeństwo. Pamiętaj, że dobór dławika powinien być zgodny z parametrami producenta, co tylko potwierdza, że to właściwy wybór.

Pytanie 39

Do których zacisków przekaźnika zmierzchowego należy podłączyć czujkę światła?

Ilustracja do pytania
A. L i 10
B. 7 i 9
C. N i 12
D. 10 i 12
Odpowiedź 7 i 9 jest poprawna, ponieważ na schemacie przekaźnika zmierzchowego zaciski te są wyraźnie oznaczone jako miejsca podłączenia czujki światła. Czujka światła wykrywa poziom oświetlenia zewnętrznego, co jest kluczowe dla automatyzacji oświetlenia, zwłaszcza w zastosowaniach komercyjnych i mieszkalnych. Użycie odpowiednich zacisków zapewnia prawidłowe działanie systemu, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. W momencie, gdy czujka wykryje spadek poziomu oświetlenia (np. o zmierzchu), przekaźnik aktywuje oświetlenie, a kontraproduktywne podłączenie do innych zacisków mogłoby prowadzić do nieprawidłowego działania systemu. Dobrze skonfigurowany przekaźnik zmierzchowy zwiększa komfort użytkowania oraz oszczędność energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 40

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.