Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 18 grudnia 2025 13:57
  • Data zakończenia: 18 grudnia 2025 14:07

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki tryb funkcjonowania Access Pointa jest wykorzystywany do umożliwienia urządzeniom bezprzewodowym łączności z przewodową siecią LAN?

A. Tryb klienta
B. Punkt dostępowy
C. Most bezprzewodowy
D. Repeater
Wybór trybu pracy urządzenia sieciowego ma kluczowe znaczenie dla jego funkcjonalności. Odpowiedzi, które nie wskazują na punkt dostępowy, często wynikają z mylnych założeń dotyczących roli różnych trybów pracy. Most bezprzewodowy, na przykład, jest używany do łączenia dwóch segmentów sieci, ale nie zapewnia bezpośredniego dostępu urządzeniom bezprzewodowym do przewodowej sieci LAN. Z kolei tryb klienta jest zaprojektowany do podłączania jednego urządzenia bezprzewodowego do sieci, co nie pozwala na równoczesne podłączenie wielu urządzeń, co jest niezbędne w typowej sieci biurowej. Repeater, z drugiej strony, ma na celu zwiększenie zasięgu sygnału bezprzewodowego poprzez retransmisję sygnału, jednak nie tworzy nowego punktu dostępu do sieci LAN, a jedynie wzmacnia istniejący sygnał. W praktyce błąd w wyborze odpowiedniego trybu może prowadzić do niewłaściwej konfiguracji, co w rezultacie ogranicza możliwości komunikacyjne sieci. Aby w pełni wykorzystać potencjał bezprzewodowych rozwiązań sieciowych, istotne jest zrozumienie funkcji i zastosowania punktów dostępowych oraz ich roli w architekturze sieci. Zastosowanie punktu dostępowego, zgodnie z najlepszymi praktykami, pozwala na efektywne zarządzanie ruchami sieciowymi i zapewnienie wysokiej jakości usług bezprzewodowych.

Pytanie 2

Jakie jest główne zadanie systemu DNS w sieci komputerowej?

A. Tłumaczenie nazw domenowych na adresy IP
B. Szyfrowanie danych w sieci komputerowej
C. Zarządzanie dostępem do plików w sieci
D. Tworzenie kopii zapasowych danych w sieci
Odpowiedzi sugerujące inne zadania dla systemu DNS, takie jak szyfrowanie danych, zarządzanie dostępem do plików czy tworzenie kopii zapasowych, wynikają z nieporozumienia dotyczącego funkcji poszczególnych technologii w sieci komputerowej. Szyfrowanie danych jest zadaniem protokołów takich jak SSL/TLS, które zapewniają bezpieczne przesyłanie informacji przez sieć, a nie DNS. System DNS nie jest zaprojektowany do ochrony danych w ten sposób, choć istnieją rozszerzenia jak DNSSEC, które zwiększają jego bezpieczeństwo. Zarządzanie dostępem do plików to funkcja systemów zarządzania plikami i serwerów, takich jak SMB czy NFS, które kontrolują kto i jak może uzyskać dostęp do określonych danych w sieci. DNS nie ma nic wspólnego z kontrolą dostępu do zasobów plikowych. Natomiast tworzenie kopii zapasowych danych jest zadaniem systemów backupowych, które mogą działać w sieci, ale nie mają związku z funkcją tłumaczenia nazw domenowych na adresy IP. Typowym błędem jest mylenie różnych warstw i funkcji w sieci ze względu na złożoność systemów komputerowych. Zrozumienie roli DNS jako usługi katalogowej ułatwia poprawne przypisanie zadań do odpowiednich systemów i technologii w sieci.

Pytanie 3

Każdy następny router IP na ścieżce pakietu

A. zmniejsza wartość TTL przekazywanego pakietu o jeden
B. zwiększa wartość TTL przesyłanego pakietu o jeden
C. podnosi wartość TTL przesyłanego pakietu o dwa
D. obniża wartość TTL przesyłanego pakietu o dwa
Wszystkie nieprawidłowe odpowiedzi opierają się na błędnych założeniach dotyczących działania pola TTL w protokole IP. Pierwsza z błędnych koncepcji sugeruje, że router zwiększa wartość TTL o dwa, co jest niezgodne z definicją TTL i jego funkcji w zarządzaniu pakietami. TTL ma na celu ograniczenie czasu życia pakietu, a zwiększanie jego wartości mogłoby prowadzić do niepożądanych skutków, takich jak niekontrolowane krążenie pakietów w sieci. W kontekście drugiej odpowiedzi, zwiększanie TTL o jeden również nie jest zgodne z praktyką. Routery są zaprogramowane do zmniejszania wartości TTL, co jest fundamentalnym elementem ich działania i zapewnia stabilność sieci. Zmniejszanie TTL o dwa, jak sugeruje kolejna błędna odpowiedź, jest także nieprawidłowe, ponieważ zbyt szybkie zmniejszanie wartości TTL mogłoby prowadzić do zbyt wczesnego odrzucania pakietów, co w efekcie wpłynęłoby na jakość komunikacji. W rezultacie, kluczowym błędem w myśleniu jest niezrozumienie roli TTL jako mechanizmu kontrolnego, który ma na celu zapobieganie niepożądanym sytuacjom w sieci, a nie jego zwiększanie lub zbyt agresywne zmniejszanie.

Pytanie 4

Które polecenie w systemie Windows Server 2008 pozwala na przekształcenie serwera w kontroler domeny?

A. gpresult
B. nslookup
C. dcpromo
D. gpedit
Wybór innych opcji, takich jak gpedit, gpresult i nslookup, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowania w kontekście zarządzania domenami w systemie Windows Server. Narzędzie gpedit (Group Policy Editor) służy do zarządzania politykami grupowymi, które definiują ustawienia konfiguracyjne dla systemu operacyjnego i aplikacji w sieci. Chociaż przydatne w zarządzaniu politykami, nie jest odpowiednie do promowania serwera do roli kontrolera domeny, ponieważ nie oferuje możliwości konfiguracji Active Directory. Z kolei gpresult (Group Policy Result) jest używane do zbierania informacji na temat polityk grupowych, które zostały zastosowane do określonego użytkownika lub komputera, ale również nie ma związku z promowaniem serwera. Z kolei narzędzie nslookup jest wykorzystywane do diagnozowania problemów związanych z systemem DNS (Domain Name System) poprzez zapytania o rekordy DNS, co jest istotne w kontekście rozwiązywania problemów z dostępnością zasobów, ale nie ma zastosowania w procesie promowania serwera. Zrozumienie tych narzędzi jest ważne, ponieważ ich mylne stosowanie w kontekście promowania serwera do roli kontrolera domeny może prowadzić do nieefektywnego zarządzania infrastrukturą oraz błędów, które mogą wpłynąć na bezpieczeństwo i wydajność całej sieci.

Pytanie 5

NAT64 (Network Address Translation 64) to proces, który dokonuje mapowania adresów

A. prywatne na adresy publiczne
B. IPv4 na adresy IPv6
C. MAC na adresy IPv4
D. IPv4 na adresy MAC
NAT64 jest technologią translacji adresów, która umożliwia komunikację między sieciami IPv4 i IPv6, co jest niezbędne w dobie przechodzenia na nowy protokół. NAT64 realizuje mapowanie adresów IPv4 na adresy IPv6, co pozwala na wykorzystanie istniejącej infrastruktury IPv4 w środowisku IPv6. Przykładem zastosowania NAT64 może być sytuacja, gdy organizacja posiada zasoby dostępne tylko w IPv4, ale użytkownicy korzystają z sieci IPv6. Umożliwiając dostęp do tych zasobów, NAT64 przyczynia się do płynnej migracji i współistnienia obu protokołów. Technologia ta jest zgodna z wytycznymi IETF, które podkreślają znaczenie interoperacyjności między różnymi protokołami. Ponadto, NAT64 współpracuje z mechanizmem DNS64, który mapuje zapytania DNS IPv6 na odpowiednie adresy IPv4, co stanowi ważny element ekosystemu sieciowego. Dzięki NAT64 administratorzy sieci mogą efektywnie zarządzać przejściem z IPv4 na IPv6, co jest kluczowe w kontekście globalnego wyczerpywania się adresów IPv4.

Pytanie 6

W systemach operacyjnych Windows konto z najwyższymi uprawnieniami domyślnymi przynależy do grupy

A. administratorzy
B. gości
C. operatorzy kopii zapasowych
D. użytkownicy zaawansowani
Odpowiedź "administratorzy" jest prawidłowa, ponieważ konta użytkowników w systemie operacyjnym Windows, które należą do grupy administratorów, posiadają najwyższe uprawnienia w zakresie zarządzania systemem. Administratorzy mogą instalować oprogramowanie, zmieniać konfigurację systemu, zarządzać innymi kontami użytkowników oraz uzyskiwać dostęp do wszystkich plików i zasobów na urządzeniu. Przykładowo, gdy administrator musi zainstalować nową aplikację, ma pełne uprawnienia do modyfikacji rejestru systemowego oraz dostępu do folderów systemowych, co jest kluczowe dla prawidłowego działania oprogramowania. W praktyce, w organizacjach, konta administratorów są często monitorowane i ograniczane do minimum, aby zminimalizować ryzyko nadużyć i ataków złośliwego oprogramowania. Dobre praktyki w zarządzaniu kontami użytkowników oraz przydzielaniu ról wskazują, że dostęp do konta administratora powinien być przyznawany wyłącznie potrzebującym go pracownikom, a także wdrażane mechanizmy audytowe w celu zabezpieczenia systemu przed nieautoryzowanym dostępem i działaniami. W kontekście bezpieczeństwa, standardy takie jak ISO/IEC 27001 mogą być stosowane do definiowania i utrzymywania polityk kontrolnych dla kont administratorów.

Pytanie 7

Aby skopiować folder c:\test wraz ze wszystkimi podfolderami na przenośny dysk f:\ w systemie Windows 7, jakie polecenie należy zastosować?

A. xcopy c:\test f:\test /E
B. copy f:\test c:\test /E
C. xcopy f:\test c:\test /E
D. copy c:\test f:\test /E
W przypadku odpowiedzi 'copy c:\test f:\test /E', należy zauważyć, że polecenie 'copy' nie obsługuje kopiowania katalogów z ich zawartością. Narzędzie to jest przeznaczone do kopiowania pojedynczych plików, a próba użycia go do kopiowania folderów z podkatalogami zakończy się błędem. Użytkownicy często mylą funkcjonalności 'copy' i 'xcopy', co prowadzi do nieporozumień. W przypadku opcji 'copy f:\test c:\test /E', zamiana miejscami źródła i celu prowadzi do niepoprawnego rozumienia, że kopiujemy z nośnika na lokalny dysk, co jest w tym kontekście zupełnie niewłaściwe. Odpowiedzi takie jak 'xcopy f:\test c:\test /E' również nie są adekwatne, ponieważ odwracają kierunek kopiowania, co jest sprzeczne z zamierzonym celem skopiowania danych na dysk przenośny. Typowym błędem myślowym jest założenie, że każda opcja kopiowania danych w systemie Windows będzie działać analogicznie, co nie jest prawdą. Zrozumienie różnic w funkcjonalności i zastosowaniu odpowiednich narzędzi jest kluczowe dla efektywnej pracy z systemem operacyjnym, szczególnie w kontekście zarządzania danymi i użycia odpowiednich poleceń dla zadawanych czynności.

Pytanie 8

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
B. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
C. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5
D. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5
Odpowiedź "route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5" jest prawidłowa, ponieważ poprawnie korzysta z polecenia 'route', które jest powszechnie stosowane w systemach operacyjnych do zarządzania trasami IP. W tym przypadku tworzymy trasę statyczną do sieci 192.168.10.0 z maską podsieci 255.255.255.0, wskazując bramę 192.168.10.1. Numer 5 w tym kontekście oznacza metrykę, co wskazuje na preferencję tej trasy w porównaniu do innych. W praktyce, takie ustawienie trasy statycznej jest istotne w zarządzaniu ruchem sieciowym, zwłaszcza w przypadku małych sieci, gdzie może nie być potrzeby używania dynamicznych protokołów routingu. Przykładem zastosowania może być sytuacja, w której administrator sieci chce, aby wszystkie pakiety kierowane do tej określonej sieci były przesyłane przez określoną bramę, co pozwala na lepsze zarządzanie obciążeniem oraz zapewnienie bezpieczeństwa. Dobra praktyka to dokumentowanie takich ustawień w administracyjnych notatkach, co ułatwia przyszłe modyfikacje i diagnostykę sieci.

Pytanie 9

Jakiego protokołu używa polecenie ping?

A. LDAP
B. FTP
C. RDP
D. ICMP
Wybór odpowiedzi związanych z protokołami FTP, RDP i LDAP wskazuje na brak znajomości podstawowych protokołów używanych w komunikacji sieciowej. Protokół FTP (File Transfer Protocol) jest używany do przesyłania plików pomiędzy komputerami w sieci, jednak nie ma on związku z diagnozowaniem dostępności hostów. RDP (Remote Desktop Protocol) to protokół stworzony przez Microsoft, który umożliwia zdalny dostęp do komputerów i nie ma zastosowania w kontekście testowania łączności. Z kolei LDAP (Lightweight Directory Access Protocol) jest protokołem używanym do dostępu do usług katalogowych, takich jak Active Directory, i również nie jest związany z monitorowaniem dostępności sieci. Wybierając te odpowiedzi, można zauważyć typowy błąd myślowy polegający na myleniu protokołów transportowych lub aplikacyjnych z protokołami diagnostycznymi. Kluczowe jest zrozumienie, że ICMP odgrywa unikalną rolę w komunikacji sieciowej, umożliwiając diagnostykę, podczas gdy inne protokoły mają odmienny cel. Niezrozumienie tego podziału może prowadzić do poważnych problemów w zarządzaniu sieciami, w tym do błędnej konfiguracji oraz trudności w identyfikacji problemów z łącznością.

Pytanie 10

Podaj polecenie w systemie Windows Server, które umożliwia usunięcie jednostki organizacyjnej z katalogu.

A. adprep
B. dsrm
C. dsadd
D. redircmp
Odpowiedzi 'dsadd', 'adprep' oraz 'redircmp' reprezentują zupełnie inne funkcje w ekosystemie Active Directory, co może prowadzić do nieporozumień w kontekście zarządzania strukturą katalogu. 'Dsadd' to polecenie służące do dodawania nowych obiektów do Active Directory, takich jak użytkownicy, grupy czy jednostki organizacyjne, co sprawia, że nie ma możliwości zastosowania go do usuwania obiektów. Z kolei 'adprep' jest narzędziem wykorzystywanym do przygotowywania bazy danych Active Directory przed migracją lub aktualizacją serwera, ale również nie ma związku z procesem usuwania jakichkolwiek obiektów. 'Redircmp' natomiast jest używane do zmiany lokalizacji, do której kierowane są nowe konta użytkowników, co również nie ma zastosowania w kontekście usuwania jednostek organizacyjnych. Te błędne odpowiedzi wynikają często z braku zrozumienia różnorodności poleceń dostępnych w narzędziach administracyjnych systemów Windows. Właściwe zarządzanie Active Directory wymaga znajomości nie tylko poleceń, ale również ich funkcji, co z kolei podkreśla znaczenie szkoleń i dokumentacji w pracy administratorów. Kluczowe jest zrozumienie, że każde polecenie ma swoją specyfikę i zastosowanie, a nieprawidłowy wybór narzędzia może prowadzić do dewastacji struktury AD lub stworzenia niepożądanych sytuacji w organizacji.

Pytanie 11

Oblicz koszt realizacji okablowania strukturalnego od 5 punktów abonenckich do panelu krosowego, wliczając wykonanie kabli łączących dla stacji roboczych. Użyto przy tym 50 m skrętki UTP. Każdy punkt abonencki posiada 2 gniazda typu RJ45.

MateriałJednostkaCena
Gniazdo podtynkowe 45x45, bez ramki, UTP 2xRJ45 kat.5eszt.17 zł
UTP kabel kat.5e PVC 4PR 305mkarton305 zł
RJ wtyk UTP kat.5e beznarzędziowyszt.6 zł
A. 350,00 zł
B. 255,00 zł
C. 345,00 zł
D. 152,00 zł
Poprawna odpowiedź 255,00 zł wynika z dokładnej analizy kosztów materiałów użytych do wykonania okablowania strukturalnego. Zaczynając od 5 punktów abonenckich każdy z nich wymaga jednej jednostki gniazda podtynkowego w cenie 17 zł za sztukę co daje łączny koszt 85 zł. Następnie użyto 50 m skrętki UTP kat. 5e. Cena kartonu 305 m wynosi 305 zł co oznacza że cena za metr wynosi 1 zł dlatego koszt zakupu 50 m to 50 zł. Do każdego z 5 punktów abonenckich należy zamontować dwa wtyki RJ45 co daje łącznie 10 wtyków w cenie 6 zł za sztukę co sumuje się do 60 zł. Również wykonanie kabli połączeniowych z panelu krosowego do stacji roboczych wymaga dodatkowych wtyków RJ45. Przyjmując że każdy kabel połączeniowy używa dwóch wtyków a łączna liczba stacji roboczych wynosi 5 należy dodać 10 wtyków co daje dodatkowe 60 zł. Łączny koszt wszystkich komponentów to 85 zł za gniazda 50 zł za kabel oraz 120 zł za wtyki RJ45 co razem daje poprawną odpowiedź 255 zł. Takie podejście do kalkulacji kosztów jest zgodne z normami i dobrymi praktykami w branży IT zapewniając dokładne i efektywne planowanie infrastruktury sieciowej.

Pytanie 12

Przedstawiona specyfikacja techniczna odnosi się do

Ilustracja do pytania
A. modemu ADSL.
B. konwertera mediów.
C. przełącznika.
D. bramki VOIP.
Przełącznik to urządzenie sieciowe, które łączy różne segmenty sieci lokalnej (LAN), umożliwiając wymianę danych między podłączonymi urządzeniami. Specyfikacja przełącznika koncentruje się zazwyczaj na liczbie portów Ethernet oraz ich szybkości (np. 10/100/1000 Mbps), ale nie obejmuje portu RJ11 używanego do podłączeń telefonicznych. Dodatkowo, przełączniki nie obsługują zazwyczaj protokołów takich jak PPPoA czy PPPoE, które są wspólne dla połączeń ADSL. Bramki VOIP są związane z przesyłaniem głosu przez internet. Ich specyfikacja zawiera protokoły takie jak SIP czy H.323, niezbędne do konwersji tradycyjnych rozmów telefonicznych na pakiety danych. Obecność portu RJ11 jest myląca, ale w konteście VOIP miałaby inne zastosowanie. Modemy ADSL często błędnie mylone są z bramkami VOIP, ponieważ mogą zawierać porty telefoniczne, jednak technologia VOIP wymaga specyficznych protokołów, które nie są wymienione w tej specyfikacji. Konwertery mediów przekształcają sygnały z jednego medium transmisyjnego na inne, np. z miedzi na światłowód. Specyfikacja konwertera skupia się na typach obsługiwanych mediów oraz długościach fali światła, a nie na standardach ADSL. W specyfikacji konwertera nie znajdziemy również protokołów szerokopasmowych jak PPPoA. Typowy błąd polega na myleniu różnych funkcji urządzeń sieciowych z powodu podobieństw w zakresie obsługiwanych portów lub technologii. Dlatego ważne jest dokładne zrozumienie funkcji i zastosowań każdego urządzenia oraz specyficznych protokołów przez nie obsługiwanych, co w przypadku modemu ADSL jest jasno określone przez obecność standardów i portów typowych dla technologii DSL.

Pytanie 13

Który z rodzajów rekordów DNS w systemach Windows Server określa alias (inną nazwę) dla rekordu A związanej z kanoniczną (rzeczywistą) nazwą hosta?

A. PTR
B. CNAME
C. AAAA
D. NS
Rekord CNAME (Canonical Name) jest kluczowym elementem w systemie DNS, który pozwala na definiowanie aliasów dla innych rekordów. Jego podstawową funkcją jest wskazywanie alternatywnej nazwy dla rekordu A, co oznacza, że zamiast wpisywać bezpośrednio adres IP, możemy użyć bardziej przyjaznej dla użytkownika nazwy. Na przykład, zamiast korzystać z adresu IP serwera aplikacji, możemy ustawić rekord CNAME, który będzie odnosił się do łatwiejszej do zapamiętania nazwy, jak 'aplikacja.example.com'. Takie podejście znacznie ułatwia zarządzanie infrastrukturą sieciową, szczególnie w sytuacjach, gdy adresy IP mogą się zmieniać. Dzięki zastosowaniu rekordu CNAME, administratorzy mogą uniknąć konieczności aktualizacji wielu wpisów DNS w przypadku zmiany adresu IP, co jest zgodne z najlepszymi praktykami w zakresie zarządzania DNS oraz pozwala na szybsze i bardziej elastyczne zarządzanie zasobami sieciowymi. Dodatkowo, rekordy CNAME mogą być wykorzystywane do kierowania ruchu do różnych usług, takich jak serwery pocztowe czy serwery FTP, co daje dużą elastyczność w konfiguracji usług sieciowych.

Pytanie 14

W sieci lokalnej, aby chronić urządzenia sieciowe przed przepięciami oraz różnicami napięć, które mogą wystąpić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. urządzenie typu NetProtector
B. przełącznik
C. ruter
D. sprzętową zaporę sieciową
Wybór sprzętowej zapory sieciowej, routera lub przełącznika jako metod zabezpieczenia przed przepięciami i różnicami potencjałów jest mylny i oparty na niewłaściwym zrozumieniu ról tych urządzeń w infrastrukturze sieciowej. Sprzętowa zapora sieciowa jest skoncentrowana na ochronie przed atakami z zewnątrz i nie jest zaprojektowana do odprowadzania nadmiaru energii elektrycznej. Podobnie, routery i przełączniki, choć kluczowe w ruchu danych w sieci, nie mają wbudowanych mechanizmów do ochrony przed przepięciami. Rola routera skupia się na kierowaniu pakietów danych, a przełączników na łączeniu urządzeń w sieci lokalnej, co czyni je niewystarczającymi do zapewnienia ochrony przed zjawiskami atmosferycznymi. Wybór niewłaściwego urządzenia do ochrony przed przepięciami może prowadzić do poważnych uszkodzeń sprzętu oraz strat finansowych związanych z naprawą lub wymianą uszkodzonych komponentów. Typowym błędem jest zakładanie, że standardowe urządzenia sieciowe mogą pełnić rolę zabezpieczeń. W rzeczywistości, ich funkcje są zupełnie różne i wymagają uzupełnienia o specjalistyczne urządzenia ochronne, takie jak NetProtector, aby skutecznie zarządzać ryzykiem związanym z wyładowaniami atmosferycznymi.

Pytanie 15

W wyniku wydania polecenia: net user w konsoli systemu Windows, pojawi się

A. informacja pomocnicza dotycząca polecenia net
B. nazwa bieżącego użytkownika oraz jego hasło
C. dane na temat parametrów konta zalogowanego użytkownika
D. spis kont użytkowników
Niepoprawne odpowiedzi na to pytanie wskazują na nieporozumienia dotyczące funkcji polecenia 'net user'. Przykładowo, stwierdzenie, że to polecenie wyświetla pomoc dotyczącą polecenia net, jest mylne. W rzeczywistości, pomoc można uzyskać, wpisując 'net help' lub 'net user /?' w wierszu poleceń, co pozwala użytkownikowi na zapoznanie się z dostępnymi parametrami i opcjami. Z kolei twierdzenie, że polecenie to pokazuje nazwę aktualnego użytkownika i jego hasło, jest całkowicie błędne, ponieważ bezpieczeństwo haseł jest priorytetem w systemach operacyjnych. System Windows nie wyświetla haseł w sposób jawny ani nie oferuje ich do wglądu w odpowiedzi na komendy. Innym błędnym podejściem jest myślenie, że polecenie 'net user' generuje informacje o parametrach konta zalogowanego użytkownika. W rzeczywistości, aby uzyskać szczegółowe informacje o konkretnym koncie użytkownika, należałoby podać nazwę tego konta jako argument, co również jest czymś innym niż ogólne wyświetlanie wszystkich kont. Powszechnym błędem jest również zakładanie, że jedno polecenie może pełnić różnorodne funkcje, co często prowadzi do nieefektywnego zarządzania systemem. Zrozumienie, co konkretne polecenie rzeczywiście robi, jest kluczowe dla efektywnej administracji systemu i unikania pomyłek, które mogą prowadzić do problemów z bezpieczeństwem i dostępem.

Pytanie 16

Na przedstawionym zdjęciu widoczna jest

Ilustracja do pytania
A. modem kablowy
B. moduł łączący komputer z UPS
C. karta sieci bezprzewodowej
D. karta telewizyjna
Karta sieci bezprzewodowej, jak ta przedstawiona na zdjęciu, jest kluczowym komponentem umożliwiającym komputerom łączenie się z sieciami Wi-Fi. Działa ona poprzez odbieranie i wysyłanie sygnałów radiowych między komputerem a routerem bezprzewodowym. Typowa karta sieciowa PCI, jak ta na obrazku, jest instalowana bezpośrednio na płycie głównej komputera i zapewnia znacznie większą stabilność połączenia w porównaniu do kart podłączanych przez USB. Wspiera różne standardy transmisji, takie jak IEEE 802.11n czy 802.11ac, które określają prędkość i zasięg połączenia. Dzięki zastosowaniu technologii MIMO (Multiple Input Multiple Output), takie karty mogą jednocześnie korzystać z wielu anten, co zwiększa przepustowość i jakość połączenia. W kontekście praktycznym, karty sieciowe bezprzewodowe są powszechnie stosowane w biurach i domach, gdzie rozbudowa infrastruktury kablowej jest niepraktyczna lub kosztowna. Znajomość działania takich kart jest istotna z punktu widzenia zarządzania sieciami lokalnymi, konfiguracji routerów oraz rozwiązywania problemów z łącznością. Dobre praktyki branżowe zalecają regularną aktualizację sterowników karty, aby zapewnić optymalną wydajność i bezpieczeństwo połączenia.

Pytanie 17

Jakim protokołem połączeniowym w warstwie transportowej, który zapewnia niezawodność dostarczania pakietów, jest protokół

A. TCP (Transmission Control Protocol)
B. ARP (Address Resolution Protocol)
C. IP (Internet Protocol)
D. UDP (User Datagram Protocol)
TCP (Transmission Control Protocol) jest protokołem warstwy transportowej, który zapewnia niezawodność w dostarczaniu danych poprzez wprowadzenie mechanizmów kontroli błędów, retransmisji oraz kontroli przepływu. TCP ustanawia połączenie między nadawcą a odbiorcą przed przesłaniem danych, co pozwala na zapewnienie, że wszystkie pakiety dotrą do celu w odpowiedniej kolejności i bez błędów. Przykłady zastosowania protokołu TCP obejmują transmisję stron internetowych, pocztę elektroniczną oraz protokoły transferu plików, takie jak FTP. Standardy związane z TCP są ustalone przez IETF i są częścią większej specyfikacji, znanej jako suite protokołów internetowych (Internet Protocol Suite), która definiuje, jak dane są przesyłane przez sieci. Dobre praktyki obejmują monitorowanie wydajności TCP, aby zminimalizować opóźnienia i utratę pakietów, co jest szczególnie istotne w aplikacjach o wysokich wymaganiach, takich jak transmisje wideo na żywo.

Pytanie 18

Jakie działanie nie przyczynia się do personalizacji systemu operacyjnego Windows?

A. Konfigurowanie opcji wyświetlania pasków menu i narzędziowych
B. Ustawienie rozmiaru pliku wymiany
C. Wybór domyślnej przeglądarki internetowej
D. Zmiana koloru lub kilku współczesnych kolorów jako tło pulpitu
Ustawienie wielkości pliku wymiany jest czynnością, która nie służy do personalizacji systemu operacyjnego Windows. Plik wymiany, znany również jako pamięć wirtualna, jest używany przez system operacyjny do zarządzania pamięcią RAM oraz do przechowywania danych, które nie mieszczą się w pamięci fizycznej. Zmiana jego wielkości ma charakter bardziej techniczny i związana jest z optymalizacją wydajności systemu, a nie z jego personalizacją. Personalizacja dotyczy aspektów, które wpływają na sposób, w jaki użytkownik postrzega i korzysta z interfejsu systemu, takich jak kolory pulpitu, ustawienia pasków narzędziowych czy domyślna przeglądarka. Na przykład, zmieniając tło pulpitu na ulubiony obrazek, użytkownik może poprawić swoje samopoczucie podczas pracy, co jest istotnym elementem personalizacji. W związku z tym, zmiana wielkości pliku wymiany jest czynnością techniczną, a nie personalizacyjną, co czyni tę odpowiedź poprawną.

Pytanie 19

Na rysunku przedstawiono schemat ethernetowego połączenia niekrosowanych, ośmiopinowych złączy 8P8C. Jaką nazwę nosi ten schemat?

Ilustracja do pytania
A. T568D
B. T568C
C. T568A
D. T568B
Schemat T568B to jeden z dwóch głównych standardów okablowania ethernetowego, obok T568A. W T568B kolejność przewodów w złączu 8P8C zaczyna się od pomarańczowej pary, przez co różni się od T568A, który zaczyna się od zielonej. Wybór T568B lub T568A zależy często od lokalnych zwyczajów lub istniejącej infrastruktury sieciowej, choć w Stanach Zjednoczonych T568B jest częściej stosowany. T568B jest szeroko używany w połączeniach niekrosowanych, często wykorzystywanych do podłączania urządzeń sieciowych jak komputery, routery czy switche w sieciach LAN. Dobrze rozpoznawalne kolory przewodów i ich kolejność ułatwiają prawidłowe zaciskanie końcówek, co jest kluczowe dla utrzymania integralności sygnału sygnałowego. Właściwe zaciskanie przy użyciu standardu T568B minimalizuje zakłócenia przesyłu danych, co jest szczególnie ważne w przypadku rosnących wymagań na szybkość przesyłu w nowoczesnych sieciach. Zrozumienie i stosowanie tego standardu jest fundamentalne dla techników sieciowych i wpływa na jakość połączeń oraz ich niezawodność.

Pytanie 20

W systemie Windows do uruchomienia przedstawionego narzędzia należy użyć polecenia

Ilustracja do pytania
A. resmon
B. dcomcnfg
C. secpol
D. taskmgr
Taskmgr to polecenie, które służy do uruchamiania Menedżera zadań w systemie Windows. To narzędzie jest jednym z podstawowych, jeśli chodzi o zarządzanie procesami, monitorowanie wydajności oraz diagnozowanie problemów z komputerem. W praktyce, kiedy komputer zaczyna działać wolniej, pierwszą rzeczą, którą polecam zrobić, jest właśnie odpalenie taskmgr i sprawdzenie obciążenia procesora czy pamięci RAM. Menedżer zadań pozwala też kończyć zawieszające się aplikacje, co jest nieocenione szczególnie w środowisku biurowym lub podczas testowania różnych programów. Moim zdaniem taskmgr jest jednym z tych narzędzi, które każdy użytkownik Windowsa powinien znać na pamięć, bo naprawdę ratuje z opresji – nawet admini, jak i zwykli użytkownicy korzystają z niego na co dzień. Co ciekawe, Menedżer zadań ewoluował na przestrzeni kolejnych wersji Windows – w Windows 10 czy 11 ma znacznie więcej funkcji, jak sprawdzanie wpływu na uruchamianie systemu czy analizę wydajności dysku. Według dobrych praktyk IT, regularne kontrolowanie procesów pozwala wykryć też potencjalne zagrożenia, np. niechciane oprogramowanie działające w tle. Tak między nami, w środowiskach korporacyjnych taskmgr bywa pierwszą linią obrony przed poważniejszymi problemami sprzętowymi i programowymi.

Pytanie 21

Jeśli adres IP komputera roboczego przyjmuje formę 176.16.50.10/26, to jaki jest adres rozgłoszeniowy oraz maksymalna liczba hostów w tej sieci?

A. 176.16.50.1; 26 hostów
B. 176.16.50.63; 62 hosty
C. 176.16.50.36; 6 hostów
D. 176.16.50.62; 63 hosty
Jak patrzę na błędne odpowiedzi, to wychodzą spore nieporozumienia, zwłaszcza w kwestii adresu rozgłoszeniowego i liczby hostów w sieci. W przypadku podania adresu 176.16.50.1; 26 hostów, to błąd polega na tym, że ktoś myli ostatni adres w podsieci z pierwszym. Pamiętaj, że adres rozgłoszeniowy to zawsze ten ostatni adres, a nie początkowy. Co więcej, maksymalna liczba hostów to 62, bo dwa adresy są zarezerwowane – jeden dla adresu sieci, a drugi dla rozgłoszeniowego. Jeśli chodzi o 176.16.50.36; 6 hostów, to też coś jest nie tak, bo ktoś źle zinterpretował maskę podsieci. Liczba hostów to wynik obliczeń na podstawie dostępnych bitów w adresie, a nie na zasadzie losowo przydzielonego adresu, więc tutaj mogą się pojawiać nieporozumienia. Odpowiedź 176.16.50.62; 63 hosty to kolejna pomyłka, bo maksymalnie możemy mieć 62 hosty, a nie 63. Często pojawiają się typowe błędy, jak pomieszanie różnych pojęć dotyczących adresacji, takich jak adresy sieciowe i rozgłoszeniowe, a także to, jak maski podsieci wpływają na liczbę dostępnych adresów dla hostów.

Pytanie 22

Jakie pojęcia wiążą się z terminami „sequence number” oraz „acknowledgment number”?

Ilustracja do pytania
A. TCP (Transmission Control Protocol)
B. UDP (User Datagram Protocol)
C. IP (Internet Protocol)
D. HTTP (Hypertext Transfer Protocol)
Wybór innych protokołów niż TCP w kontekście pojęć sequence number i acknowledgment number wynika z nieporozumienia związanych z ich funkcjonalnością. HTTP, choć bardzo powszechny, jest protokołem warstwy aplikacji służącym głównie do przesyłania dokumentów hipertekstowych. Nie zajmuje się on kontrolą przepływu danych ani ich sekwencjonowaniem jak TCP dlatego sequence number i acknowledgment number nie mają w nim zastosowania. UDP jest protokołem warstwy transportowej podobnie jak TCP jednak różni się tym że jest protokołem bezpołączeniowym. UDP nie zapewnia mechanizmów do śledzenia kolejności czy potwierdzania odbioru danych dlatego jest używany w aplikacjach gdzie czas dostarczenia jest ważniejszy niż niezawodność jak w przypadku transmisji wideo czy gier online. IP natomiast działa na warstwie sieciowej i służy do przesyłania pakietów danych pomiędzy różnymi urządzeniami w sieci. IP nie dba o porządek pakietów ani nie zapewnia ich dostarczenia dlatego sequence number i acknowledgment number są poza jego zakresem działania. Wybór protokołów innych niż TCP często wynika z braku zrozumienia ich roli i zastosowań co może prowadzić do błędnego przypisywania im cech charakterystycznych dla TCP.

Pytanie 23

Protokół User Datagram Protocol (UDP) należy do

A. połączeniowych protokołów warstwy łącza danych w ISO/OSI
B. transportowych protokołów bezpołączeniowych w modelu TCP/IP
C. warstwy łącza danych bezpołączeniowej w modelu ISO/OSI
D. warstwy transportowej z połączeniem w modelu TCP/IP
Zrozumienie, że User Datagram Protocol (UDP) jest bezpołączeniowym protokołem warstwy transportowej modelu TCP/IP, jest kluczowe dla analizy danych przesyłanych w sieci. Protokół UDP, w przeciwieństwie do TCP, który jest protokołem połączeniowym, nie wymaga zestawienia sesji przed wysłaniem danych, co prowadzi do większej efektywności w transmisji, ale kosztem niezawodności. Odpowiedzi sugerujące, że UDP jest protokołem bezpołączeniowym warstwy łącza danych modelu ISO/OSI, mylą pojęcia dotyczące warstw modelu. Warstwa łącza danych odpowiada za przesyłanie ramek między urządzeniami w tej samej sieci, co nie jest zadaniem UDP, który działa na wyższej warstwie transportowej, odpowiadając za przesyłanie datagramów pomiędzy aplikacjami. Protokół TCP/IP i model ISO/OSI różnią się w kontekście warstw i funkcji, co często prowadzi do nieporozumień. Ponadto, pomysł, że UDP jest połączeniowym protokołem transportowym, jest błędny, ponieważ nie oferuje on kontroli błędów ani potwierdzeń przesyłania danych. Protokół TCP, z kolei, zapewnia te mechanizmy, co jest kluczowe dla aplikacji wymagających niezawodności. Błędy te mogą wynikać z mylnego zrozumienia podstawowych zasad działania protokołów i ich zastosowania w praktyce, co jest istotne w kontekście projektowania i implementacji systemów komunikacyjnych.

Pytanie 24

Komputer jest podłączony do sieci Internet, a na jego pokładzie brak oprogramowania antywirusowego. Jak można sprawdzić, czy ten komputer jest zainfekowany wirusem, nie zmieniając ustawień systemowych?

A. zainstalowanie skanera pamięci
B. uruchomienie programu chkdsk
C. wykorzystanie skanera on-line
D. uruchomienie zapory sieciowej
Wykorzystanie skanera on-line jest skuteczną metodą na sprawdzenie, czy komputer jest zainfekowany wirusem, szczególnie w sytuacji, gdy brakuje lokalnego oprogramowania antywirusowego. Skanery on-line, takie jak VirusTotal, pozwalają na przeskanowanie plików lub adresów URL w sieci przy użyciu wielu silników antywirusowych. To rozwiązanie jest efektywne, ponieważ korzysta z aktualnych baz danych znanych wirusów i złośliwego oprogramowania, a także nie wymaga instalacji dodatkowego oprogramowania na komputerze. Przykładowo, użytkownik może przesłać podejrzany plik do skanera on-line i uzyskać szczegółowe raporty na temat jego potencjalnych zagrożeń. Dobrą praktyką jest regularne korzystanie z takich narzędzi w celu weryfikacji bezpieczeństwa systemu, w szczególności po pobraniu plików z nieznanych źródeł. W branży bezpieczeństwa IT zaleca się stosowanie skanowania on-line jako uzupełnienia tradycyjnych rozwiązań zabezpieczających, co stanowi część kompleksowego podejścia do ochrony przed zagrożeniami cybernetycznymi.

Pytanie 25

Jaką maksymalną prędkość danych można osiągnąć w sieci korzystającej z skrętki kategorii 5e?

A. 100 Mb/s
B. 10 Mb/s
C. 10 Gb/s
D. 1 Gb/s
Wybór nieprawidłowych odpowiedzi odzwierciedla powszechnie występujące nieporozumienia dotyczące właściwości różnych kategorii kabli Ethernet. Przykładowo, stwierdzenie, że prędkość wynosi 10 Gb/s, odnosi się do skrętki kategorii 6, która została zaprojektowana z myślą o wyższych wymaganiach transmisyjnych, lecz nie jest to właściwe dla kategorii 5e. Często można spotkać się z mylnym przekonaniem, że każda kolejna kategoria kabli przynosi wyłącznie większe prędkości, co nie zawsze jest prawdą, szczególnie gdy mowa o zastosowaniach w rzeczywistych warunkach. Odpowiedzi sugerujące 10 Mb/s oraz 100 Mb/s odnoszą się do jeszcze starszych standardów, takich jak 10BASE-T i 100BASE-TX, które były powszechnie używane w przeszłości, ale nie odzwierciedlają obecnych możliwości technologicznych. Użytkownicy często mylą prędkości transmisji z możliwościami kabli, co prowadzi do nieprawidłowych wyborów w kontekście projektowania sieci. Warto podkreślić, że przy projektowaniu sieci zaleca się nie tylko kierowanie się wybranym standardem, ale także uwzględnienie przyszłych potrzeb oraz rozwijających się technologii, co może oznaczać, że wybór odpowiedniego typu kabla ma kluczowe znaczenie dla długofalowej funkcjonalności infrastruktury sieciowej.

Pytanie 26

Na ilustracji widać patchpanel - panel krosowy kategorii 5E bez ekranowania, który posiada złącze szczelinowe typu LSA. Jakie narzędzie należy zastosować do wkładania kabli w te złącza?

Ilustracja do pytania
A. narzędzie zaciskowe BNC
B. narzędzie JackRapid
C. narzędzie uderzeniowe
D. narzędzie zaciskowe 8P8C
Narzędzie zaciskowe 8P8C jest używane głównie do zaciskania wtyków RJ-45 na końcach kabli ethernetowych, a nie do montażu kabli w złączach szczelinowych typu LSA. Wtyki te są stosowane na końcach przewodów, umożliwiając ich podłączenie do gniazd sieciowych czy urządzeń. Narzędzie zaciskowe BNC z kolei służy do montażu złączy BNC na kablach koncentrycznych, które są wykorzystywane w systemach telewizji przemysłowej czy sygnalizacji RF, co oznacza, że jego zastosowanie jest całkowicie odmienne od wymagań dla patchpaneli kategorii 5E. Narzędzie JackRapid, choć podobne w funkcji do narzędzia uderzeniowego, jest dedykowane do bardziej specyficznych zadań, jak montaż gniazd RJ-45, gdzie zapewnia szybsze i bardziej ergonomiczne działanie. Często pojawiający się błąd polega na myleniu specyfiki narzędzi używanych w różnorodnych instalacjach telekomunikacyjnych i sieciowych. Każde z nich ma swoje unikalne zastosowanie, wynikające z konstrukcji i przeznaczenia, co jest kluczowe dla prawidłowego wykonania połączeń oraz zachowania standardów branżowych. Nieprawidłowy dobór narzędzia może prowadzić do uszkodzeń sprzętu i niewłaściwego działania sieci, co z kolei może generować dodatkowe koszty związane z naprawami.

Pytanie 27

Jakie jest najbardziej typowe dla topologii gwiazdy?

A. centralne zarządzanie siecią
B. zatrzymanie sieci wskutek awarii terminala
C. niskie zużycie kabli
D. trudności w lokalizacji usterek
Rozważając niewłaściwe odpowiedzi, można zauważyć, że małe zużycie kabla jest mylącym stwierdzeniem, ponieważ w rzeczywistości topologia gwiazdy może wiązać się z większym zużyciem kabli w porównaniu do innych topologii, jak na przykład topologia magistrali. W gwieździstej strukturze każdy węzeł wymaga oddzielnego kabla do centralnego punktu, co z kolei zwiększa ilość materiału potrzebnego do budowy sieci. Ponadto, centralne zarządzanie siecią nie tylko ułatwia kontrolę, ale również wprowadza ryzyko, że awaria centralnego urządzenia może spowodować zablokowanie całej sieci, co jest nieprawdziwe w kontekście pozostałych odpowiedzi. Trudna lokalizacja uszkodzeń również nie odnosi się do topologii gwiazdy, gdyż jednym z jej atutów jest właśnie uproszczona lokalizacja potencjalnych problemów, co kontrastuje z bardziej złożonymi topologiami, w których trudniej jest zidentyfikować źródło awarii. Zrozumienie tych różnic jest kluczowe, aby właściwie ocenić zalety i wady różnych architektur sieciowych oraz ich wpływ na wydajność i niezawodność sieci.

Pytanie 28

Użytkownik napotyka trudności przy uruchamianiu systemu Windows. W celu rozwiązania tego problemu, skorzystał z narzędzia System Image Recovery, które

A. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
B. naprawia pliki rozruchowe, wykorzystując płytę Recovery
C. przywraca system na podstawie kopii zapasowej
D. przywraca system używając punktów przywracania
Odpowiedzi sugerujące, że narzędzie System Image Recovery odtwarza system z punktów przywracania, naprawia pliki startowe z użyciem płyty Recovery lub odzyskuje ustawienia systemu na podstawie kopii rejestru systemowego, są mylące i nieprawidłowe. Narzędzie to nie jest zaprojektowane do pracy z punktami przywracania, które są wykorzystywane przez funkcję Przywracania systemu, a nie przez System Image Recovery. Punkty przywracania zawierają zaledwie część systemu i są używane do przywracania systemu do wcześniejszego stanu, co różni się od przywracania z pełnego obrazu systemu. Odpowiedź mówiąca o naprawie plików startowych z płyty Recovery odnosi się do innego narzędzia, które ma na celu naprawę bootloadera lub innych kluczowych elementów rozruchowych, ale nie do pełnego przywracania systemu. Wreszcie, stwierdzenie dotyczące odzyskiwania ustawień systemu z kopii rejestru jest błędne, ponieważ rejestr systemowy nie jest bezpośrednio związany z narzędziem System Image Recovery. Tego typu nieporozumienia mogą wynikać z braku zrozumienia różnicy między przywracaniem systemu a naprawą systemu oraz z nieznajomości funkcji dostępnych w systemie Windows. Dlatego kluczowe jest, aby użytkownicy zapoznali się ze specyfiką i funkcjami poszczególnych narzędzi w celu skutecznego zarządzania systemem operacyjnym.

Pytanie 29

Dobrze zaplanowana sieć komputerowa powinna pozwalać na rozbudowę, co oznacza, że musi charakteryzować się

A. skalowalnością
B. efektywnością
C. redundancją
D. nadmiarowością
Redundancja, wydajność i nadmiarowość to pojęcia, które mogą być mylone z skalowalnością, ale każde z nich odnosi się do innych aspektów projektowania sieci. Redundancja odnosi się do tworzenia dodatkowych ścieżek lub zasobów, które mają na celu zwiększenie niezawodności i dostępności sieci poprzez eliminację pojedynczych punktów awarii. Choć jest to istotne dla zapewnienia ciągłości działania, nie ma bezpośredniego związku ze zdolnością do rozbudowy infrastruktury w odpowiedzi na wzrastające potrzeby. Wydajność z kolei koncentruje się na zdolności sieci do przetwarzania i przesyłania danych w sposób efektywny, co jest ważne, ale nie oznacza, że sieć jest w stanie łatwo się rozbudowywać. Nadmiarowość, podobnie jak redundancja, dotyczy posiadania więcej niż jednego zasobu do wykonania tego samego zadania, co może prowadzić do większej niezawodności, ale nie wpływa na możliwość rozbudowy. Zatem, w kontekście projektowania sieci, kluczowe jest zrozumienie różnicy między tymi pojęciami a skalowalnością. Typowe błędy myślowe, które mogą prowadzić do pomylenia tych koncepcji, to utożsamianie stabilności i wydajności z możliwością rozbudowy infrastruktury. Dlatego ważne jest, aby podczas projektowania kierować się zasadą, że sieć powinna być nie tylko niezawodna i wydajna, ale przede wszystkim elastyczna i łatwa do rozbudowy w miarę zmieniających się potrzeb organizacji.

Pytanie 30

Jakie narzędzie służy do połączenia pigtaila z włóknami światłowodowymi?

A. przedłużacz kategorii 5e z zestawem pasywnych kabli o maksymalnej prędkości połączenia 100 Mb/s
B. spawarka światłowodowa, łącząca włókna przy użyciu łuku elektrycznego
C. narzędzie zaciskowe do wtyków RJ45, posiadające odpowiednie gniazdo dla kabla
D. stacja lutownicza, która wykorzystuje mikroprocesor do ustawiania temperatury
W odniesieniu do analizy narzędzi stosowanych w inżynierii światłowodowej, wiele odpowiedzi może na pierwszy rzut oka wydawać się logicznych, jednak w rzeczywistości nie odpowiadają one wymaganiom technicznym stawianym przed procesem łączenia włókien światłowodowych. Zastosowanie przedłużacza kategorii 5e z pasywnymi kablami Ethernet, mimo że ma swoje zastosowanie w sieciach lokalnych, nie jest w ogóle związane z technologią światłowodową, ponieważ dotyczy przewodów miedzianych, a nie optycznych. Użycie stacji lutowniczej, choć przydatne w innych dziedzinach elektroniki, nie jest odpowiednie do łączenia włókien światłowodowych, gdzie niezbędne jest spawanie włókien, a nie lutowanie. Narzędzie zaciskowe do wtyków RJ45, z kolei, służy do montażu złącz miedzianych, a nie do operacji związanych z włóknami światłowodowymi. Tego rodzaju pomyłki mogą wynikać z niepełnego zrozumienia różnic między technologiami transmisji danych oraz z braku znajomości dedykowanych narzędzi i standardów związanych z instalacją systemów światłowodowych. Wiedza na temat właściwych narzędzi jest kluczowa, aby zrealizować skuteczne i trwałe połączenia, które spełniają wymagania wydajnościowe nowoczesnych sieci telekomunikacyjnych.

Pytanie 31

Aby umożliwić wymianę informacji pomiędzy sieciami VLAN, wykorzystuje się

A. modem.
B. router.
C. koncentrator.
D. punkt dostępowy.
Modemy, koncentratory i punkty dostępowe odgrywają różne role w architekturze sieciowej, ale nie są odpowiednie do realizacji komunikacji między VLAN-ami. Modemy, na przykład, są urządzeniami, które konwertują sygnały cyfrowe na analogowe i vice versa, umożliwiając dostęp do Internetu, ale nie są zaprojektowane do trasowania ruchu między różnymi sieciami VLAN. Ich rola koncentruje się na połączeniach z dostawcami usług internetowych, a nie na zarządzaniu wewnętrznym ruchem sieciowym. Koncentratory, z drugiej strony, są urządzeniami działającymi na warstwie pierwszej modelu OSI, które po prostu przesyłają dane do wszystkich portów w sieci, co nie pozwala na kontrolę ruchu ani separację VLAN-ów. W związku z tym, są one nieefektywne w scenariuszach, gdzie wymagane jest zarządzanie wieloma segmentami sieci. Punkty dostępowe z kolei to urządzenia, które pozwalają na bezprzewodowe połączenie z siecią lokalną, ale również nie posiadają funkcji trasowania czy inspekcji pakietów, które są niezbędne do komunikacji między VLAN-ami. Typowe błędy w myśleniu prowadzące do takich niepoprawnych wniosków to mylenie funkcji urządzeń sieciowych oraz niedostateczna znajomość wspomnianych standardów i praktyk, które jasno określają, że do komunikacji między VLAN-ami konieczne jest wykorzystanie routerów.

Pytanie 32

Jak określa się technologię stworzoną przez firmę NVIDIA, która pozwala na łączenie kart graficznych?

A. RAMDAC
B. SLI
C. CROSSFIRE
D. ATI
SLI, czyli Scalable Link Interface, to technologia opracowana przez firmę NVIDIA, która umożliwia łączenie dwóch lub więcej kart graficznych w celu zwiększenia wydajności graficznej systemu. Dzięki SLI, użytkownicy mogą uzyskać lepsze rezultaty w grach komputerowych, renderingach 3D oraz aplikacjach wymagających intensywnego przetwarzania grafiki. W praktyce, SLI dzieli obciążenie graficzne między karty, co pozwala na osiągnięcie wyższych liczby klatek na sekundę (FPS) oraz płynniejszej grafiki. Warto jednak pamiętać, że aby technologia SLI działała efektywnie, muszą być spełnione określone warunki, takie jak posiadanie odpowiedniej płyty głównej, zasilacza o odpowiedniej mocy oraz kompatybilnych kart graficznych. Dodatkowo, nie wszystkie gry wspierają SLI, dlatego przed zakupem warto sprawdzić, czy konkretne tytuły będą w stanie wykorzystać tę technologię. W branży gier oraz profesjonalnego renderingu, SLI stało się standardem wśród zaawansowanych użytkowników, którzy szukają maksymalnej wydajności swoich systemów.

Pytanie 33

Która z poniższych czynności NIE przyczynia się do personalizacji systemu operacyjnego Windows?

A. Dobór koloru lub kilku nakładających się kolorów jako tła pulpitu
B. Wybranie domyślnej przeglądarki internetowej
C. Zmiana rozmiaru pliku wymiany
D. Konfiguracja opcji wyświetlania pasków menu oraz pasków narzędziowych
Ustawienie wielkości pliku wymiany jest związane z zarządzaniem pamięcią w systemie operacyjnym Windows, a nie z jego personalizacją. Plik wymiany, znany również jako plik stronicowania, pełni funkcję rozszerzenia pamięci RAM, umożliwiając systemowi operacyjnemu przechowywanie danych, które nie mieszczą się w pamięci fizycznej. Zmiana jego rozmiaru może wpływać na wydajność systemu, zwłaszcza w sytuacjach, gdy dostępna pamięć RAM jest niewystarczająca do uruchamiania aplikacji, ale nie ma to związku z indywidualnymi preferencjami użytkownika. Personalizacja systemu operacyjnego skupia się na dostosowywaniu interfejsu użytkownika do jego potrzeb, co obejmuje zmiany w wyglądzie i działaniu elementów graficznych. Przykłady personalizacji to zmiana tła pulpitu, kolorów okien czy ustawienia domyślnej przeglądarki internetowej, które wpływają na codzienne korzystanie z systemu i czynią go bardziej przyjaznym dla użytkownika.

Pytanie 34

Ile bitów trzeba wydzielić z części hosta, aby z sieci o adresie IPv4 170.16.0.0/16 utworzyć 24 podsieci?

A. 6 bitów
B. 5 bitów
C. 4 bity
D. 3 bity
Wybierając mniej niż 5 bitów, takie jak 3 lub 4, tracimy zdolność do zapewnienia wystarczającej liczby podsieci dla wymaganej liczby 24. Dla 3 bitów otrzymujemy jedynie 2^3=8 podsieci, co jest niewystarczające, a dla 4 bitów 2^4=16 podsieci, co również nie zaspokaja wymagań. Takie podejście może prowadzić do nieefektywności w zarządzaniu siecią, ponieważ zbyt mała liczba podsieci może skutkować przeciążeniem i trudnościami w administracji. W praktyce, niewłaściwe oszacowanie wymaganej liczby bitów prowadzi do problemów z adresacją, co może skutkować konfiguracjami, które nie spełniają potrzeb organizacji. Również błędne obliczenia mogą prowadzić do nieprzewidzianych zatorów w komunikacji między różnymi segmentami sieci. Właściwe planowanie podsieci jest kluczowe w inżynierii sieciowej, gdyż pozwala na efektywne zarządzanie zasobami oraz minimalizację problemów związanych z adresacją i zasięgiem. Ewentualne pominięcie odpowiedniej liczby bitów może również powodować problemy z bezpieczeństwem, ponieważ zbyt mała liczba podsieci może prowadzić do niekontrolowanego dostępu do zasobów sieciowych.

Pytanie 35

Który z materiałów eksploatacyjnych NIE jest używany w ploterach?

A. Pisak.
B. Tusz.
C. Atrament.
D. Filament.
Filament to materiał, którego używamy w drukarkach 3D. W ploterach za to korzystamy z tuszy, atramentów czy pisaków. Filament nie pasuje do ploterów, bo one działają na zupełnie innej zasadzie. W ploterach atramentowych, które są świetne do druku grafik i map, tusze są w kartridżach i lądują w głowicy drukującej. Z kolei w ploterach tnących mamy pisaki, które rysują na papierze, co daje możliwość fajnych, precyzyjnych rysunków. Wybór materiałów eksploatacyjnych ma ogromny wpływ na to, jak wygląda końcowy wydruk, więc warto znać różnice między nimi. To wiedza, która naprawdę się przydaje, szczególnie w branży graficznej i drukarskiej, żeby wszystko wyglądało jak najlepiej.

Pytanie 36

Jakim protokołem jest realizowana kontrola poprawności transmisji danych w sieciach Ethernet?

A. IP
B. UDP
C. TCP
D. HTTP
Wybór protokołów IP, UDP oraz HTTP w kontekście kontroli poprawności przesyłania danych w sieciach Ethernet jest nietrafiony ze względu na różnice w ich funkcjonalności. Protokół IP (Internet Protocol) odpowiada za adresowanie i przesyłanie pakietów danych między urządzeniami w sieci, ale nie zapewnia niezawodności ani kontroli błędów. Działa na poziomie sieci, a jego głównym celem jest dostarczenie pakietów do miejsca przeznaczenia, co sprawia, że mogą występować utraty danych, duplikacje czy zamiana kolejności pakietów. Protokół UDP (User Datagram Protocol) z kolei, mimo że jest prostszy i szybszy, służy do przesyłania datagramów bez nawiązywania połączenia i nie oferuje żadnych mechanizmów zapewniających poprawność transmisji, co czyni go odpowiednim jedynie dla zastosowań, w których szybkość jest kluczowa, a stabilność nie jest wymagana, jak w transmisjach audio czy wideo na żywo. HTTP (Hypertext Transfer Protocol) jest protokołem aplikacyjnym, który opiera się na TCP, co oznacza, że korzysta z jego niezawodnych mechanizmów, ale sam w sobie nie jest odpowiedzialny za kontrolę poprawności przesyłania danych. Wybierając te protokoły, można błędnie założyć, że zapewniają one te same mechanizmy kontroli i niezawodności, co TCP, co prowadzi do zrozumienia ich ról w architekturze sieciowej w sposób zbyt uproszczony i nieprecyzyjny. Rozumienie różnic między tymi protokołami jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 37

Aby w systemie Windows nadać użytkownikowi możliwość zmiany czasu systemowego, potrzebna jest przystawka

A. eventvwr.msc
B. certmgr.msc
C. secpol.msc
D. services.msc
Odpowiedzi takie jak 'eventvwr.msc', 'certmgr.msc' oraz 'services.msc' nie są właściwe w kontekście przydzielania praw użytkownikom do zmiany czasu systemowego. 'Eventvwr.msc' odnosi się do Podglądu zdarzeń, który służy do monitorowania i analizy zdarzeń systemowych i aplikacyjnych, co nie ma związku z przydzielaniem uprawnień użytkowników. Może być używane do diagnostyki, ale nie do zarządzania politykami bezpieczeństwa. Z kolei 'certmgr.msc' to narzędzie do zarządzania certyfikatami, które nie ma zastosowania w kontekście uprawnień związanych z czasem systemowym. Użytkownicy mogą mylnie sądzić, że certyfikaty mają wpływ na czas systemowy, ale w rzeczywistości certyfikaty są używane głównie do zapewnienia bezpieczeństwa komunikacji. 'Services.msc' z kolei umożliwia zarządzanie usługami systemowymi, co również nie dotyczy przydzielania praw użytkownikom. Typowym błędem myślowym jest przekonanie, że wszystkie przystawki do zarządzania systemem mają podobne funkcje, podczas gdy każda z nich odpowiada za zupełnie inny aspekt funkcjonowania systemu. Kluczowe jest zrozumienie, że przydzielanie praw użytkownikom wymaga odwołania do narzędzi zarządzających politykami bezpieczeństwa, a nie do narzędzi monitorujących czy zarządzających usługami.

Pytanie 38

Jakie zakresy zostaną przydzielone przez administratora do adresów prywatnych w klasie C, przy użyciu maski 24 bitowej dla komputerów w lokalnej sieci?

A. 192.168.0.1 - 192.168.0.254
B. 172.16.0.1 - 172.16.255.254
C. 192.168.0.1 - 192.168.10.254
D. 172.168.0.1 - 172.168.255.254
Adresy 172.168.0.1 - 172.168.255.254 nie są poprawne, ponieważ nie należą do zdefiniowanego zakresu adresów prywatnych. Adresy prywatne w klasie B obejmują zakres 172.16.0.0 do 172.31.255.255. Wybierając ten zakres, można by stworzyć sieć lokalną, ale jest to niezgodne z wymaganiami pytania, które dotyczyło przydzielania adresów w klasie C z maską 24 bitów. Kolejną niepoprawną odpowiedzią jest 192.168.0.1 - 192.168.10.254, która obejmuje zakresy adresowe wykraczające poza pojedynczą podsieć z maską 255.255.255.0. Użycie większych zakresów adresowych niż 256 adresów w sieci lokalnej wymagałoby innej maski podsieci, co może prowadzić do problemów z zarządzaniem adresami i ograniczoną skalowalnością. Ostatnia nieprawidłowa odpowiedź, 172.16.0.1 - 172.16.255.254, również odnosi się do adresów, które są zgodne z klasą B, ale nie spełniają kryteriów dotyczących klasy C. Typowym błędem w myśleniu jest nieświadomość podziału adresów IP na klasy oraz nieodróżnianie prywatnych adresów od publicznych, co prowadzi do nieprawidłowego przypisania adresów w sieci. Zrozumienie tych podstawowych zasad jest kluczowe dla prawidłowego projektowania i implementowania sieci komputerowych.

Pytanie 39

Na podstawie jakiego adresu przełącznik podejmuje decyzję o przesyłaniu ramek?

A. Adresu docelowego MAC
B. Adresu źródłowego IP
C. Adresu docelowego IP
D. Adresu źródłowego MAC
Słuchaj, jest parę niejasności, gdy mówimy o adresach w kontekście działania przełącznika. Adres źródłowy i docelowy IP dotyczą warstwy 3 w modelu OSI, czyli warstwy sieciowej, a nie warstwy 2, gdzie działają przełączniki. Przełącznik nie korzysta z adresów IP przy przesyłaniu ramek, tylko zwraca uwagę na adresy MAC. Jak ktoś zaczyna mieszać IP w tej kwestii, to może dojść do błędnych wniosków – przełącznik wcale nie wie, jakie IP są związane z danym MAC. I jeszcze jedna rzecz – mylenie adresu źródłowego MAC z docelowym to też pułapka. Adres źródłowy MAC pokazuje, skąd ramka pochodzi, ale to adres docelowy decyduje, dokąd ta ramka ma iść. Takie zamieszanie w hierarchii adresowania w modelu OSI może prowadzić do kłopotów z konfiguracją sieci, co sprawia, że przesyłanie danych nie działa jak powinno i mogą się pojawić problemy z bezpieczeństwem. Dobrze jest zapamiętać te różnice między adresami w różnych warstwach modelu OSI i ich rolami w sieci.

Pytanie 40

W nagłówku ramki standardu IEEE 802.3 w warstwie łącza danych znajduje się

A. parametr TTL
B. adres IP
C. adres MAC
D. numer portu
Adres IP, numer portu oraz parametr TTL to elementy i koncepcje związane z innymi warstwami modelu OSI, a nie warstwą łącza danych, do której odnosi się pytanie. Adres IP jest używany w warstwie sieciowej i odpowiada za identyfikację urządzeń w sieci globalnej, takich jak Internet. Jest to logiczny adres, który nie jest związany z fizycznym interfejsem urządzenia i może zmieniać się w zależności od miejsca, w którym urządzenie jest podłączone. Numery portów są integralną częścią protokołu transportowego, takiego jak TCP czy UDP, i służą do identyfikacji konkretnych aplikacji lub usług działających na urządzeniu. Parametr TTL (Time to Live) jest używany w protokole IP i określa maksymalny czas, przez jaki pakiet może krążyć w sieci, zanim zostanie odrzucony. Zrozumienie różnic między tymi pojęciami a adresem MAC jest kluczowe dla prawidłowego funkcjonowania sieci oraz dla umiejętności diagnozowania problemów sieciowych. Wiele osób myli te różne elementy, co prowadzi do nieporozumień w kontekście ich zastosowania w projektowaniu i zarządzaniu sieciami komputerowymi.