Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 00:10
  • Data zakończenia: 19 grudnia 2025 01:10

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 5 szt.
B. X - 5 szt., Y - 5 szt.
C. X - 5 szt., Y - 4 szt.
D. X - 4 szt., Y - 4 szt.
Poprawna odpowiedź, czyli 4 przewody w miejscu X i 5 w miejscu Y, wynika z analizy struktury instalacji oświetleniowej z łącznikami schodowymi i krzyżowymi. W miejscu X, 4 przewody są niezbędne, aby umożliwić prawidłowe połączenie pomiędzy łącznikami schodowymi, gdzie wymagane są dwa przewody zwrotne, faza oraz przewód neutralny. Warto podkreślić, że stosowanie odpowiedniej liczby przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji. W miejscu Y konieczność wykorzystania 5 przewodów wynika z tego, że wymaga ono połączeń między łącznikiem schodowym a krzyżowym. W tym przypadku również potrzebna jest faza, przewód neutralny, przewód zwrotny oraz dwa przewody do komunikacji między łącznikiem krzyżowym a pozostałymi. Praktyczne zastosowanie tych zasad znajduje potwierdzenie w normach IEC dotyczących instalacji elektrycznych, które zalecają stosowanie odpowiednich ilości przewodów w zależności od funkcji i układu łączników. Prawidłowe zrozumienie tych zasad jest niezbędne do projektowania bezpiecznych i efektywnych systemów oświetleniowych.

Pytanie 2

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Automat zmierzchowy.
C. Przekaźnik priorytetowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 3

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Czujnik zaniku fazy.
C. Lampkę sygnalizacyjną trójfazową.
D. Regulator temperatury.
Wybór przekaźnika czasowego, regulatora temperatury czy czujnika zaniku fazy jako elementu przedstawionego na ilustracji wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania tych urządzeń w rozdzielnicach elektrycznych. Przekaźnik czasowy służy do automatyzacji procesów, włączając i wyłączając obwody zgodnie z zaprogramowanym czasem, a nie do sygnalizacji obecności napięcia. Regulator temperatury jest urządzeniem służącym do monitorowania i kontrolowania temperatury, co jest całkowicie inną funkcją w kontekście rozdzielnic elektrycznych. Z kolei czujnik zaniku fazy jest przeznaczony do ochrony instalacji przed nieprawidłowym działaniem spowodowanym brakiem jednej z faz, ale również nie pełni funkcji sygnalizacji napięcia. Wybierając jedną z tych odpowiedzi, można mylnie łączyć różne funkcje urządzeń, co prowadzi do nieporozumień w zakresie ich zastosowania. Ważne jest, aby w kontekście instalacji elektrycznych rozumieć rolę każdego urządzenia oraz ich specyfikę, co pozwala na poprawne podejmowanie decyzji dotyczących ich instalacji i użytkowania. W praktyce, błędne zrozumienie ról tych elementów może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 4

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielożyłowy uzbrojony.
B. Jednożyłowy uzbrojony.
C. Wielodrutowy nieuzbrojony.
D. Jednodrutowy nieuzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 5

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. czerwony
B. niebieski
C. szary
D. żółty
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 6

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Silnik uniwersalny
B. Wzbudnik indukcyjny
C. Silnik asynchroniczny
D. Piec oporowy
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 7

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd znamionowy.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie znamionowe i prąd zadziałania.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 8

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. D.
B. A.
C. B.
D. C.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 9

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Stal
B. Aluminium
C. Brąz
D. Miedź
Aluminium, brąz i stal mają swoje zastosowania, ale ich przewodność elektryczna jest znacznie gorsza niż miedzi. Aluminium niby jest okej, ale nie dorównuje miedzi, co jest istotne, gdy chodzi o efektywność przewodzenia. Często ludzie mylą niską masę aluminium z jego przewodnością, a to nie jest to samo; lżejsze aluminium ma gorszą przewodność, co w dłuższej perspektywie może prowadzić do większych strat energii. Brąz, który jest stopem miedzi, ma lepsze właściwości mechaniczne, ale przewodność elektryczna jest niższa od czystej miedzi. Stal to materiał budowlany, ale ma najniższą przewodność z wymienionych. Często nie zwraca się uwagi na różnice w przewodności, a to może skutkować wyborem niewłaściwych materiałów, co prowadzi do problemów jak nadmierne straty energii czy przegrzewanie. Dlatego ważne jest, aby znać właściwości materiałów i odpowiednio je dobierać, co jest teoretycznie zgodne z najlepszymi praktykami w inżynierii.

Pytanie 10

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V
B. przeważnie bezpośredniego - klasy II
C. przeważnie pośredniego - klasy IV
D. bezpośredniego - klasy I
Wybór odpowiedzi wskazującej na przeważające oświetlenie bezpośrednie lub klasy niższe w kontekście oprawy oświetleniowej na rysunku jest konsekwencją nieprawidłowego zrozumienia podstawowych zasad klasyfikacji opraw oświetleniowych. Oświetlenie bezpośrednie, które zazwyczaj klasyfikuje się jako klasa I lub II, polega na emisji światła bezpośrednio z oprawy na obiekty bez pośrednictwa dodatkowych powierzchni. Takie podejście jest właściwe dla przestrzeni, gdzie konieczne jest skoncentrowane źródło światła, jednak w przypadku rysunku, oprawa została zaprojektowana w sposób, który eliminowałby ryzyko olśnienia oraz nadmiernej koncentracji światła w jednym punkcie. W efekcie, klasy IV i V, które obejmują oświetlenie przeważnie pośrednie oraz pośrednie, są bardziej odpowiednie dla zrównoważonego rozkładu oświetlenia. Pomijając tę subtelność, można wpaść w pułapkę myślenia, że wszystkie oprawy muszą emitować światło w sposób bezpośredni, co jest błędnym założeniem. Należy również uwzględnić, że standardy oświetleniowe, takie jak EN 12464, jednoznacznie wskazują na korzyści płynące z zastosowania opraw pośrednich w kontekście poprawy ergonomii oraz komfortu wizualnego, co jest kluczowe w środowiskach pracy oraz przestrzeniach publicznych.

Pytanie 11

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy D
B. Klasy A
C. Klasy C
D. Klasy B
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 12

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do montażu zacisków zakleszczających.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 13

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 3.
B. Końcówki 2.
C. Końcówki 1.
D. Końcówki 4.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 14

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. TN-C
C. IT
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 15

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Indukcyjnych.
B. Elektroluminescencyjnych.
C. Rtęciowych.
D. Żarowych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 16

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
B. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.
C. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
D. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 17

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Lampę neonową.
C. Żarówkę wolframową.
D. Żarówkę halogenową.
Odpowiedzi, które wskazują na inne źródła światła, mogą wydawać się na pierwszy rzut oka logiczne, jednak każda z nich posiada cechy, które różnią się od świetlówki kompaktowej. Żarówka halogenowa jest ulepszoną wersją żarówki tradycyjnej, która działa na zasadzie podgrzewania włókna tungstenowego. Choć ma wyższą wydajność niż standardowe żarówki żarowe, jej kształt i działanie nie są zgodne z tym, co przedstawiono na zdjęciu. Żarówka wolframowa, tak jak halogenowa, również wykorzystuje włókno, emitując ciepłe światło, ale jej kształt jest znacznie bardziej okrągły i nie przyjmuje postaci spiralnej. Lampa neonowa, z drugiej strony, jest zupełnie innym typem źródła światła; wykorzystuje gaz neonowy do emisji charakterystycznych kolorów, jednak nie posiada cech świetlówki kompaktowej. Typowe błędy myślowe w tym kontekście obejmują myślenie, że ponieważ źródła światła różnią się jedynie w kilku aspektach, można je utożsamiać. Ważne jest, aby zrozumieć podstawowe różnice w budowie i działaniu różnych typów źródeł światła, co pozwala na świadome ich dobieranie w zależności od potrzeb oświetleniowych i energetycznych. W kontekście nowoczesnych rozwiązań oświetleniowych, znajomość tych różnic jest kluczowa dla efektywnego projektowania systemów oświetleniowych oraz optymalizacji kosztów energii.

Pytanie 18

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
B. pomiar rezystancji uziemienia
C. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
D. weryfikacja oznaczeń obwodów oraz zabezpieczeń
W kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów pełni kluczową rolę w zapewnieniu jej prawidłowego funkcjonowania oraz bezpieczeństwa. Sprawdzanie oznaczeń obwodów i zabezpieczeń jest niezwykle istotne, ponieważ umożliwia właściwe zidentyfikowanie obwodów zasilających. Niewłaściwe oznaczenia mogą prowadzić do poważnych błędów w eksploatacji, takich jak przypadkowe wyłączenie zasilania czy trudności w identyfikacji obwodów w sytuacjach awaryjnych. Również ocena dostępu do urządzeń jest kluczowa, ponieważ instalacje elektryczne muszą być łatwo dostępne dla personelu serwisowego oraz użytkowników. Zbyt mała przestrzeń lub trudności w dostępie mogą uniemożliwić prawidłową konserwację, co zwiększa ryzyko awarii. Sprawdzanie poprawności oznaczenia przewodów neutralnych i ochronnych jest kolejnym elementem, który jest niezbędny w celu zapewnienia prawidłowego działania instalacji oraz ochrony przed porażeniem elektrycznym. Normy, takie jak PN-IEC 60364, kładą nacisk na znaczenie poprawnego oznakowania przewodów, co jest kluczowe dla prawidłowej identyfikacji ich funkcji oraz zapewnienia bezpieczeństwa użytkowników. Dlatego w kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów jest niezbędny i nie można ich pomijać.

Pytanie 19

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zerwanie połączenia wału silnika z maszyną napędzającą
B. Zwarcie międzyzwojowe w uzwojeniu twornika
C. Przerwa w obwodzie wzbudzenia
D. Uszkodzenie łożysk silnika
Zerwanie połączenia wału silnika z maszyną napędzaną jest jedną z najczęstszych przyczyn nagłego rozbiegania się silnika szeregowego prądu stałego. W przypadku, gdy wał silnika nie jest połączony z obciążeniem, silnik nie ma przeciwdziałającego momentu obrotowego. Silniki szeregowe są zaprojektowane do pracy pod obciążeniem, co wpływa na ich charakterystykę pracy. Gdy obciążenie jest nagle usunięte, prędkość obrotowa silnika wzrasta, co prowadzi do zjawiska nazywanego rozbiegiem. W praktyce, w przypadku rozbiegu, silnik może osiągnąć niebezpieczne prędkości, co może prowadzić do uszkodzenia wewnętrznych komponentów silnika, a także do niebezpiecznych sytuacji w systemie napędowym. Dlatego w projektowaniu systemów napędowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak systemy przeciążeniowe oraz czujniki, które monitorują stan pracy silnika i mogą automatycznie odłączyć zasilanie w przypadku wykrycia anomalii. Zastosowanie takich rozwiązań przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemów opartych na silnikach szeregowych prądu stałego.

Pytanie 20

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. niskonapięciowych liniach elektroenergetycznych.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 21

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. zwarcia w obwodzie elektrycznym
C. uszkodzenia podłączonego urządzenia elektrycznego
D. przeciążenia obwodu elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 22

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 4.
Kabel typu YAKY to jeden z najczęściej stosowanych kabli energetycznych, który charakteryzuje się szczególnymi właściwościami izolacyjnymi. W kontekście omawianej ilustracji, kabel na ilustracji 2 wykazuje cechy typowe dla kabli YAKY, takie jak izolacja z polwinitu oraz oplot z PVC. Izolacja ta zapewnia wysoką odporność na działanie czynników atmosferycznych, a także na uszkodzenia mechaniczne, co czyni go idealnym do zastosowań w instalacjach wewnętrznych i zewnętrznych. Kable YAKY są często wykorzystywane w budownictwie do zasilania różnych urządzeń oraz w instalacjach oświetleniowych, ponieważ ich konstrukcja pozwala na bezpieczne prowadzenie energii elektrycznej. Dodatkowo, w ramach norm europejskich, kable YAKY spełniają wymagania dotyczące bezpieczeństwa przeciwpożarowego i ochrony środowiska, jak również są zgodne z dyrektywami RoHS, co potwierdza ich przydatność w nowoczesnych instalacjach elektrycznych.

Pytanie 23

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Neutralny między zaciskami F1:N2 i 2
B. Fazowy między zaciskami F1:2 i F2:1
C. Fazowy między zaciskami F2:2 i 1
D. Neutralny między zaciskami N i F1:N1
Wybór odpowiedzi dotyczącej fazowego przewodu między zaciskami F1:2 i F2:1, czy innych błędnych odpowiedzi, może wynikać z nieporozumienia dotyczącego pomiarów rezystancji oraz interpretacji wyników. W przypadku pomiarów elektrycznych, każdy wynik może wskazywać na różne stany obwodu. Niezrozumienie, że nieskończona rezystancja jednoznacznie wskazuje na przerwę, prowadzi do błędnych wniosków, jakoby inne przewody były uszkodzone. Faza jest przewodem, który dostarcza prąd do urządzenia, a jego przerwa (choć także niebezpieczna) nie jest tym samym, co przerwa w przewodzie neutralnym, który zamyka obwód. Nieprawidłowa interpretacja pomiarów rezystancji w obwodach elektrycznych, jak również pominięcie znaczenia neutralnego przewodu, może prowadzić do ryzykownych sytuacji, gdzie urządzenia nie działają prawidłowo lub generują zagrożenie dla użytkowników. Dobrą praktyką jest zawsze upewnienie się, że rozumie się każdy aspekt pomiarów, w tym zasady dotyczące działania różnych części układu elektrycznego. W przypadku braku wiedzy na temat systemów elektrycznych, warto skonsultować się z doświadczonym elektrykiem lub inżynierem elektrykiem.

Pytanie 24

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP43 5x4 mm2
B. IP54 4x4 mm2
C. IP45 5x6 mm2
D. IP56 5x4 mm2
Wybór puszki instalacyjnej z oznaczeniami, które nie spełniają odpowiednich norm ochrony, może prowadzić do kilku poważnych problemów. Na przykład, oznaczenie IP43 nie zapewnia wystarczającej ochrony przed wodą i pyłem, co jest kluczowe w warunkach myjni samochodowej, gdzie występuje intensywna eksploatacja związana z wodą i detergentami. Z kolei IP45, mimo że oferuje lepszą ochronę przed pyłem, nie zapewnia odpowiedniego zabezpieczenia przed silnymi strumieniami wody, co może prowadzić do uszkodzeń instalacji elektrycznej. W przypadku IP54, chociaż przewód o przekroju 4x4 mm2 ma swoje zastosowanie, nie jest on odpowiedni dla wymagań związanych z obciążeniem prądowym oraz odpornością na warunki panujące w myjniach. Kluczowym błędem myślowym jest założenie, że jakiekolwiek oznaczenie IP będzie wystarczające, bez uwzględnienia konkretnego środowiska pracy. W rzeczywistości, dobór odpowiednich komponentów do instalacji elektrycznych powinien być oparty na analizie warunków, w jakich będą one eksploatowane. Dlatego ważne jest, aby przy podejmowaniu decyzji kierować się nie tylko wartościami liczbowymi, ale także ich praktycznym zastosowaniem oraz specyfiką miejsca pracy.

Pytanie 25

Zdjęcie przedstawia

Ilustracja do pytania
A. drabinkę kablową.
B. płytkę zaciskową.
C. szynę łączeniową.
D. listwę montażową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 26

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. brak możliwości zadziałania załączonego wyłącznika
B. prawidłowe działanie wyłącznika
C. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
D. niemożność załączenia wyłącznika pod obciążeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 27

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kg
B. Pa
C. Nˑm
D. kgˑm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 28

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-S
B. IT
C. TN-C
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TT jest poprawna, ponieważ układ TT charakteryzuje się bezpośrednim uziemieniem punktu neutralnego źródła zasilania, co jest kluczowe w kontekście ochrony przeciwporażeniowej. W tym systemie, przewód neutralny (N) oraz przewody fazowe (L1, L2, L3) są oddzielnie prowadzone, co pozwala na niezależne uziemienie ochronne (RA) od uziemienia roboczego źródła (RB). Taka konstrukcja minimalizuje ryzyko prądów upływowych i zwiększa bezpieczeństwo użytkowników, szczególnie w instalacjach o dużym narażeniu na wilgoć. W przypadku zwarcia, pętla zwarciowa, która obejmuje przewód fazowy, odbiornik, uziemienie ochronne oraz uziemienie źródła, działa szybko, wyłączając zasilanie, co jest zgodne z wymaganiami normy PN-IEC 60364, która podkreśla potrzebę stosowania skutecznych środków ochrony. Przykładowo, w budynkach użyteczności publicznej, zastosowanie układu TT jest zalecane w strefach zwiększonego ryzyka, co zwiększa komfort i bezpieczeństwo użytkowników.

Pytanie 29

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Lutownicę, zestaw wkrętaków, ściągacz izolacji
B. Nóż monterski, praskę, zestaw kluczy
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Nóż monterski, praskę, ściągacz izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, którą zaznaczyłeś, to 'Nóż monterski, praskę, komplet kluczy'. Nóż monterski jest super ważny do precyzyjnego cięcia kabli i ich przygotowania do podłączenia. Praska to kluczowe narzędzie, które pozwala na solidne łączenie przewodów elektrycznych z użyciem złączek. Przecież jakość tych połączeń jest mega istotna w instalacjach elektrycznych, bo ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemu. No i kompletny zestaw kluczy też się przydaje, bo czasami trzeba dokręcić lub odkręcić śruby mocujące przy podłączaniu kabli do rozdzielnicy. Używanie odpowiednich narzędzi według branżowych norm, jak PN-IEC 60364, zapewnia, że prace montażowe są bezpieczne i efektywne. Kiedy korzystasz z tych narzędzi, monter ma możliwość szybkiego i dokładnego wykonania podłączeń, co jest ważne, zwłaszcza przy realizacji projektów budowlanych czy modernizacyjnych.

Pytanie 30

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest poprawna, ponieważ przewód spawalniczy OnS-1 charakteryzuje się specyficzną konstrukcją, która jest dostosowana do spawania łukowego. Składa się z wielu cienkich drutów miedzianych, które są skręcone w pęczki, co zapewnia doskonałe przewodnictwo elektryczne oraz elastyczność. Tego typu przewody są szeroko stosowane w przemyśle spawalniczym, gdzie kluczowe jest utrzymanie wysokiej jakości połączeń oraz efektywności procesów spawania. W praktyce, wybór odpowiedniego przewodu spawalniczego ma bezpośredni wpływ na jakość realizowanych zadań oraz trwałość spoin. Ponadto, przewody takie jak OnS-1 spełniają normy IEC 60228 oraz EN 50525, które określają wymagania dotyczące przewodów elektrycznych, co czyni je niezawodnym wyborem dla profesjonalnych spawaczy. Zrozumienie konstrukcji i zastosowania przewodów spawalniczych jest kluczowe, aby uniknąć problemów związanych z wydajnością i bezpieczeństwem podczas pracy.

Pytanie 31

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 32

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnej pierścieniowej.
B. Komutatorowej prądu przemiennego.
C. Synchronicznej.
D. Indukcyjnej klatkowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 33

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. C6
B. B16
C. B20
D. B6

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "B16" jest poprawna, ponieważ wyłącznik nadmiarowo-prądowy oznaczony jako B16 ma prąd znamionowy 16 A, co jest najbliższą wartością nieprzekraczającą dopuszczalnej obciążalności długotrwałej przewodów o przekroju 1,5 mm² ułożonych w sposób B2 wynoszącej 16,5 A. Wybór odpowiedniego wyłącznika nadmiarowo-prądowego jest kluczowy w kontekście zapewnienia bezpieczeństwa instalacji elektrycznej. W przypadku przewodów o takim przekroju, należy pamiętać, że ich maksymalna obciążalność długotrwała powinna być zawsze przekraczana przez wartość prądową wyłącznika, jednak nie może ona jej przekraczać o więcej niż 10%. Używając wyłącznika B16, możemy być pewni, że ochrona przewodów będzie odpowiednia, a ryzyko przegrzania lub ich uszkodzenia zostanie zminimalizowane. Rekomendacje dotyczące użycia wyłączników nadmiarowo-prądowych w instalacjach jednofazowych, takie jak te zawarte w normie PN-IEC 60898-1, jasno określają, że dobór odpowiedniego zabezpieczenia powinien być uzależniony od zastosowania oraz przewidywanego obciążenia. Przykładowo, w przypadku obwodów zasilających gniazdka w domach jednorodzinnych, wyłącznik B16 jest standardowym wyborem, zapewniającym nie tylko ochronę przed przeciążeniem, ale również przed zwarciem.

Pytanie 34

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ przedstawia schemat montażowy, który spełnia wszystkie wymagania dotyczące połączeń przewodów w obwodach oświetleniowych. W tym przypadku przewody fazowe (L), neutralne (N) oraz ochronne są podłączone zgodnie z zasadami montażu, co zapewnia prawidłowe działanie układu oświetleniowego. W praktyce oznacza to, że przewód fazowy jest podłączony do odpowiednich łączników, a przewód neutralny do źródła zasilania. To podejście nie tylko zapewnia bezpieczeństwo użytkowania, ale także eliminuje ryzyko zwarcia czy uszkodzenia elementów instalacji. W branży elektroinstalacyjnej kluczowe jest przestrzeganie norm takich jak PN-IEC 60364, które regulują kwestie bezpieczeństwa w instalacjach elektrycznych. Poprawne połączenie przewodów jest również istotne w kontekście efektywności energetycznej, co ma znaczenie w obliczeniach kosztów eksploatacyjnych układów oświetleniowych.

Pytanie 35

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 25 mm2
B. 16 mm2
C. 4,0 mm2
D. 10 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 36

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 37

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystywności gruntu metodą bezpośrednią.
B. rezystywności gruntu metodą pośrednią.
C. rezystancji uziemień metodą kompensacyjną.
D. rezystancji uziemień metodą techniczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'rezystancji uziemień metodą techniczną' jest prawidłowa, ponieważ rysunek ilustruje schemat pomiaru rezystancji uziemienia w oparciu o metodę techniczną, która jest powszechnie stosowana w inżynierii elektrycznej. Metoda ta, znana także jako metoda Wennera, polega na umieszczeniu dwóch elektrod pomocniczych w równych odległościach od elektrody centralnej. Takie rozmieszczenie elektrod pozwala na dokładne pomiary napięcia i prądu, co umożliwia precyzyjne obliczenie rezystancji uziemienia. W praktyce, pomiar rezystancji uziemienia jest kluczowy dla zapewnienia skutecznej ochrony przed przepięciami oraz dla poprawnego działania systemów odgromowych. Warto również zauważyć, że zgodnie z normami, takimi jak PN-EN 50522, ważne jest, aby pomiary rezystancji uziemienia były wykonywane regularnie i w odpowiednich warunkach, aby zapewnić bezpieczeństwo instalacji elektrycznych.

Pytanie 38

Na którym rysunku przedstawiono układ zasilania lampy rtęciowej?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest prawidłowa, ponieważ przedstawia typowy układ zasilania lampy rtęciowej, który składa się z dławika oraz kondensatora. Dławik, zwany także cewką, pełni kluczową rolę w stabilizacji prądu, co jest niezbędne dla prawidłowego działania lampy rtęciowej. W momencie zapłonu, lampa wymaga impulsu wysokiego napięcia, który generuje dławik. Po uruchomieniu, dławik ogranicza prąd, co jest istotne dla zapobiegania uszkodzeniom lampy przez nadmiar prądu. Kondensator z kolei wspiera dławik, pomagając w stabilizacji napięcia i minimalizując zakłócenia. W praktyce, układy zasilania lamp rtęciowych są szeroko stosowane w oświetleniu ulicznym oraz w dużych obiektach, gdzie ważna jest efektywność energetyczna oraz długotrwałość źródeł światła. Zastosowanie dławika i kondensatora w tych układach jest zgodne z obowiązującymi standardami branżowymi, co zapewnia ich niezawodność i bezpieczeństwo w użytkowaniu.

Pytanie 39

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. sodowa.
C. halogenowa.
D. rtęci owo-żarowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 40

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Impedancji pętli zwarcia.
B. Prądu różnicowego wyłącznika różnicowoprądowego.
C. Rezystancji uziomu ochronnego.
D. Rezystancji izolacji przewodów fazowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "rezystancji uziomu ochronnego" jest prawidłowa, ponieważ przyrząd pomiarowy MRU-20 jest specjalnie zaprojektowany do pomiaru rezystancji uziomu. Uziomy ochronne mają kluczowe znaczenie dla bezpieczeństwa instalacji elektrycznych, ponieważ zapewniają odprowadzenie prądów zwarciowych do ziemi, minimalizując ryzyko porażenia prądem elektrycznym oraz uszkodzenia urządzeń. Pomiar rezystancji uziomu ochronnego powinien odbywać się zgodnie z obowiązującymi normami, takimi jak PN-EN 61557-5, która określa metody pomiaru i dopuszczalne wartości rezystancji dla uziemienia. Zgodnie z tą normą, dla efektywnego zabezpieczenia zaleca się, aby rezystancja uziomu nie przekraczała 10 Ω, jednak w niektórych sytuacjach wartość ta może być niższa. W praktyce, przy pomocy MRU-20 można wykonać pomiary w różnych warunkach, zarówno w instalacjach nowo budowanych, jak i istniejących, co pozwala na bieżące kontrolowanie stanu ochrony przeciwporażeniowej.