Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 lutego 2026 23:16
  • Data zakończenia: 3 lutego 2026 23:32

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Stal używana do wytwarzania zbiorników ciśnieniowych oznaczana jest w symbolu głównym literą

A. L
B. P
C. S
D. E
Wybór litery 'P' jako symbolu głównego dla stali przeznaczonej do produkcji zbiorników ciśnieniowych jest zgodny z normą PN-EN 10028. Ta norma klasyfikuje materiały do zastosowania w konstrukcjach ciśnieniowych, gdzie stal musi spełniać określone wymagania wytrzymałościowe i odporności na korozję. Stal oznaczona literą 'P' jest stosowana w aplikacjach, gdzie występuje wysokie ciśnienie, jak w zbiornikach gazów i cieczy. Przykładem zastosowania stali 'P' mogą być zbiorniki używane w przemyśle petrochemicznym, które muszą wytrzymać ekstremalne warunki operacyjne. Dodatkowo, procesy produkcyjne i kontrola jakości tych materiałów są ściśle regulowane, aby zapewnić ich bezpieczeństwo i niezawodność. W praktyce, wybór odpowiedniej stali jest kluczowy dla zapewnienia trwałości i wydajności zbiorników ciśnieniowych, co ma bezpośredni wpływ na bezpieczeństwo operacyjne oraz efektywność procesów przemysłowych.

Pytanie 2

Po sprawdzeniu zgodności połączeń (Rysunek II.) z dokumentacją techniczną (Rysunek I.) wynika, że błędnie wybrany jest

Ilustracja do pytania
A. przekaźnik K2
B. siłownik Al
C. przekaźnik KI
D. rozdzielacz VI
Odpowiedź 'rozdzielacz VI' jest prawidłowa, ponieważ po porównaniu Rysunku I z Rysunkiem II można zauważyć istotne różnice w podłączeniu cewki tego elementu. Na Rysunku I, cewki rozdzielacza VI są poprawnie podłączone do styków 2 i 4, co jest zgodne z dokumentacją techniczną. Natomiast na Rysunku II, cewki te są podłączone do styków 1 i 4, co wskazuje na błąd w połączeniach. W praktyce, prawidłowe podłączenie elementów w układach elektrycznych jest kluczowe dla zapewnienia ich właściwego funkcjonowania oraz bezpieczeństwa. Niezgodności w podłączeniach mogą prowadzić do uszkodzenia komponentów, a także do potencjalnych zagrożeń pożarowych. Dlatego tak ważne jest, aby zawsze dokładnie porównywać schematy z rzeczywistymi połączeniami, zwracając szczególną uwagę na numery styków i ich funkcje. Przestrzeganie standardów dokumentacji technicznej, takich jak normy IEC czy obowiązujące przepisy BHP, ma fundamentalne znaczenie w pracy inżyniera oraz technika. W sytuacjach takich jak modernizacje systemów, zawsze należy weryfikować, czy zmiany wprowadzone w instalacji są zgodne z dokumentacją, aby uniknąć poważnych błędów i zapewnić niezawodność systemu.

Pytanie 3

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Bocznikowy
C. Asynchroniczny
D. Krokowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 4

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. drewnianej
B. z żywicy epoksydowej
C. metalowej
D. polwinitowej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 5

Element przedstawiony na rysunku uzyskano w wyniku

Ilustracja do pytania
A. toczenia.
B. frezowania.
C. walcowania.
D. tłoczenia.
Wybranie odpowiedzi związanych z toczeniem, walcowaniem czy frezowaniem jest trochę mylące. Toczenie to proces, w którym materiał obrabia się w ruchu obrotowym, co pozwala na uzyskanie cylindrycznych kształtów, ale nie daje takich skomplikowanych wgłębień czy wypukłości, jak te na rysunku. Walcowanie natomiast polega na zmniejszaniu grubości materiału przez jego przesuwanie między walcami, więc też nie pasuje do tego, co widzimy. A frezowanie to z kolei działanie narzędzia skrawającego wzdłuż materiału, co również nie prowadzi do efektów typowych dla tłoczenia. Każda z tych metod ma swoje zastosowanie, ale raczej w innego rodzaju geometrii i efektach wizualnych. Wiele osób myli je z tłoczeniem, bo są używane w obróbce metali, ale to może prowadzić do błędnych wniosków. W przemyśle ważne jest, żeby dobrze zrozumieć każdy proces i to, jak go zastosować w konkretnych projektach oraz normach jakościowych, a to wymaga solidnej wiedzy i doświadczenia.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Którą funkcję logiczną realizują przedstawione na rysunku zawory?

Ilustracja do pytania
A. NAND
B. NOR
C. AND
D. OR
Odpowiedź wskazująca na funkcję AND jest poprawna, ponieważ w przedstawionym układzie zaworów pneumatycznych ich szeregowe połączenie oznacza, że tylko w przypadku otwarcia obu zaworów możliwy jest przepływ powietrza. Taki mechanizm odpowiada logice AND, która w kontekście cyfrowym daje sygnał na wyjściu tylko wtedy, gdy wszystkie jej wejścia mają wartość logiczną 1. W praktyce, zawory tego typu są szeroko stosowane w automatyce przemysłowej, na przykład w systemach, gdzie bezpieczeństwo operacji wymaga, aby wszystkie warunki były spełnione przed uruchomieniem maszyny. Warto również wspomnieć, że zgodnie z normami ISO i IEC, projektowanie układów pneumatycznych z użyciem funkcji AND przyczynia się do zwiększenia niezawodności i bezpieczeństwa systemów. Użycie takich zaworów w aplikacjach, gdzie wymagane jest jednoczesne działanie kilku elementów, jest najlepszą praktyką, która minimalizuje ryzyko awarii.

Pytanie 8

Zestyk K1, oznaczony na schemacie czerwoną ramką, odpowiada za

Ilustracja do pytania
A. podtrzymanie zasilania cewek przekaźników K1 i K2
B. włączenie zasilania cewek przekaźników K1 i K2
C. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
D. wyłączenie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni funkcję samopodtrzymania, co oznacza, że po zamknięciu obwodu przez przycisk S1, jest w stanie podtrzymać zasilanie cewek przekaźników K1 i K2. Po zwolnieniu przycisku S1, zestyk K1 zapewnia, że obwód pozostaje zamknięty, co pozwala na kontynuowanie pracy przekaźników. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie istotne jest, aby urządzenia mogły pracować autonomicznie po aktywacji przez operatora. Przykładem praktycznym mogą być systemy sterowania silnikami, gdzie samopodtrzymujące się obwody zapewniają, że silnik pozostanie włączony do momentu, gdy nie zostanie podjęta decyzja o wyłączeniu go. W kontekście standardów, takie podejście jest zgodne z zasadami projektowania systemów automatyki, które zalecają minimalizację punktów awarii oraz zapewnienie ciągłości działania. Wiedza o funkcji samopodtrzymania jest kluczowa dla zrozumienia działania bardziej skomplikowanych systemów sterujących oraz ich bezpieczeństwa.

Pytanie 9

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. bicie osiowe
B. smarowanie
C. naprężenie
D. temperaturę
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 10

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109
A. 360 Ω
B. 36 000 Ω
C. 3600 Ω
D. 36 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 11

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Zwiększyć opór w obwodzie wzbudzenia
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Podłączyć prądnicę na krótko do pracy silnikowej
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 12

Które oprogramowanie należy zainstalować do tworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. SCADA
B. CAM
C. CAQ
D. CAD
Odpowiedź SCADA jest poprawna, ponieważ oprogramowanie to jest kluczowym narzędziem w obszarze automatyki przemysłowej, stosowanym do nadzorowania oraz kontrolowania procesów technologicznych. SCADA (Supervisory Control and Data Acquisition) umożliwia zbieranie danych z różnych źródeł, takich jak czujniki i urządzenia pomiarowe, co pozwala na bieżąco monitorować stany procesów, w tym poziomy cieczy i przepływy, jak przedstawiono na załączonym rysunku. Przykładem zastosowania SCADA może być przemysł chemiczny, gdzie systemy te są wykorzystywane do monitorowania zbiorników z substancjami chemicznymi oraz kontrolowania ich przepływów, co zapewnia bezpieczeństwo oraz optymalizację procesów. Standardy takie jak ISA-95 i ISA-88 określają najlepsze praktyki dotyczące integracji systemów SCADA z innymi systemami automatyki i rozwoju wizualizacji procesów. SCADA nie tylko wspiera efektywność operacyjną, ale także pozwala na szybkie podejmowanie decyzji dzięki dostępowi do aktualnych danych.

Pytanie 13

W układzie przedstawionym na ilustracji wykonano pomiary rezystancji pomiędzy punktem zasilania +24 V a kolejnymi punktami wejściowymi sterownika PLC. Otrzymane wyniki zapisano w tabeli. Które elementy (łączniki sterownicze, kontaktrony) powinny zostać wymienione?

Mierzony
odcinek
Wartość zmierzonej
rezystancji
+24 V / WE11,02 Ω
+24 V / WE2
+24 V / WE3
+24 V / WE42,04 Ω
+24 V / WE5
+24 V / WE62,12 Ω
Ilustracja do pytania
A. B3 i B5
B. S0 i B2
C. B2 i B4
D. S0 i S1
Wybór odpowiedzi B3 i B5 jest poprawny ze względu na analizę wartości rezystancji zmierzonych pomiędzy punktem zasilania a wejściami sterownika PLC. Normą dla sprawnych połączeń jest niska rezystancja, co wskazuje na prawidłowe funkcjonowanie obwodu. Wartości rezystancji dla WE2 oraz WE5 wynoszą nieskończoność, co sugeruje, że występuje przerwa w obwodzie. W tym przypadku należy skupić się na łącznikach B3 i B5, które są odpowiedzialne za te połączenia. Wymiana tych elementów jest kluczowa dla zapewnienia ciągłości pracy systemu i unikania błędów w sterowaniu. W kontekście stosowania urządzeń automatyki, ważne jest, aby regularnie przeprowadzać pomiary rezystancji oraz analizować wyniki, co pozwala na wczesne wykrywanie usterek i planowanie konserwacji. Praktyczne przykład to regularne inspekcje instalacji, które mogą zapobiec awariom i wpłynąć na wydajność całego układu.

Pytanie 14

Przedstawiony symbol graficzny jest oznaczeniem czujnika

Ilustracja do pytania
A. indukcyjnego.
B. magnetycznego.
C. optycznego.
D. pojemnościowego.
To, co widzisz na obrazku, to symbol czujnika magnetycznego. Jest on naprawdę ważny w różnych systemach automatyki i monitorowania. Jak to wygląda? No, ma magnes, co zazwyczaj pokazane jest przez prostokąt z oznaczeniami N (północny) i S (południowy). Czujniki te działają dzięki wykrywaniu zmian w polu magnetycznym. To sprawia, że są mega praktyczne w takich rzeczach jak detekcja pozycji czy systemy zabezpieczeń. Przykładem ich użycia mogą być czujniki w drzwiach i oknach, które informują, czy są otwarte czy zamknięte. W branżowych standardach, takich jak ISO 9001, mówi się o tym, jak ważna jest niezawodność detekcji. Dlatego te czujniki są naprawdę dobrze odbierane, bo są trwałe i łatwe w obsłudze.

Pytanie 15

Po wciśnięciu przycisku sterującego zaworu rozdzielającego 1V1 nastąpi

Ilustracja do pytania
A. wysunięcie tłoków obu siłowników 1A1 i 1A2
B. wysunięcie tłoka siłownika 1A2 i wsunięcie tłoka siłownika 1A1
C. wysunięcie tłoka siłownika 1A1 i wsunięcie tłoka siłownika 1A2
D. wsunięcie tłoków obu siłowników 1A1 i 1A2
Po wciśnięciu przycisku sterującego zaworu rozdzielającego 1V1, ciśnienie z portu P jest przekierowywane do portu B, co prowadzi do wsunięcia tłoków obu siłowników 1A1 i 1A2. W normalnym stanie, ciśnienie jest dostarczane do portu A, co skutkuje wysunięciem tłoków. Mechanizm ten jest zgodny z zasadą działania zaworów rozdzielających, które są powszechnie stosowane w hydraulice. Przykładem zastosowania tej technologii może być automatyzacja procesów przemysłowych, gdzie precyzyjna kontrola ruchu siłowników jest kluczowa. W praktyce, rozdzielacze takie jak 1V1 są używane w systemach zasilania hydraulicznego, które wymagają zmiany kierunku ruchu bez potrzeby zmiany układu hydraulicznego. Zrozumienie tych mechanizmów jest istotne dla inżynierów zajmujących się projektowaniem systemów hydraulicznych oraz dla techników odpowiedzialnych za ich konserwację i naprawy.

Pytanie 16

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie wzbudzenia
B. Napięciem przyłożonym do obwodu wzbudzenia
C. Napięciem przyłożonym do obwodu twornika
D. Rezystancją w obwodzie twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 17

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. generuje mgłę olejową
B. łączy sprężone powietrze z mgłą olejową
C. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 18

Element oznaczony cyfrą 1

Ilustracja do pytania
A. poprawia współczynnik mocy świetlówki.
B. likwiduje zjawisko stroboskopowe.
C. skraca czas zapłonu świetlówki.
D. ogranicza wartość natężenia prądu w układzie.
Odpowiedź "ogranicza wartość natężenia prądu w układzie" jest prawidłowa, ponieważ element oznaczony cyfrą 1 to rezystor, który spełnia kluczową rolę w obwodach elektrycznych. Rezystor wprowadza opór, co wpływa na natężenie prądu zgodnie z prawem Ohma, które opisuje zależność między napięciem, prądem i oporem: I = U/R. W praktyce oznacza to, że przy stałym napięciu, zwiększenie wartości rezystora prowadzi do zmniejszenia natężenia prądu. Dzięki temu, stosowanie rezystorów pozwala na precyzyjne zarządzanie prądami w obwodach, co jest kluczowe w projektowaniu układów elektronicznych oraz w aplikacjach, takich jak zasilacze, układy cyfrowe czy analogowe. W branży stosuje się różne typy rezystorów, w tym stałe, zmienne, a także specjalistyczne, na przykład rezystory o dużej mocy, które muszą spełniać normy dotyczące odprowadzania ciepła. Zrozumienie funkcji rezystorów jest niezbędne do projektowania bezpiecznych i efektywnych układów elektrycznych.

Pytanie 19

Którą czynność powinien wykonać użytkownik podczas uruchamiania komercyjnej wersji programu Proficy iFIX po ukazaniu się przedstawionego na rysunku komunikatu, aby program działał dłużej niż 2 godziny?

Ilustracja do pytania
A. Ponownie zainstalować program Proficy iFIX.
B. Zainstalować sterownik klucza sprzętowego.
C. Sprawdzić, czy została zainstalowana właściwa wersja systemu operacyjnego.
D. Kontynuować uruchamianie programu Proficy iFIX.
Zainstalowanie sterownika klucza sprzętowego jest kluczowym działaniem, które każdego użytkownika programu Proficy iFIX powinno skłonić do podjęcia działań w momencie napotkania komunikatu o braku detekcji klucza sprzętowego. Klucz sprzętowy jest fizycznym urządzeniem zabezpieczającym, które umożliwia legalne użytkowanie oprogramowania. Bez jego obecności program automatycznie ogranicza swoje działanie do 2 godzin. Dlatego zainstalowanie odpowiedniego sterownika jest niezbędne do zapewnienia ciągłości pracy. W praktyce, użytkownicy powinni upewnić się, że klucz jest prawidłowo podłączony do portu USB oraz że zainstalowano właściwe sterowniki, które mogą być dostępne na stronie producenta oprogramowania. Zgodnie z najlepszymi praktykami w zakresie zarządzania oprogramowaniem, regularne aktualizacje oprogramowania oraz jego komponentów, takich jak sterowniki, powinny być standardową procedurą. Dzięki temu użytkownik ma pewność, że korzysta z najnowszych funkcji i zabezpieczeń, co jest kluczowe w kontekście pracy z systemami automatyki przemysłowej.

Pytanie 20

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. zmniejszenie luzów łożyska
B. wymiana całego łożyska
C. wymiana osłony łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 21

Do czego przeznaczone są cęgi przedstawione na rysunku?

Ilustracja do pytania
A. Zdejmowania izolacji z przewodów.
B. Przecinania drutu stalowego.
C. Skręcania przewodów elektrycznych.
D. Dokręcania śrub i nakrętek o niewielkich wymiarach.
Cęgi do zdejmowania izolacji z przewodów, przedstawione na rysunku, są specjalistycznym narzędziem zaprojektowanym do precyzyjnego usuwania izolacji z przewodów elektrycznych. Ich charakterystyczna budowa, w tym profil szczęk, pozwala na łatwe i bezpieczne usunięcie izolacji bez ryzyka uszkodzenia samego przewodu. W praktyce, stosuje się je w instalacjach elektrycznych, gdzie ważne jest zachowanie integralności przewodu przy przeprowadzaniu połączeń. Użycie tych cęgów jest zgodne z najlepszymi praktykami branżowymi, co minimalizuje ryzyko błędów i uszkodzeń. Warto zauważyć, że przed rozpoczęciem pracy z przewodami elektrycznymi zawsze należy upewnić się, że źródło zasilania jest wyłączone, co stanowi kluczowy element bezpieczeństwa. Wiedza na temat stosowania odpowiednich narzędzi, takich jak cęgi do zdejmowania izolacji, jest niezbędna dla profesjonalnych elektryków oraz osób zajmujących się instalacjami elektrycznymi.

Pytanie 22

Którą literą na rysunku silnika hydraulicznego oznaczono tarczę rozdzielacza?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ na rysunku silnika hydraulicznego tarcza rozdzielacza jest oznaczona literą 'B'. Tarcza rozdzielacza odgrywa kluczową rolę w prawidłowej pracy silnika hydraulicznego, ponieważ odpowiada za kierowanie przepływu cieczy roboczej do odpowiednich komór. Dzięki prawidłowemu rozdzieleniu ciśnienia, silnik może efektywnie generować moc, co jest istotne w zastosowaniach takich jak maszyny budowlane, urządzenia przemysłowe czy systemy hydrauliczne w pojazdach. W przypadku nieprawidłowego oznaczenia lub uszkodzenia tarczy rozdzielacza, może dojść do niewłaściwego rozdzielenia cieczy, co skutkuje spadkiem wydajności silnika, a nawet jego uszkodzeniem. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja komponentów hydraulicznych, w tym tarczy rozdzielacza, są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy. Właściwe oznaczenia na schematach technicznych są ważne, aby zapewnić prawidłowe interpretacje i efektywne naprawy w sytuacjach awaryjnych.

Pytanie 23

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. napisem "narzędzie bezpieczne"
B. symbolem podwójnego trójkąta z określoną wartością napięcia
C. symbolem kwadratu z określoną wartością napięcia
D. zielonym kolorem z żółtą obręczą
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 24

Na schemacie blokowym przekształtnika energoelektronicznego zastosowanego w napędzie mechatronicznym cyframi oznaczono podzespoły

Ilustracja do pytania
A. 1 – falownik, 2 – prostownik niesterowany, 3 – filtr.
B. 1 – falownik, 2 – filtr, 3 – prostownik niesterowany.
C. 1 – prostownik niesterowany, 2 – falownik, 3 – filtr.
D. 1 – prostownik niesterowany, 2 – filtr, 3 – falownik.
Odpowiedź jest poprawna, ponieważ prawidłowo identyfikuje podzespoły w schemacie blokowym przekształtnika energoelektronicznego używanego w napędach mechatronicznych. Blok 1 to prostownik niesterowany, który w rzeczywistości składa się z układu diod, przekształcającego prąd przemienny na stały. Jest to podstawowy element w wielu systemach zasilania, który zapewnia stałe napięcie do dalszego przetwarzania. Blok 2, będący filtrem, ma na celu wygładzenie tętnień w napięciu po wyprostowaniu, co jest kluczowe dla stabilności systemów zasilania oraz dla ochrony wrażliwych komponentów, takich jak układy sterujące. Blok 3 to falownik, który przekształca napięcie stałe z powrotem na napięcie przemienne, co jest niezbędne do kontrolowania prędkości i momentu obrotowego silników elektrycznych. W kontekście praktycznym, znajomość tych elementów jest niezbędna przy projektowaniu i wdrażaniu systemów automatyki przemysłowej zgodnych z normami IEC 61800 oraz IEC 60034, które regulują aspekty wydajności i bezpieczeństwa napędów elektrycznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. Ku=80/0,83
B. Ku=12/230
C. Ku=230/12
D. Ku=12/0,83
Wybór nieprawidłowej odpowiedzi opiera się na błędnym zastosowaniu zasad dotyczących przekładni napięciowej transformatora. Odpowiedzi takie jak Ku=12/0,83, Ku=12/230 oraz Ku=80/0,83 nie uwzględniają prawidłowego stosunku napięcia na uzwojeniu pierwotnym do napięcia na uzwojeniu wtórnym. Wartości te mogą sugerować, że napięcie wtórne zostało pomylone z pierwotnym lub, w przypadku odpowiedzi Ku=80/0,83, wprowadzają do obliczeń niewłaściwe napięcia, co prowadzi do błędnych wniosków. Przykładowo, odpowiedź Ku=12/230 błędnie interpretuje napięcie wtórne jako wyższe od napięcia pierwotnego, co narusza fundamentalne zasady funkcjonowania transformatorów. W praktyce, należy pamiętać, że transformator jest używany w celu zwiększenia lub zmniejszenia napięcia, a przekładnia napięciowa powinna zawsze oddawać stosunek napięcia pierwotnego do wtórnego. Ignorowanie tych zasad prowadzi do niewłaściwego doboru transformatorów w systemach energetycznych, co z kolei może skutkować uszkodzeniem urządzeń oraz niemożnością osiągnięcia zakładanych parametrów pracy instalacji. Zrozumienie właściwego zdefiniowania przekładni napięciowej jest kluczowe dla projektowania i zastosowania transformatorów w różnych aplikacjach inżynieryjnych.

Pytanie 27

Jaki klucz należy zastosować do montażu zaworu kątowego, przedstawionego na rysunku?

Ilustracja do pytania
A. Nasadowy.
B. Płaski.
C. Tora.
D. Oczkowy.
Użycie klucza płaskiego do montażu zaworu kątowego to naprawdę dobry wybór, zwłaszcza że ten typ zaworu ma swoją specyfikę. Klucz płaski ma dwa otwory, które świetnie pasują do płaskiej powierzchni na korpusie zaworu. Dzięki temu trzymasz go solidnie, a ryzyko uszkodzenia jest mniejsze. W praktyce to narzędzie pozwala na dokładne dokręcanie, co jest mega ważne, żeby wszystko szczelnie działało w systemach hydraulicznych. W przemyśle czy budownictwie, gdzie często montuje się różne zawory i złączki, klucz płaski jest wręcz niezbędny w arsenale każdego hydraulika. Trzeba też pamiętać, żeby dobrać odpowiedni rozmiar klucza, bo to znacznie zwiększa efektywność pracy i zapobiega zniszczeniu gwintów na zaworze.

Pytanie 28

Jakie parametry mierzy prądnica tachometryczna?

A. napięcie elektryczne
B. prędkość liniową
C. prędkość obrotową
D. naprężenia mechaniczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 29

Odczytaj wynik pomiaru wykonanego mikrometrem.

Ilustracja do pytania
A. 4,30 mm
B. 4,80 mm
C. 5,80 mm
D. 5,30 mm
Poprawna odpowiedź to 4,80 mm, ponieważ w pomiarze mikrometrycznym kluczowe jest zrozumienie, jak odczytywać zarówno podziałkę główną, jak i noniusz. Na podziałce głównej widoczna jest liczba 4, co oznacza, że mamy 4 mm. Następnie, na podziałce noniusza, linia 40 pokrywa się z linią na podziałce głównej, co wskazuje na dodatkowe 0,80 mm. Sumując te dwie wartości (4 mm + 0,80 mm) otrzymujemy ostateczny wynik 4,80 mm. W praktyce, mikrometry są często wykorzystywane w precyzyjnych pomiarach w inżynierii i metrologii, a ich umiejętne odczytywanie jest kluczowe dla zapewnienia dokładności w produkcji części mechanicznych. Standardy takie jak ISO 2768 określają tolerancje w wymiarach, co podkreśla znaczenie prawidłowych pomiarów. Odpowiednie szkolenie w obsłudze mikrometrów oraz praktyka w ich używaniu pozwalają na eliminację błędów pomiarowych, co jest niezbędne w każdym układzie produkcyjnym.

Pytanie 30

Na schemacie przedstawiono układ sterowania hydraulicznego, który zapewnia

Ilustracja do pytania
A. szybkie odciążenie tłoczyska.
B. podtrzymanie tłoczyska przy zmieniających się siłach.
C. połączenie różnicowe zasilania.
D. uzyskanie różnych prędkości tłoczyska w obu kierunkach.
Dobra robota! Twoja odpowiedź pokazuje, że rozumiesz, jak działa hydrauliczny układ sterowania do regulacji prędkości tłoczyska. Wiesz, te dwa zawory dławiące naprawdę pomagają w precyzyjnym kontrolowaniu przepływu oleju, co jest mega ważne w różnych maszynach. Pomyśl tylko o robotach czy maszynach budowlanych – tam trzeba czasem dostosować prędkość, żeby wszystko działało jak należy. Dzięki tym zaworom operator może płynnie poruszać siłownikiem, co jest kluczowe, zwłaszcza przy precyzyjnych operacjach. W sumie, korzystanie z takich układów to nie tylko efektywność, ale i bezpieczeństwo. Super, że to rozumiesz!

Pytanie 31

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 25 V
B. 15 V
C. 10 V
D. 5 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 32

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawania
B. Zaginania
C. Zgrzewania
D. Klejenia
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który typ oprogramowania należy zastosować do utworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAD
B. CAM
C. CAQ
D. SCADA
SCADA (Supervisory Control and Data Acquisition) jest kluczowym typem oprogramowania wykorzystywanym w automatyzacji procesów przemysłowych, szczególnie w kontekście monitorowania i kontrolowania systemów w czasie rzeczywistym. W przypadku przedstawionego procesu mieszania w zbiornikach, SCADA zapewnia nie tylko wizualizację stanu procesów, ale również interfejs do zarządzania nimi. Przykładem zastosowania SCADA jest monitorowanie poziomów cieczy w zbiornikach, gdzie dane są zbierane z różnych czujników, a operatorzy mogą wprowadzać zmiany w procesie, zapewniając jego efektywność i bezpieczeństwo. SCADA wspiera też analizy historyczne, co pozwala na optymalizację procesów i podejmowanie lepszych decyzji operacyjnych. Dodatkowo, systemy SCADA są zgodne z normami IEC 61131-3, które określają standardy programowania w systemach automatyki, co czyni je niezawodnymi narzędziami w przemyśle.

Pytanie 35

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. śrubowych.
B. daszkowych.
C. łukowych.
D. prostych.
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 36

W układzie zasilającym napęd pneumatyczny urządzenia mechatronicznego zamontowano zespół przygotowania powietrza złożony z 4 elementów. Którą z wymienionych funkcji realizuje element, którego symbol graficzny wskazuje strzałka?

Ilustracja do pytania
A. Filtruje powietrze dostarczane ze sprężarki.
B. Osusza powietrze dostarczane z sprężarki.
C. Wprowadza mgłę olejową do układu.
D. Reguluje poziom ciśnienia w układzie.
Twoja odpowiedź jest prawidłowa, ponieważ element, którego symbol graficzny wskazuje strzałka, to filtr powietrza. Filtr powietrza jest kluczowym komponentem układu przygotowania powietrza. Jego główną funkcją jest usuwanie zanieczyszczeń, takich jak kurz, olej i woda, z powietrza dostarczanego przez sprężarkę. Takie zanieczyszczenia mogą prowadzić do uszkodzenia urządzeń pneumatycznych oraz obniżenia efektywności pracy systemu. Zastosowanie filtrów powietrza jest zgodne z najlepszymi praktykami w obszarze inżynierii pneumatycznej, co zapewnia długotrwałą i niezawodną pracę urządzeń. W wielu systemach przemysłowych, dobór odpowiedniego filtra powietrza jest kluczowy dla zachowania czystości powietrza, co z kolei wpływa na jakość procesów produkcyjnych. Prawidłowo działający filtr powietrza znacząco wpływa na wydajność całego układu, zmniejszając ryzyko awarii i konieczności kosztownych napraw.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór innej opcji niż "D" wskazuje na brak zrozumienia fundamentalnych zasad działania pomp hydraulicznych z tłokowymi elementami roboczymi. Pompy te są zaprojektowane tak, aby wykorzystać ruch tłoków do przetłaczania cieczy, co nie jest charakterystyczne dla innych typów pomp, takich jak pompy zębate czy wirnikowe. Na przykład, pompy zębate opierają swoją pracę na przekładni mechanicznej, gdzie obracające się zęby przetłaczają ciecz, co nie daje możliwości osiągnięcia tak wysokiegociśnienia jak w przypadku tłokowych odpowiedników. Wybierając odpowiedzi, które nie odnoszą się do tłoków, można omyłkowo sądzić, że elementy wirujące lub zębate są równie skuteczne w kontekście wysokociśnieniowych zastosowań hydraulicznych. Powoduje to typowy błąd myślowy, w którym użytkownicy nie dostrzegają, że różne konstrukcje pomp mają różne zastosowania i ograniczenia, a ich wybór powinien być dostosowany do specyficznych warunków operacyjnych. Uzyskanie pełnego zrozumienia budowy i działania pomp hydraulicznych, w tym ich cech charakterystycznych, jest niezbędne dla inżynierów i techników, aby mogli efektywnie projektować i wdrażać systemy hydrauliczne w oparciu o standardy branżowe. Zrozumienie różnic między różnymi typami pomp jest kluczowe dla doboru odpowiednich urządzeń do konkretnej aplikacji, co ma istotny wpływ na wydajność i niezawodność całego systemu.

Pytanie 39

Który element silnika oznaczono cyfrą 1?

Ilustracja do pytania
A. Komutator.
B. Wirnik.
C. Zacisk.
D. Stojan.
Element oznaczony cyfrą 1 na zdjęciu to komutator, który jest kluczowym komponentem w silnikach prądu stałego. Jego główną funkcją jest zmiana kierunku przepływu prądu w uzwojeniu wirnika, co pozwala na stałe obracanie się wirnika w jednym kierunku. Komutator składa się z segmentów wykonanych z miedzi, które są oddzielone od siebie materiałem izolacyjnym. Taki układ zapewnia, że podczas obrotu wirnika prąd zmienia kierunek w odpowiednich momentach, co jest niezbędne do utrzymania ciągłego ruchu. Dobrze zaprojektowany komutator zwiększa efektywność silnika oraz jego żywotność, co jest kluczowe w zastosowaniach przemysłowych. W standardach branżowych, takich jak IEC 60034, podkreśla się znaczenie jakości materiałów używanych do produkcji komutatorów, aby zminimalizować straty energii i zapewnić długotrwałą pracę urządzenia. W praktyce, komutatory są również poddawane regularnym przeglądom i konserwacji, aby utrzymać ich sprawność operacyjną, co stanowi dobre praktyki w zarządzaniu sprzętem elektrycznym.

Pytanie 40

Element oznaczony na schemacie symbolem 4N35 to

Ilustracja do pytania
A. optotriak.
B. fototranzystor.
C. transoptor.
D. fototyrystor.
Wybierając odpowiedzi inne niż transoptor, można napotkać kilka pułapek związanych z nieporozumieniami dotyczącymi funkcji i budowy elementów optoelektronicznych. Odpowiedź optotriak jest myląca, ponieważ optotriaki są używane do sterowania większymi obciążeniami, ale ich budowa różni się od transoptorów. Optotriaki składają się z diody oraz triaka, co sprawia, że są zdolne do prowadzenia prądu w obie strony, jednak nie zapewniają takiego samego poziomu izolacji galwanicznej jak transoptory. Z kolei fototranzystor to pojedynczy element, który przekształca światło w sygnał elektryczny, ale nie zawiera diody emitującej światło, co czyni go innym od transoptora. Wybór fototyrystora jest również błędny, gdyż fototyrystory działają na zasadzie podobnej do triaków, czyli są zaprojektowane do kontrolowania mocy, a nie do izolacji sygnału. Kluczowym błędem myślowym jest mylenie tych komponentów z ich funkcjami; każdy z nich ma specyficzne zastosowania w elektronice. Zrozumienie różnic między tymi elementami jest kluczowe, aby poprawnie diagnozować i projektować systemy elektroniczne, które są nie tylko funkcjonalne, ale także bezpieczne dla użytkowników.