Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 18 grudnia 2025 00:13
  • Data zakończenia: 18 grudnia 2025 00:24

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Łączenie murowanej ściany nośnej z działową realizuje się przy zastosowaniu strzępów

A. zazębionych bocznych
B. uciekających
C. zazębionych końcowych
D. schodkowych
Wybór odpowiedzi schodkowe, uciekające oraz zazębione końcowe pokazuje pewne nieporozumienia związane z metodami łączenia ścian w konstrukcjach budowlanych. Połączenie schodkowe, które polega na nałożeniu ścian na siebie w formie schodków, może prowadzić do osłabienia strukturalnego, ponieważ nie zapewnia solidnego przeniesienia obciążeń między ścianami. Tego typu połączenie jest rzadko stosowane w nowoczesnym budownictwie, gdyż nie spełnia wymogów dotyczących stabilności i trwałości konstrukcji. Z kolei połączenie uciekające, które polega na przesunięciu jednego elementu względem drugiego, również nie jest efektywne w kontekście przenoszenia obciążeń, co może prowadzić do powstawania naprężeń w materiałach i ich deformacji. Wreszcie, zazębienie końcowe, które ma na celu połączenie końców dwóch ścian, nie jest odpowiednie do łączenia ścian nośnych z działowymi z uwagi na brak optymalnego przenoszenia sił oraz ryzyko powstawania szczelin, co negatywnie wpływa na integralność całej konstrukcji. W kontekście norm budowlanych, kluczowe jest, aby połączenia były projektowane w sposób zapewniający ich funkcjonalność i trwałość. Wybierając nieodpowiednie metody, można wprowadzić błędne założenia, które prowadzą do osłabienia całej konstrukcji.

Pytanie 2

Izolację pionową przeciwwilgociową lekkiego typu na ścianach fundamentowych należy zrealizować

A. z jednej warstwy emulsji asfaltowej
B. z dwóch warstw lepiku asfaltowego
C. z dwóch warstw papy termozgrzewalnej
D. z jednej warstwy folii kubełkowej
Izolacja przeciwwilgociowa na ścianach fundamentowych jest kluczowym elementem, który zapobiega przenikaniu wilgoci do wnętrza budynku. Wybór niewłaściwego materiału lub technologii izolacyjnej prowadzi do poważnych problemów, takich jak zawilgocenie ścian, rozwój pleśni oraz osłabienie struktury budynku. Odpowiedzi sugerujące zastosowanie jednej warstwy emulsji asfaltowej lub folii kubełkowej są nieefektywne z perspektywy długoterminowej ochrony przed wilgocią. Emulsja asfaltowa, choć stosunkowo łatwa w aplikacji, nie oferuje takiej samej trwałości i odporności na działanie wód gruntowych jak lepik asfaltowy, co może prowadzić do jej degradacji z czasem. Z kolei folia kubełkowa, mimo że jest używana w izolacjach, nie pełni funkcji pełnoprawnej izolacji przeciwwilgociowej, a raczej wspomaga odprowadzanie wody opadowej. Jej zastosowanie w kontekście fundamentów może być mylące, ponieważ nie tworzy ona dostatecznej bariery dla wilgoci, co stwarza ryzyko jej przenikania do wnętrza budynku. Również pomysł używania jednej warstwy papy termozgrzewalnej jest błędny, ponieważ wymaga to przynajmniej dwóch warstw, aby zapewnić odpowiedni poziom szczelności. Tego rodzaju błędne założenia mogą wynikać z niepełnego zrozumienia mechanizmów działania izolacji przeciwwilgociowych oraz ich wpływu na trwałość i bezpieczeństwo konstrukcji budowlanej.

Pytanie 3

Który etap naprawy spękanego tynku przedstawiono na fotografii?

Ilustracja do pytania
A. Oczyszczanie obrzeża rysy.
B. Gruntowanie obrzeża rysy.
C. Nakładanie zaprawy szpachlowej.
D. Poszerzanie rysy.
Poszerzanie rysy to kluczowy etap w procesie naprawy spękanego tynku. Na przedstawionej fotografii widzimy osobę, która za pomocą szpachelki poszerza rysę, co jest istotne dla zapewnienia trwałości naprawy. Poszerzając rysę, tworzymy większą powierzchnię dla przyczepności zaprawy szpachlowej, co pozwala na skuteczniejsze wypełnienie ubytków i zapobiega ponownemu pojawieniu się pęknięć. Zgodnie z zasadami dobrych praktyk budowlanych, przed nałożeniem nowego materiału naprawczego należy dokładnie przygotować powierzchnię, aby uniknąć problemów w przyszłości. Warto również pamiętać, że odpowiednie poszerzenie rysy może wymagać zastosowania narzędzi o różnych kształtach i rozmiarach, aby dostosować się do specyfiki uszkodzenia. Po zakończeniu tego etapu, kolejną czynnością jest gruntowanie obrzeża rysy, co dodatkowo zwiększa przyczepność. Dzięki tym działaniom można osiągnąć długotrwałe efekty naprawy, co przekłada się na zadowolenie właścicieli budynków i redukcję kosztów związanych z późniejszymi naprawami. Przykłady zastosowania tej metody można znaleźć w wielu projektach remontowych, gdzie poszerzenie rys jest standardem w procesie renowacji tynków.

Pytanie 4

Na rysunku podano wysokość ściany

Ilustracja do pytania
A. kolankowej.
B. instalacyjnej.
C. osłonowej.
D. działowej.
Wysokość ściany kolankowej to kluczowy element konstrukcji budowlanych, szczególnie w kontekście poddaszy oraz dachów. Jest to pionowa odległość od podłogi do miejsca, w którym ściana łączy się z nachyloną częścią dachu. Na ilustracji wysokość ta oznaczona jest liczba 105, co jednoznacznie wskazuje na wysokość ściany kolankowej. Zastosowanie ściany kolankowej jest istotne z punktu widzenia efektywności przestrzennej oraz estetyki wnętrz. Dzięki niej możliwe jest uzyskanie dodatkowej przestrzeni użytkowej na poddaszu, co ma znaczenie w projektowaniu domów jednorodzinnych, a także w obiektach użyteczności publicznej. Dodatkowo, odpowiednia wysokość ściany kolankowej wpływa na ergonomię pomieszczeń, zapewniając komfort użytkowania oraz odpowiednią ilość światła dziennego. Znajomość wysokości tych ścian jest również istotna przy planowaniu instalacji, takich jak wentylacja czy oświetlenie. W zgodzie z normami budowlanymi, odpowiednie zaplanowanie wysokości kolankowej ma również znaczenie w kontekście bezpieczeństwa i stabilności konstrukcji. Właściwe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla każdego projektanta i architekta.

Pytanie 5

Zanim przystąpimy do otynkowania ściany z dwóch różnych materiałów, miejsce ich połączenia należy

A. pokryć siatką podtynkową
B. wypełnić zaprawą cementową
C. zaszpachlować gipsem
D. pokryć preparatem gruntującym
Pokrycie miejsca styku różnych materiałów siatką podtynkową jest kluczowym krokiem przed otynkowaniem, ponieważ zapewnia dodatkową stabilność i elastyczność w miejscach, gdzie mogą wystąpić różnice w rozszerzalności cieplnej i kurczeniu się materiałów. Siatka podtynkowa, zazwyczaj wykonana z włókna szklanego lub stali, umożliwia równomierne rozłożenie naprężeń na powierzchni, co minimalizuje ryzyko pęknięć i uszkodzeń tynku w dłuższym okresie. W praktyce, stosowanie siatki podtynkowej w narożach oraz w obszarach styku różnych materiałów, takich jak beton i cegła, jest zalecane przez wiele standardów budowlanych, takich jak PN-EN 13914-1. Dzięki tej metodzie można również uzyskać lepszą przyczepność tynku, co jest istotne dla trwałości i estetyki wykończenia. Warto również pamiętać, że po nałożeniu siatki należy starannie pokryć ją warstwą tynku, aby zapewnić pełne zamaskowanie siatki i uzyskanie gładkiej powierzchni. Zastosowanie siatki podtynkowej jest powszechną praktyką w budownictwie, co potwierdzają liczne publikacje i normy branżowe.

Pytanie 6

Jeśli koszty robocizny na demontaż lm2 ceglanej ścianki działowej wynoszą 0,61 r-g, to ile czasu zajmie rozebranie 5 takich ścianek, z których każda ma powierzchnię 10 m2?

A. 81,9 r-g
B. 30,0 r-g
C. 61,0 r-g
D. 30,5 r-g
Odpowiedź 30,5 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny do rozebrania pięciu ścianek o powierzchni 10 m2 każda, należy najpierw określić całkowitą powierzchnię do rozebrania. Całkowita powierzchnia wynosi 5 ścianek x 10 m2 = 50 m2. Następnie, mając dane, że nakłady robocizny na rozebranie 1 m2 ceglanej ścianki wynoszą 0,61 r-g, obliczamy całkowity czas pracy: 50 m2 x 0,61 r-g/m2 = 30,5 r-g. Praktyczne zastosowanie tej wiedzy jest kluczowe w branży budowlanej, gdzie precyzyjne planowanie robocizny pozwala na optymalizację kosztów i czasu realizacji projektów. Warto także zauważyć, że tego typu obliczenia są zgodne z dobrymi praktykami zarządzania projektami, które zalecają szczegółowe rozplanowanie działań na podstawie rzetelnych danych o wydajności pracy. Oprócz tego, umiejętność precyzyjnego oszacowania czasu robocizny w projektach budowlanych jest kluczowa dla efektywnego zarządzania zasobami i terminami realizacji, co ma znaczenie dla zadowolenia klientów oraz rentowności przedsięwzięć budowlanych.

Pytanie 7

Na rysunku przedstawiono fragment ściany zewnętrznej z oblicówką konstrukcyjną. Wykonanie takiej ściany polega na wymurowaniu

Ilustracja do pytania
A. najpierw warstwy wewnętrznej, a po jej stwardnieniu, wykonaniu okładziny zewnętrznej.
B. ze szczeliną powietrzną pomiędzy warstwą wewnętrzną a zewnętrzną.
C. warstwy zewnętrznej, a po jej stwardnieniu, domurowaniu warstwy wewnętrznej.
D. obu warstw jednocześnie na całej wysokości.
Nieprawidłowe podejście do wykonania ściany z oblicówką konstrukcyjną, polegające na wymurowaniu najpierw warstwy zewnętrznej, a po jej stwardnieniu warstwy wewnętrznej, jest obarczone istotnymi błędami myślowymi. Przede wszystkim, takie podejście prowadzi do problemów związanych z osiadaniem poszczególnych warstw, co może skutkować powstawaniem szczelin, a tym samym pogorszeniem parametrów izolacyjnych. Murowanie warstwy zewnętrznej przed wewnętrzną narusza jedność materiałową, prowadząc do ryzyka wpływu na trwałość całej konstrukcji. Dodatkowo technika ta nie uwzględnia odpowiedniego połączenia warstw, co może prowadzić do problemów z izolacją termiczną i akustyczną. Wykonując obie warstwy jednocześnie, eliminujemy ryzyko różnic w osiadaniu, co jest zgodne z normami budowlanymi dotyczącymi stabilności konstrukcji. Warto również zauważyć, że popełniając błąd w kolejności murowania, można spotkać się z nieprawidłowym odwodnieniem oraz nieefektywną wentylacją, co może prowadzić do zjawisk kondensacji wilgoci wewnątrz ściany. Takie błędne podejście jest sprzeczne z zasadami dobrych praktyk budowlanych i może prowadzić do poważnych konsekwencji w kontekście trwałości i funkcjonalności budynku.

Pytanie 8

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 105 kg
B. 210 kg
C. 42 kg
D. 70 kg
Aby obliczyć ilość tynku maszynowego potrzebnego do otynkowania ściany o wymiarach 5 m x 3 m przy grubości tynku 5 mm, należy najpierw obliczyć powierzchnię ściany. Powierzchnia ta wynosi 15 m² (5 m x 3 m). Następnie musimy uwzględnić grubość tynku. Przy grubości 5 mm, co stanowi 0,005 m, możemy przyjąć, że zużycie materiału będzie o połowę mniejsze niż w przypadku 10 mm, gdzie zużycie wynosi 14 kg/m². Obliczamy zużycie dla 5 mm, co daje 7 kg/m² (14 kg/m² / 2). Mnożąc tę wartość przez powierzchnię ściany, otrzymujemy potrzebną ilość tynku: 7 kg/m² x 15 m² = 105 kg. Odpowiedź ta jest zgodna z praktykami budowlanymi, które zalecają dostosowanie zużycia materiałów do grubości nałożonej warstwy. Wiedza ta jest kluczowa dla precyzyjnego planowania w pracach budowlanych oraz minimalizacji strat materiałowych.

Pytanie 9

Odpady powstałe w wyniku demontażu ścian działowych na drugim piętrze budynku powinny być

A. układane na stropach w rejonie okien
B. transportowane na zewnątrz z wykorzystaniem obudowanych zsypów
C. zbierane w jednym miejscu w obiekcie
D. wydobywane na zewnątrz przez okna do podstawionych pojemników
Usuwanie gruzu powstałego podczas rozbiórki ścian działowych na drugiej kondygnacji w budynku przy użyciu obudowanych zsypów jest najlepszym rozwiązaniem, które zapewnia bezpieczeństwo oraz efektywność procesu. Obudowane zsypy umożliwiają kontrolowane przekazywanie materiałów budowlanych na zewnątrz, co minimalizuje ryzyko wypadków oraz ogranicza zanieczyszczenie terenu budowy. W praktyce, zastosowanie zsypów pozwala na jednoczesne usuwanie gruzu i kontynuowanie innych prac budowlanych bez zbędnych przerw. Ponadto, zgodnie z normami BHP, takie rozwiązania zmniejszają ryzyko upadków materiałów z wysokości, co jest kluczowe dla ochrony pracowników. Warto również zauważyć, że obudowane zsypy mogą być dostosowane do różnego rodzaju materiałów, co zwiększa ich uniwersalność. W sytuacjach, gdzie gruz jest usuwany z wyższych kondygnacji, stosowanie zsypów z osłonami jest standardem w branży budowlanej, co potwierdzają odpowiednie regulacje prawne i normy bezpieczeństwa.

Pytanie 10

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Żużla wielkopiecowego
B. Miału marmurowego
C. Piasku kwarcowego
D. Piasku rzecznego
Żużel wielkopiecowy to materiał o wysokich właściwościach izolacyjnych, który znajduje zastosowanie w produkcji zapraw ciepłochronnych, w tym tynków. Jego unikalna struktura, która powstaje w procesie produkcji stali, sprawia, że jest lżejszy od tradycyjnych kruszyw, co przyczynia się do zmniejszenia masy tynku, a tym samym poprawia jego właściwości termiczne. Przykładem zastosowania żużla wielkopiecowego może być wykorzystanie go w systemach ociepleń budynków, gdzie jego dodatek do zaprawy pozwala uzyskać lepszą izolację termiczną, co jest szczególnie istotne w kontekście ochrony środowiska i oszczędności energii. W standardach budowlanych, takich jak europejska norma EN 998-1, podkreśla się znaczenie stosowania materiałów o odpowiednich właściwościach fizycznych i chemicznych, co czyni żużel wielkopiecowy odpowiednim wyborem. Dodatkowo, jego właściwości ognioodporne i odporność na działanie wielu chemikaliów sprawiają, że jest to materiał długowieczny, co jest korzystne z punktu widzenia ekonomiki budowy oraz trwałości zastosowanych rozwiązań.

Pytanie 11

Na podstawie informacji podanych w tabeli określ minimalną grubość tynku mozaikowego, wykonanego produktem MAJSTERTYNK MOZAIKOWY odmiany gruboziarnistej

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 3,0 mm
B. 5,0 mm
C. 2,0 mm
D. 4,0 mm
Wybierając grubość tynku mozaikowego, nie można kierować się jedynie intuicją lub przypuszczeniami. Odpowiedzi, które wskazują na mniejsze grubości, takie jak 5,0 mm, 3,0 mm czy 2,0 mm, są nieprawidłowe z kilku kluczowych powodów. Przede wszystkim, grubość tynku ma fundamentalne znaczenie dla jego funkcji. Tynki o zbyt małej grubości mogą nie tylko nie spełniać norm estetycznych, ale także prowadzić do poważnych problemów technicznych, takich jak osłabienie struktury, zwiększone ryzyko pęknięć, a także niewystarczająca ochrona przed czynnikami atmosferycznymi. Tynk o grubości 5,0 mm może być nadmierny, co nie jest zgodne z wytycznymi, podczas gdy 3,0 mm i 2,0 mm są znacznie poniżej zalecanego minimum, co może skutkować błędnymi interpretacjami właściwości materiału. Dodatkowo, warto zwrócić uwagę na to, że każdy produkt budowlany, w tym tynki, podlega normom technicznym, które jasno określają wymogi dotyczące ich użycia. Użycie grubości niezgodnych z zaleceniami producenta stwarza ryzyko nie tylko obniżenia jakości końcowego wykończenia, ale także może narazić inwestycje na dodatkowe koszty związane z naprawą i konserwacją. W związku z tym, kluczowe jest zrozumienie, że każda decyzja dotycząca grubości tynku musi być oparta na solidnych podstawach technicznych oraz standardach, które zapewniają zarówno estetykę, jak i funkcjonalność budynku.

Pytanie 12

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 3,5 litra
B. 10,5 litra
C. 14,0 litrów
D. 7,0 litrów
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 13

Do prac zanikających oraz tych, które zostają zakryte i wymagają odbioru, zalicza się

A. uzupełnianie tynku
B. przygotowanie podłoża
C. układanie podłogi
D. malowanie
Przygotowanie podłoża jest kluczowym etapem w procesie budowlanym, który ma na celu zapewnienie odpowiednich warunków dla dalszych prac wykończeniowych. Podłoże musi być solidne, równe i suche, aby materiały takie jak płytki, podłogi czy tynki mogły prawidłowo związać i funkcjonować bez ryzyka uszkodzeń. Niezbędne jest przeprowadzenie odpowiednich badań, takich jak ocena nośności podłoża oraz sprawdzenie poziomu wilgotności. Przykładem dobrych praktyk jest stosowanie wytycznych zawartych w normach budowlanych, które wskazują na konieczność przygotowania podłoża poprzez jego oczyszczenie, zagruntowanie oraz wyrównanie. Należy również wziąć pod uwagę rodzaj materiałów, które będą aplikowane na podłoże, ponieważ różne systemy wymagają specyficznych przygotowań. Odpowiednio przygotowane podłoże zapewnia trwałość i estetykę wykończenia, co jest kluczowe w kontekście przyszłych prac konserwacyjnych i użytkowania przestrzeni.

Pytanie 14

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sztablatura
B. Sztukateria
C. Stiuk
D. Sgraffito
Stiuk to tynk szlachetny, który charakteryzuje się twardą, gładką i lśniącą powierzchnią, co sprawia, że imituje polerowany kamień. Jest stosowany w architekturze zarówno wewnętrznej, jak i zewnętrznej, często w eleganckich wnętrzach lub jako element dekoracyjny fasad budynków. Proces jego aplikacji wymaga dużej precyzji i doświadczenia, ponieważ polega na nakładaniu wielu warstw specjalnie przygotowanej masy tynkarskiej, która po wyschnięciu jest szlifowana i polerowana. Przykładowo, stiuk często spotyka się w klasycznych pałacach oraz kościołach, gdzie elewacje lub wnętrza mają naśladować drogie materiały kamienne, co podnosi prestiż budowli. Dobrze wykonany stiuk nie tylko nadaje estetyczny wygląd, ale również zapewnia trwałość i odporność na różne czynniki atmosferyczne, co czyni go popularnym wyborem wśród architektów i projektantów.

Pytanie 15

Na podstawie danych zawartych w tablicy z KNR oblicz ile cegieł budowlanych pełnych należy zakupić do wymurowania ściany grubości 25 cm na zaprawie cementowej, jeżeli ilość robót określona w przedmiarze wynosi 126,00 m2.

Ilustracja do pytania
A. 12 613 sztuk.
B. 17 628 sztuk.
C. 11 681 sztuk.
D. 18 938 sztuk.
Poprawna odpowiedź to 12 613 sztuk cegieł budowlanych pełnych, co wynika z zastosowania normy KNR dotyczącej zużycia materiałów budowlanych. Dla ściany o grubości 25 cm na zaprawie cementowej norma ta wskazuje, że potrzebujemy 100,10 cegieł na każdy metr kwadratowy. Przy całkowitej powierzchni 126,00 m², obliczenia wyglądają następująco: 100,10 sztuk/m² * 126,00 m² = 12 613,60 sztuk. Z racji tego, że cegły sprzedawane są w pełnych sztukach, wynik ten zaokrąglamy do 12 613 sztuk. W praktyce, znajomość norm KNR jest kluczowa dla efektywnego planowania i zakupu materiałów budowlanych, co pozwala na uniknięcie zarówno niedoborów, jak i nadwyżek materiałów, co jest zgodne z zasadami optymalizacji kosztów i wykorzystania zasobów.

Pytanie 16

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 320 kg
B. 867 kg
C. 645 kg
D. 480 kg
Twoja odpowiedź jest poprawna! Ilość piasku potrzebna do wykonania 1,5 m³ mieszanki betonowej oblicza się przez pomnożenie ilości piasku wymaganej do 1 m³ przez współczynnik 1,5. Zazwyczaj na 1 m³ mieszanki betonowej potrzebujemy około 320 kg piasku, w związku z czym 1,5 m³ wymaga 480 kg piasku (320 kg * 1,5 = 480 kg). W praktyce stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości betonu, takich jak wytrzymałość i trwałość. W branży budowlanej standardy, takie jak PN-EN 206, zalecają precyzyjne obliczenia i użycie odpowiednich materiałów zgodnie z recepturą, aby zapewnić jakość wykonania. Zrozumienie, jak obliczać proporcje składników, jest niezbędne dla każdego inżyniera budownictwa oraz technika, co przekłada się na efektywność pracy oraz bezpieczeństwo konstrukcji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. cienkowarstwowych
B. trójwarstwowych
C. jednowarstwowych
D. dwuwarstwowych
Wybór tynków dwuwarstwowych, cienkowarstwowych lub trójwarstwowych jako odpowiedzi na pytanie o tynk rapowany mógłby wynikać z nieporozumienia co do ich charakterystyki oraz zastosowania. Tynki dwuwarstwowe składają się z dwóch oddzielnych warstw, co często jest stosowane w bardziej wymagających aplikacjach, gdzie wymagana jest większa stabilność i ochrona przed uszkodzeniami. Przykładowo, tynki tego typu mogą być stosowane na powierzchniach, które muszą wytrzymać podwyższone obciążenia mechaniczne. Z kolei tynki cienkowarstwowe są aplikowane w bardzo cienkiej warstwie, co może być mylące, ponieważ ich technologia różni się znacznie od tynków jednowarstwowych. Tynki trójwarstwowe, które obejmują podłoże, warstwę izolacyjną i warstwę wierzchnią, są używane w bardziej skomplikowanych systemach ociepleń, gdzie kluczowe jest połączenie kilku funkcji, takich jak termika, akustyka, a także estetyka. Typowym błędem w rozumieniu tych kategorii jest mylenie ich w kontekście prostej aplikacji tynków jednowarstwowych, co prowadzi do nadmiernej komplikacji procesu oraz zwiększenia kosztów. Znajomość różnic pomiędzy tymi kategoriami i ich zastosowaniem jest kluczowa dla efektywnego planowania i realizacji projektów budowlanych.

Pytanie 19

Przed użyciem tynków akrylowych produkowanych w fabryce w pojemnikach, należy je

A. wymieszać z wodą
B. dodać utwardzacz
C. wymieszać bez dodatków
D. dodać pigment
Tynki akrylowe przygotowane fabrycznie w pojemnikach nie wymagają dodatkowych modyfikacji przed użyciem, co czyni je wygodnym rozwiązaniem w pracach budowlanych i remontowych. Wymieszanie ich bez dodatków zapewnia optymalne właściwości aplikacyjne, takie jak odpowiednia konsystencja, przyczepność i elastyczność. W praktyce, tynki akrylowe charakteryzują się dużą odpornością na warunki atmosferyczne oraz wydłużoną trwałością, a ich właściwości ochronne są zachowane, gdy są stosowane zgodnie z zaleceniami producenta. Tego typu tynki są często wykorzystywane zarówno w budownictwie jednorodzinnym, jak i wielorodzinnym, stanowiąc estetyczną i funkcjonalną elewację. Przygotowywanie tynków akrylowych w taki sposób, aby nie dodawać do nich żadnych substancji, jest zgodne z praktykami branżowymi, które podkreślają znaczenie zachowania integralności materiału. Należy pamiętać, że zgodność z instrukcjami producenta oraz odpowiednia aplikacja są kluczowe dla osiągnięcia najlepszych rezultatów w renowacji oraz budowie.

Pytanie 20

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na tej stronie przegrody, gdzie przeważa wyższa temperatura
B. na tej stronie przegrody, gdzie przeważa niższa temperatura
C. na obydwu stronach przegrody
D. po każdej stronie przegrody
Izolację cieplną przegrody budowlanej należy umieścić po tej stronie, gdzie zazwyczaj panuje niższa temperatura, co wynika z podstawowych zasad termodynamiki. Celem izolacji jest ograniczenie wymiany ciepła pomiędzy wnętrzem budynku a jego otoczeniem. W praktyce oznacza to, że w zimie izolacja powinna być umieszczona od strony zewnętrznej, aby zminimalizować straty ciepła do chłodniejszego otoczenia. W lecie, natomiast, izolacja ma za zadanie chronić przed nagrzewaniem się wnętrza, dlatego również w tym przypadku ważne jest, aby znajdowała się po stronie, gdzie temperatura zewnętrzna jest wyższa. Przy projektowaniu budynków mieszkalnych kluczowe jest uwzględnienie lokalnych warunków klimatycznych oraz standardów budowlanych, takich jak norma PN-EN 13162, która określa wymagania dla materiałów izolacyjnych. Przykład praktyczny to domy jednorodzinne, w których stosowanie izolacji termicznej po stronie północnej, gdzie temperatura jest zazwyczaj niższa, pozwala na znaczną poprawę efektywności energetycznej budynku.

Pytanie 21

Który etap wykonywania tynku gipsowego przedstawiono na fotografii?

Ilustracja do pytania
A. Ostateczne gładzenie.
B. Wstępne wyrównanie tzw. zaciąganie.
C. Wstępne gładzenie tzw. piórowanie.
D. Ręczne nakładanie.
Wybór niewłaściwych odpowiedzi może wynikać z braku zrozumienia etapów procesu tynkowania oraz ich specyfiki. Wstępne gładzenie, znane jako piórowanie, to proces, który następuje po zaciąganiu. W tym etapie tynk jest wygładzany przy użyciu narzędzi, które mają na celu usunięcie wszelkich nierówności oraz nadanie mu odpowiedniej faktury. Z tego powodu, odpowiedź sugerująca, że zdjęcie przedstawia wstępne gładzenie, jest błędna. Ostateczne gładzenie, które jest następstwem zaciągania, ma na celu uzyskanie idealnie gładkiej powierzchni, ale również nie może być utożsamiane z przedstawionym na fotografii etapem. Ręczne nakładanie tynku to proces, który zazwyczaj ma miejsce na początku, ale nie jest kluczowym elementem, który można zauważyć na zdjęciu, gdzie dominują ruchy prowadzące do wyrównania. Zrozumienie różnic między tymi etapami jest istotne dla realizacji wysokiej jakości prac budowlanych. Typowym błędem jest mylenie kolejności działań, co może prowadzić do stosowania niewłaściwych technik i narzędzi w niewłaściwym momencie, a w konsekwencji – do obniżenia jakości wykończenia. W branży budowlanej kluczowe jest, aby każdy etap był wykonywany zgodnie z ustalonymi standardami, co zapewnia trwałość i estetykę wykonania.

Pytanie 22

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
B. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
C. posiadać jednolitą barwę bez smug i plam.
D. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
Odpowiedzi sugerujące, że dopuszczalne są niewielkie plamy czy smugi, są błędne, ponieważ w kontekście tynków nieprzewidzianych do malowania, wszelkie niedoskonałości mogą negatywnie wpływać na końcowy efekt estetyczny. W przypadku tynków, których nie zamierzamy malować, powierzchnia powinna być jednolita, aby uniknąć problemów z odbiciem światła oraz zróżnicowaniem wizualnym. Smugi mogą wskazywać na problem w procesie aplikacji, takie jak stosowanie niewłaściwych technik nakładania tynku, co prowadzi do niejednorodności powierzchni. Z kolei niewielkie plamy mogą być wynikiem użycia materiałów o różnej jakości lub źle przygotowanej mieszanki tynkarskiej. Te niedoskonałości mogą prowadzić do większych problemów w przyszłości, takich jak utrzymywanie się wilgoci, co może spowodować uszkodzenia strukturalne lub rozwój pleśni. W branży budowlanej stosuje się standardy, które zalecają dbałość o każdy etap aplikacji materiałów, aby zapewnić trwałość i estetykę. Właściwe przygotowanie podłoża, odpowiednia technika aplikacji oraz użycie materiałów wysokiej jakości to kluczowe czynniki, które zapobiegają występowaniu smug i plam na powierzchni tynków.

Pytanie 23

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67
A. 0,444 m3
B. 0,276 m3
C. 0,828 m3
D. 0,588 m3
W przypadku udzielenia innej odpowiedzi, może to wynikać z kilku typowych błędów obliczeniowych lub nieporozumień dotyczących metodyki obliczeń. Na przykład, jeżeli wzięto pod uwagę objętość jednego filaru bez uwzględnienia zaprawy, z pewnością uzyskano zaniżoną wartość. Istnieje również ryzyko nieuwzględnienia współczynnika, który wskazuje na objętość zaprawy w stosunku do muru, co w efekcie prowadzi do błędnych oszacowań. W praktyce budowlanej ważne jest, aby nie tylko zmierzyć wymiary, ale także zrozumieć, jak różne materiały współdziałają w konstrukcji. Kolejnym błędem jest błędne przeliczenie jednostek miar, co często zdarza się przy przejściu z centymetrów na metry. W szczególności, w przypadku budowy, należy upewnić się, że wszystkie wymiary są spójne i poprawnie przeliczone na jednostki metryczne. Zrozumienie, jak poszczególne elementy konstrukcyjne wpływają na całość, jest kluczowe. Aby uniknąć pomyłek, należy korzystać z aktualnych norm budowlanych oraz dobrych praktyk, takich jak standardy PN-EN dotyczące materiałów budowlanych, które dostarczają wytycznych w zakresie obliczania ilości materiałów. To ważne, aby nie tylko dążyć do uzyskania poprawnych wyników, ale także rozumieć, jak te obliczenia wpływają na kosztorys, jakość wykonania i trwałość obiektu budowlanego.

Pytanie 24

Na rysunku przedstawiony jest rzut i przekrój ściany, w której znajduje się

Ilustracja do pytania
A. pilaster.
B. otwór.
C. wnęka.
D. bruzda.
Poprawna odpowiedź to "wnęka", ponieważ na rysunku rzeczywiście przedstawione jest zagłębienie w ścianie, które jest charakterystyczne dla tego terminu. Wnęki są powszechnie stosowane w architekturze i budownictwie, aby estetycznie wkomponować różne elementy, takie jak półki, oświetlenie czy dekoracje. W praktyce, wnęki mogą być wykorzystywane do przechowywania przedmiotów, co pozwala na oszczędność miejsca w pomieszczeniach. Na przykład, w nowoczesnych wnętrzach wykonuje się wnęki w ścianach, aby umieścić tam telewizory czy kominki, co nadaje im subtelny i elegancki wygląd. Przestrzeganie zasad projektowania wnęk, takich jak odpowiednia głębokość i szerokość, ma kluczowe znaczenie dla ich funkcjonalności oraz estetyki. Warto także zaznaczyć, że wnęki powinny być zaplanowane na etapie projektowania budynku, aby zapewnić ich odpowiednie rozmieszczenie oraz integrację z innymi elementami architektonicznymi.

Pytanie 25

Wewnątrz pomieszczenia oznaczonego na rysunku numerem 103 przewidziano wykonanie tynku na ścianie bez otworów. Oblicz powierzchnię przeznaczoną do tynkowania, jeżeli wysokość pomieszczenia wynosi 3 m.

Ilustracja do pytania
A. 10,56 m2
B. 11,82 m2
C. 12,96 m2
D. 14,52 m2
Poprawna odpowiedź to 11,82 m2, ponieważ obliczenia dotyczące powierzchni do tynkowania ściany bez otworów w pomieszczeniu 103 uwzględniają wysokość oraz obwód pomieszczenia. Wysokość pomieszczenia wynosi 3 m, co jest standardową wysokością w budownictwie, umożliwiającą zastosowanie typowych materiałów tynkarskich. Aby obliczyć powierzchnię ściany, należy znać również długość i szerokość pomieszczenia. Przykładowo, jeżeli przyjmiemy, że długość wynosi 4 m, a szerokość 3 m, obwód wynosi 2*(4+3)=14 m. Całkowita powierzchnia ścian wynosi 14 m * 3 m = 42 m2. Po odjęciu powierzchni okien i drzwi, która w tym przypadku wynosi 30,18 m2, uzyskujemy powierzchnię ściany gotową do tynkowania równą 11,82 m2. To podejście jest zgodne z najlepszymi praktykami w zakresie obliczeń powierzchni w budownictwie, które zaleca staranne uwzględnienie wszystkich elementów architektonicznych.

Pytanie 26

Jak należy przygotować suchą zaprawę murarską do użycia?

A. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
B. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
C. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
D. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
Odpowiedź jest prawidłowa, ponieważ przygotowanie suchej zaprawy murarskiej w betoniarni, z odmierzonymi spoiwami, piaskiem oraz dodatkami, a następnie dodanie tylko wody na placu budowy, jest zgodne z najlepszymi praktykami budowlanymi. Taki proces zapewnia optymalną jakość zaprawy, ponieważ umożliwia dokładne wymieszanie wszystkich składników w kontrolowanych warunkach. W betoniarni można użyć odpowiednich urządzeń do mieszania, które zapewniają jednorodność mieszanki. Na placu budowy, dodanie jedynie wody minimalizuje ryzyko błędów w proporcjach oraz umożliwia większą kontrolę nad wilgotnością, co jest kluczowe dla uzyskania odpowiedniej konsystencji zaprawy. Taki sposób przygotowania jest również zgodny z normami PN-EN 998-1, które dotyczą zapraw do murowania, zapewniając odpowiednią trwałość i wytrzymałość konstrukcji. Przykładem praktycznego zastosowania tej metody może być budowa ścian nośnych, gdzie istotne jest, aby zachować równowagę między wytrzymałością a plastycznością zaprawy.

Pytanie 27

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. szamotowych
B. krzemionkowych
C. ciepłochronnych
D. kwasoodpornych
Perlit to naprawdę świetny materiał, jeśli chodzi o izolację. Dzięki swojej porowatej strukturze świetnie trzyma powietrze, co znacząco poprawia izolację termiczną zapraw. Z tego co widziałem, często stosuje się go w mieszankach tynkarskich i zaprawach, żeby zmniejszyć straty ciepła w budynkach. To jest ważne, zwłaszcza teraz, kiedy wszyscy myślimy o zrównoważonym budownictwie i efektywności energetycznej. Poza tym, perlit jest lekki, co znacznie ułatwia transport i użycie. Dzięki temu nasze konstrukcje są mniej obciążone. Warto pamiętać, że świetnie sprawdza się w systemach ociepleń, co naprawdę przekłada się na długowieczność i efektywność energetyczną budynków.

Pytanie 28

Która zaprawa charakteryzuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-gliniana
B. Gipsowa
C. Cementowo-wapienna
D. Wapienna
Zaprawa wapienna posiada najlepsze właściwości plastyczne spośród wymienionych opcji, co czyni ją idealnym materiałem w wielu zastosowaniach budowlanych. Jej plastyczność wynika z obecności węglanu wapnia, który po zmieszaniu z wodą tworzy pastę, umożliwiającą łatwe formowanie i aplikację. Dzięki temu, zaprawy wapienne są niezwykle wszechstronne i stosowane w tradycyjnym murarstwie, renowacji zabytków oraz w budownictwie ekologicznym, gdzie istotne jest zachowanie naturalnych właściwości materiałów. W praktyce, zaprawy wapienne są często wykorzystywane do łączenia cegieł i kamieni, oferując korzystne właściwości odprowadzania wilgoci, co chroni przed rozwojem pleśni i grzybów. Dodatkowo, w porównaniu do innych zapraw, takich jak gipsowe czy cementowe, zaprawy wapienne są bardziej elastyczne, co pozwala im lepiej dostosowywać się do ruchów budynku oraz minimalizuje ryzyko pęknięć. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie zapraw wapiennych w kontekście ich zastosowania w budownictwie, co czyni je preferowanym wyborem w wielu projektach.

Pytanie 29

Aby nałożyć tynk zwykły na suficie, jakie narzędzia są wymagane?

A. kielnia i listwa tynkarska
B. czerpak tynkarski i packa
C. deska z trzonkiem oraz packa
D. deska z trzonkiem i kielnią
Wybór narzędzi do narzutu tynku jest kluczowy dla uzyskania wysokiej jakości wykończenia. Odpowiedzi wskazujące na stosowanie czerpaka tynkarskiego oraz packi są nieprawidłowe, ponieważ te narzędzia nie są przeznaczone do aplikacji tynku na suficie. Czerpak tynkarski jest najczęściej używany do przygotowania mieszanki tynkarskiej, ale jego forma i kształt nie pozwalają na precyzyjne nakładanie tynku na dużą powierzchnię, taką jak sufit. Packa, która jest bardziej odpowiednia do wygładzania powierzchni, nie jest wystarczająco elastyczna, aby efektywnie rozprowadzić materiał w ruchu roboczym. Z kolei lista tynkarska, mimo że może być używana w pewnych zastosowaniach, nie zastąpi funkcji deski z trzonkiem. Dodatkowo, niepoprawne podejście do narzutu tynku może prowadzić do problemów takich jak nierówności, pęknięcia czy złe przyleganie tynku do podłoża. Wybór niewłaściwych narzędzi może wynikać z braku wiedzy na temat procesów tynkarskich oraz złych praktyk w branży budowlanej. Dlatego istotne jest, aby każdy wykonawca posiadał solidną wiedzę na temat narzędzi oraz umiejętności ich właściwego zastosowania zgodnie z normami i standardami obowiązującymi w budownictwie.

Pytanie 30

Którego z narzędzi należy użyć do murowania ścian w systemie Ytong?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Murowanie ścian w systemie Ytong wymaga zastosowania odpowiednich narzędzi, które są kluczowe dla osiągnięcia zamierzonych efektów. Często zdarza się, że osoby próbujące dobudować ściany z bloczków Ytong sięgają po narzędzia, które nie są dostosowane do tego typu materiałów. Na przykład, stosowanie młotka metalowego czy innych twardych narzędzi może prowadzić do uszkodzenia bloczków, co wpływa na ich stabilność oraz wygląd. Gumowy młotek, ze względu na swoje właściwości amortyzujące, pozwala na precyzyjne i delikatne uderzenia, co jest niezbędne w przypadku materiałów o cienkich ściankach. Użycie niewłaściwych narzędzi może nie tylko prowadzić do pęknięć, ale również sprawić, że murowanie będzie czasochłonne i nieefektywne. Przykładowo, niewłaściwe ustawienie czy zniekształcenie bloczków może powodować nieprawidłowe spoinowanie, co z kolei wpływa na trwałość całej konstrukcji. Zrozumienie zasadności stosowania odpowiedniego narzędzia jest fundamentalne w procesie budowlanym i powinno być podstawą dla każdego profesjonalisty w branży.

Pytanie 31

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 1 220 zł
B. 720 zł
C. 560 zł
D. 1 440 zł
Koszt wymurowania dwóch ścian szczytowych budynku został obliczony na podstawie wymiarów i nakładu pracy. Każda ściana ma wymiary 10,0 m x 5,0 m, co daje powierzchnię jednej ściany równą 50 m2. Zatem dla dwóch ścian całkowita powierzchnia wynosi 100 m2. Nakład pracy wynosi 1,44 godzin na m2, co oznacza, że potrzebny czas na wykonanie pracy to 100 m2 * 1,44 h/m2 = 144 h. Przy stawce godzinowej murarza wynoszącej 10 zł, całkowity koszt robocizny wyniesie 144 h * 10 zł/h = 1440 zł. Taki sposób kalkulacji kosztów jest zgodny z praktykami branżowymi, które uwzględniają zarówno powierzchnię, jak i nakład pracy, co pozwala na precyzyjne oszacowanie całkowitych wydatków. Użycie takich metod jest niezbędne w branży budowlanej dla zachowania budżetu i efektywności zarządzania projektem.

Pytanie 32

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Paca, młotek z gumowym zakończeniem
B. Kilof, oskard, młot pneumatyczny
C. Strug, szpachla, wiertarka o niskich obrotach
D. Przecinak, kielnia, młotek do murowania
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 33

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. pospolitym.
B. polskim.
C. amerykańskim.
D. weneckim.
Odpowiedzi wskazujące na inne rodzaje wiązań, takie jak amerykańskie, weneckie czy polskie, nie są poprawne, ponieważ wyraźnie różnią się one od charakterystyki wiązania pospolitego. Wiązanie amerykańskie, które często mylone jest z pospolitym, jest mniej popularne i polega na tym, że cegły w każdym rzędzie są układane w sposób, który nie zapewnia takiego samego poziomu stabilności i estetyki jak wiązanie pospolite. W przypadku wiązania weneckiego, które także jest stosunkowo rzadko używane, cegły są układane w sposób, który nie sprzyja równomiernemu rozłożeniu obciążenia, co może prowadzić do osłabienia całej struktury. Z kolei wiązanie polskie, chociaż ma swoje zastosowanie w architekturze, nie jest tak powszechnie stosowane jak wiązanie pospolite i również nie charakteryzuje się przesunięciami wymaganą dla zapewnienia stabilności. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi często wynikają z pomylenia cech poszczególnych typów wiązań lub z braku zrozumienia ich praktycznych zastosowań w kontekście budownictwa. Warto zatem dokładnie zapoznać się z charakterystykami różnych wiązań murarskich oraz ich zastosowaniem w praktyce, aby uniknąć takich pomyłek w przyszłości.

Pytanie 34

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. Fert.
B. DZ.
C. Teriva.
D. Akermana.
Wybór odpowiedzi związanych z innymi typami stropów, jak Akerman, Teriva czy DZ, wskazuje na pewne błędy w zrozumieniu konstrukcji stropowych. Stropy Akermana wyróżniają się użyciem prefabrykowanych belek teowych oraz pustaków betonowych, które są umieszczane w formie bloków. Taki typ stropu, choć popularny w Polsce, nie jest przedstawiony na rysunku. Problemy z identyfikacją stropu Teriva mogą wynikać z jego charakterystyki, która jest oparta na pustakach ceramicznych, ale różni się od Fert pod względem używanych belek i ogólnej konstrukcji. Stropy DZ, choć użyteczne, są stosowane w zupełnie innych kontekstach, często jako stropy monolityczne, co również nie znajduje odzwierciedlenia na przedstawionym rysunku. Typowe błędy myślowe w wyborze błędnych odpowiedzi dotyczą m.in. utożsamienia pustaków ceramicznych z danym typem stropu bez uwzględnienia, jakie belki są używane w danej konstrukcji. Każdy z wymienionych typów stropów ma swoje specyficzne zastosowania i parametry, które decydują o ich użyteczności w różnych projektach budowlanych. Zrozumienie tych różnic jest kluczowe dla podejmowania właściwych decyzji projektowych oraz zgodności z obowiązującymi normami budowlanymi.

Pytanie 35

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
B. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
C. bloczki silikatowe bądź płyty gipsowo-kartonowe
D. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
Bloczki z betonu komórkowego oraz pustaki ceramiczne poryzowane są materiałami budowlanymi, które charakteryzują się doskonałymi właściwościami izolacyjnymi, co jest kluczowe w kontekście budowy jednowarstwowych ścian zewnętrznych. Beton komórkowy, znany również jako aerobeton, ma strukturę pełną mikroporów, co znacząco ogranicza przewodzenie ciepła. Dzięki temu, ściany wykonane z tych materiałów mogą skutecznie zapewnić komfort cieplny w budynku, minimalizując straty energii i przyczyniając się do obniżenia kosztów ogrzewania. Pustaki ceramiczne poryzowane, z kolei, posiadają unikalne właściwości akumulacyjne i również dobrze izolują termicznie. W praktyce zastosowanie tych materiałów zyskuje na znaczeniu przy realizacji budynków energooszczędnych i pasywnych, gdzie kluczowe jest uzyskanie jak najlepszych parametrów izolacyjnych. Użycie takich bloków i pustaków jest zgodne z normami budowlanymi, które zalecają stosowanie materiałów o niskim współczynniku przewodzenia ciepła, co jest niezbędne do spełnienia wymogów efektywności energetycznej budynków.

Pytanie 36

Cementowa zaprawa wyróżnia się wysoką

A. kapilarnością
B. wytrzymałością na ściskanie
C. higroskopijnością
D. odpornością na skurcz
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 37

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zamoczyć w wodzie
B. nakryć plandeką
C. zgromadzić pod zadaszeniem
D. zagruntować gruntownikiem
Zanurzenie cegły ceramicznej w wodzie przed murowaniem to naprawdę ważny krok, zwłaszcza gdy na dworze jest gorąco. Cegła ceramiczna łatwo wchłania wodę, a jeśli jest zbyt sucha, to może się okazać, że zaprawa nie zwiąże się z nią dobrze. Chodzi o to, żeby cegła miała odpowiednią wilgoć, co sprawia, że połączenie z zaprawą murarską staje się mocniejsze. Kiedy nie nawilżamy cegły, to ona może wciągać wodę z zaprawy, co prowadzi do pęknięć i osłabienia całej ściany. Najlepiej zanurzyć cegły na około 10-15 minut, żeby miały czas na wchłonięcie wody. W branży budowlanej to już praktyka, która jest uważana za standard, co można zobaczyć w normach budowlanych jak PN-EN 771-1. Mówią one o tym, jak ważne jest dobre przygotowanie materiałów przed ich użyciem, więc lepiej tego nie lekceważyć.

Pytanie 38

Jakie spoiwo powoduje korozję stali?

A. Wapienne
B. Cementowe
C. Cementowo-wapienne
D. Gipsowe
Wybór innych spoiw, takich jak cementowe, wapienne czy cementowo-wapienne, może być mylący w kontekście korozji stali, ponieważ te materiały nie wywołują korozji w taki sam sposób jak gips. Cement, będący jednym z najczęściej stosowanych spoiw w budownictwie, ma alkaliczne pH, co działa protekcyjnie na stal, tworząc pasywacyjną warstwę tlenków na jej powierzchni. To zjawisko jest zgodne z normami budowlanymi, które zalecają stosowanie cementu w połączeniu ze stalą zbrojeniową, aby zapewnić trwałość konstrukcji. Wapno, używane często w tradycyjnych tynkach i zaprawach, również nie jest substancją, która prowadzi do korozji stali, a wręcz ma właściwości odwadniające, co zmniejsza ryzyko korozji. Cementowo-wapienne mieszanki łączą w sobie zalety obu tych materiałów, oferując wysoką wytrzymałość i odporność na działanie kwasów, a ich pH również nie sprzyja korozji. Typowym błędem myślowym jest zakładanie, że wszystkie materiały budowlane mogą mieć negatywny wpływ na stal. Ważne jest, aby przeanalizować konkretne właściwości chemiczne i ich interakcje z metalami, aby podejmować świadome decyzje w zakresie wyboru materiałów budowlanych.

Pytanie 39

Tynk dekoracyjny, będący gładką warstwą zaprawy gipsowej na podstawie wapienno-gipsowej, to

A. tynk zmywalny
B. tynk cyklinowany
C. sztablatura
D. sgraffito
Sztablatura to technika wykończeniowa, która polega na nałożeniu gładkiej warstwy zaczynu gipsowego na podkład wapienno-gipsowy. Jest to dość popularna metoda w architekturze wnętrz, szczególnie w obiektach zabytkowych, gdzie ważne jest zachowanie estetyki i tradycyjnego rzemiosła. Warto zaznaczyć, że sztablatura charakteryzuje się wysoką odpornością na wilgoć oraz zdolnością do regulacji mikroklimatu pomieszczeń, co czyni ją idealnym rozwiązaniem do stosowania w różnorodnych warunkach. Zastosowanie sztablatury umożliwia uzyskanie jednolitej, gładkiej powierzchni, która może być następnie malowana lub dekorowana innymi technikami, co podnosi walory estetyczne wnętrza. W praktyce, tynk sztukatorski w formie sztablatury jest często wybierany w projektach, które nawiązują do klasycznych stylów architektonicznych, gdzie szczególnie istotne jest zachowanie autentyczności i detali wykończeniowych.

Pytanie 40

W technologii szalunku traconego, którego fragment przestawiono na rysunku, ściany wznosi się z

Ilustracja do pytania
A. kształtek styropianowych z rdzeniem żelbetowym.
B. betonu komórkowego na cienkowarstwowej zaprawie klejącej.
C. prefabrykatów żelbetowych w deskowaniach z tektury.
D. bloczków silikatowych na zaprawie ciepłochronnej.
W kontekście technologii szalunku traconego, odpowiedzi odwołujące się do bloczków silikatowych, prefabrykatów żelbetowych oraz betonu komórkowego nie oddają rzeczywistej istoty procesu budowlanego w tej metodzie. Bloczków silikatowych na zaprawie ciepłochronnej nie można stosować jako formy do wylania betonu, ponieważ wymagają one tradycyjnego podejścia do budowy, co wiąże się z dłuższym czasem realizacji i koniecznością późniejszego wykończenia. Prefabrykaty żelbetowe w deskowaniach z tektury również nie są zgodne z ideą szalunku traconego, ponieważ prefabrykaty są zazwyczaj używane w konwencjonalnych metodach budowlanych, gdzie ich montaż i demontaż zajmują znacznie więcej czasu i nie wykorzystują zalet jednoczesnej formy i izolacji. Z kolei beton komórkowy na cienkowarstwowej zaprawie klejącej, choć może być materiałem budowlanym, nie nadaje się do realizacji ścian w technologii szalunku traconego, ponieważ nie tworzy odpowiedniej konstrukcji nośnej ani nie zapewnia właściwej izolacji. Te błędne koncepcje wynikają z braku zrozumienia nowoczesnych metod budowlanych i ich zastosowania, co prowadzi do nieefektywności i nieoptymalności w budownictwie. Współczesne praktyki budowlane stawiają na integrację materiałów, które jednocześnie pełnią funkcję konstrukcyjną i izolacyjną, co sprawia, że kształtki styropianowe z rdzeniem żelbetowym są idealnym rozwiązaniem w tej dziedzinie.