Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:52
  • Data zakończenia: 17 grudnia 2025 14:02

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,0% + 4 cyfry
C. ±1,5% + 3 cyfry
D. ±2,0% + 2 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 2

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Prądu zadziałania wyłącznika RCD
B. Czasu działania wyłącznika RCD
C. Rezystancji izolacji
D. Rezystancji uziemienia
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 3

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
B. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
C. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
D. Podczas zmiany tradycyjnych żarówek na energooszczędne
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 4

Który osprzęt przedstawiono na zdjęciu?

Ilustracja do pytania
A. Złączki skrętne.
B. Mufy przelotowe.
C. Dławnice.
D. Kapturki termokurczliwe.
Mufy przelotowe to elementy, które kojarzę z łączeniem przewodów elektrycznych, ale nie pełnią one roli zabezpieczającej, jak dławnice. One służą głównie do trwałego połączenia przewodów. Złączki skrętne to znowu coś prostszego, co też używa się do łączenia, ale nie dają one szczelności, co jest ważne, żeby chronić przed brudem. Kapturki termokurczliwe też mogą izolować, ale nie mają mechanicznego wsparcia, gdy przewód wchodzi do obudowy. Z tego, co widzę, czasem myli się funkcje zabezpieczające z łączeniem czy izolacją. Z własnego doświadczenia widziałem, jak łatwo można pomylić te elementy, nie znając ich przeznaczenia. W elektryce ważne jest, aby rozumieć różnice między nimi, bo złe użycie może prowadzić do awarii, które mogą być niebezpieczne. Dlatego każdy technik i instalator powinien wiedzieć, jakie mają funkcje i jak z nich korzystać.

Pytanie 5

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. przeciążenia obwodu elektrycznego
C. zwarcia w obwodzie elektrycznym
D. uszkodzenia podłączonego urządzenia elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 6

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Wyłącznika różnicowoprądowego
B. Elektronicznego przekaźnika czasowego
C. Wyłącznika nadprądowego
D. Ochronnika przepięć
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 7

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. DC 500 V i AC 100 V
B. AC 500 V i DC 10 V
C. AC 500 V i DC 50 V
D. DC 500 V i AC 50 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 8

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę wolframową.
B. Świetlówkę kompaktową.
C. Lampę neonową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 9

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 10

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Najwyższą temperaturę otoczenia podczas eksploatacji
C. Minimalny przekrój przewodów podłączonych do zacisków
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
W odpowiedziach, które uznano za błędne, widać, że są w nich różne myśli, ale nie mają one nic wspólnego z tym, co naprawdę oznacza symbol IP20. Na przykład maksymalna temperatura, w jakiej urządzenie może pracować, nie ma związku z ochroną przed kurzem czy wodą; to bardziej chodzi o warunki, w jakich to działa, co może wpływać na jego działanie. Minimalny przekrój przewodów, które są podłączane do gniazd, jest ważny dla prawidłowego przewodzenia prądu, ale znowu – nie ma nic wspólnego z klasą IP, bo ta dotyczy tylko ochrony przed tym, co jest na zewnątrz. Klasa ochrony przed porażeniem prądem także dotyczy czegoś innego, co związane jest z bezpieczeństwem, ale też nie łączy się z IP. Często ludzie mylą te różne kategorie i nie zauważają, że klasy IP dotyczą tylko ochrony przed tym, co jest na zewnątrz, a inne kwestie bezpieczeństwa są zupełnie odrębne. Rozumienie klasyfikacji IP jest mega ważne, bo to pomaga w wyborze odpowiednich komponentów w instalacjach elektrycznych, co z kolei może zapobiec różnym awariom i zagrożeniom.

Pytanie 11

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. pod tynkiem.
B. w tynku.
C. nad sufitem podwieszanym.
D. w korytku instalacyjnym.
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 12

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 10 mm2
B. 2,5 mm2
C. 4 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju przewodu ochronnego, jak 2,5 mm2, 4 mm2 czy 10 mm2, może wydawać się na pierwszy rzut oka uzasadniony, jednak nie odpowiada on wymaganiom przepisów i zasad bezpieczeństwa. Przekrój 2,5 mm2 jest często stosowany dla przewodów zasilających, ale nie jest przewidziany dla przewodów ochronnych w obwodach oświetleniowych. Kluczowym aspektem przy doborze przekroju przewodu ochronnego jest jego funkcja, a nie tylko zdolność do przewodzenia prądu. Głównym celem przewodu ochronnego jest zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądów zwarciowych; zbyt duży przekrój może opóźnić działanie zabezpieczeń, co stwarza ryzyko poważnych wypadków. Przewody o większym przekroju, jak 4 mm2 czy 10 mm2, są nieadekwatne w kontekście ochrony, ponieważ mogą prowadzić do niepoprawnej oceny stanu instalacji, co może skutkować brakiem odpowiednich reakcji w sytuacji awaryjnej. Powszechnym błędem jest również założenie, że im większy przekrój, tym lepsza ochrona. Ważne jest, aby pamiętać, że każdy element instalacji elektrycznej musi być dobrany zgodnie z jego przeznaczeniem oraz obowiązującymi normami, co w tym przypadku jasno określa minimalny przekrój przewodu ochronnego na 1,5 mm2.

Pytanie 13

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Natychmiastowe odłączenie zasilania i wymiana przewodu.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
D. Kontynuowanie użytkowania do czasu planowanej konserwacji.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 14

Na którym rysunku przedstawiono żarówkę z trzonkiem GU10?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Żarówka z trzonkiem GU10 jest popularnym rozwiązaniem w oświetleniu, szczególnie w zastosowaniach domowych i komercyjnych. Trzonek GU10 ma charakterystyczne bolce, które umożliwiają łatwe i szybkie mocowanie żarówki w oprawie. W przypadku żarówki oznaczonej jako B na zdjęciu, widoczny jest podwójny bolec, co jednoznacznie wskazuje na typ GU10. Tego rodzaju żarówki są często stosowane w reflektorach sufitowych oraz oświetleniu akcentującym, co czyni je idealnym wyborem do różnych aranżacji wnętrz. Warto również zauważyć, że żarówki GU10 dostępne są w różnych wersjach, zarówno LED, jak i halogenowych, co daje większą elastyczność w doborze źródła światła odpowiedniego do danej przestrzeni. W kontekście dobrych praktyk, należy zawsze upewnić się, że dobieramy właściwe źródło światła do odpowiedniej oprawy, aby zapewnić optymalne warunki oświetleniowe oraz minimalizować ryzyko uszkodzenia sprzętu.

Pytanie 15

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie końcówki tulejkowej.
B. Zaciskanie opaski kablowej.
C. Ściąganie izolacji z przewodu.
D. Klejenie na gorąco przewodu kabelkowego.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 16

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. C.
B. B.
C. D.
D. A.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 17

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 18

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 2.
C. Przyrząd 3.
D. Przyrząd 1.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 19

Jakiego typu powinna być końcówka wkrętaka dobranego do wkrętu o główce, której kształt przedstawiono na rysunku?

Ilustracja do pytania
A. Torx.
B. Phillips.
C. Pozidriv.
D. Płaska.
Fajnie, że wybrałeś końcówkę Pozidriv do tego wkrętu. To naprawdę dobry wybór, bo ta konstrukcja lepiej pasuje do takich krzyżowych główek, dzięki czemu ryzyko, że narzędzie się poślizgnie, jest mniejsze. Z doświadczenia wiem, że to bardzo ważne, zwłaszcza gdy trzeba wkręty dobrze dokręcić, bo Pozidriv daje większy moment obrotowy niż tradycyjne Phillips. Mniejsze nacięcia końcówki sprawiają, że trzyma się wkrętu lepiej, przez co działanie jest bardziej efektywne. W zasadzie Pozidriv jest często używany przy montażach mebli czy elektroniki, ale też w budownictwie. Ważne jest, żeby dobierać odpowiednie narzędzia do wkrętów, bo to podstawa bezpiecznej i sprawnej pracy, a każdy, kto zajmuje się tym na co dzień, dobrze o tym wie.

Pytanie 20

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
D. w lokalach mieszkalnych w miejscach o łatwym dostępie
Umieszczanie liczników zużycia energii elektrycznej w lokalach mieszkalnych, w tym w zamkniętych szafkach lub w miejscach łatwo dostępnych, nie jest zgodne z aktualnymi standardami i dobrymi praktykami w zakresie zarządzania infrastrukturą budowlaną. Istnieje kilka kluczowych powodów, które tłumaczą, dlaczego takie rozwiązanie może być niewłaściwe. Po pierwsze, lokalizacja liczników w mieszkaniach może prowadzić do naruszenia prywatności mieszkańców, co jest nieakceptowalne z punktu widzenia ochrony danych osobowych. Liczniki są urządzeniami technicznymi, a ich obecność w lokalach mieszkalnych może generować dodatkowe problemy, takie jak hałas czy ograniczenie przestrzeni. Ponadto, umieszczanie ich w łatwo dostępnych miejscach w lokalach może stwarzać ryzyko przypadkowego uszkodzenia lub manipulacji przez osoby trzecie, co jest szczególnie niebezpieczne. W kontekście wymogów dotyczących bezpieczeństwa, przechowywanie liczników w wydzielonych pomieszczeniach technicznych, zamykanych szafkach, pozwala na skuteczną kontrolę i ograniczenie dostępu do nich. Warto pamiętać, że zgodnie z przepisami prawa budowlanego oraz normami branżowymi, liczniki powinny być umiejscowione tak, aby mogły być łatwo dostępne dla wykwalifikowanego personelu, ale jednocześnie maksymalnie chronione przed dostępem osób nieuprawnionych. Tego typu podejścia zapewniają lepszą kontrolę nad systemem dystrybucji energii oraz zwiększają bezpieczeństwo zarówno użytkowników, jak i samej infrastruktury.

Pytanie 21

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Wykorzystywanie urządzeń o zbyt dużej mocy
B. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
C. Użycie wyłącznika o zbyt długim czasie reakcji
D. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
Częściowe zwarcie między przewodem L a PE to jedna z najczęstszych przyczyn, przez które wyłącznik różnicowoprądowy (RCD) może zadziałać. Tego typu zwarcie grozi niebezpiecznymi sytuacjami, bo prąd upływowy może pojawiać się na obudowach urządzeń, co zagraża bezpieczeństwu osób je używających. Te wyłączniki są zaprojektowane, żeby w momencie wykrycia różnicy prądów automatycznie przerywać obwód, co oznacza, że prąd może płynąć do ziemi przez niezamierzony kanał, na przykład przez osobę dotykającą urządzenia. Dlatego warto regularnie testować RCD, co jest zalecane przez normy, takie jak PN-EN 60947-2. To naprawdę ważne dla naszej ochrony przed porażeniem w instalacjach elektrycznych. Jeśli masz problemy z RCD, dobrze byłoby zlecić sprawdzenie instalacji elektrycznej profesjonalnemu elektrykowi, żeby zidentyfikował problem i usunął przyczynę zwarcia, co pozwoli nam bezpiecznie korzystać z urządzeń elektrycznych.

Pytanie 22

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TN-S
B. TT
C. IT
D. TN-C
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 23

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Uszkodzenie przewodu neutralnego.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Kiedy przewód neutralny w systemie trójfazowym ulega uszkodzeniu, napięcie na poszczególnych fazach rozkłada się nierównomiernie. To może mieć spore konsekwencje dla odbiorników, takich jak Z1. Na przykład, jeżeli przewód neutralny jest w złym stanie, napięcie na urządzeniach z mniejszą impedancją może znacznie wzrosnąć. To może prowadzić do ich uszkodzenia. W branży elektrycznej, jak mówi norma IEC 60364, prawidłowe uziemienie i sprawność przewodów neutralnych są mega istotne dla bezpieczeństwa instalacji. Wyobraź sobie sytuację, gdzie urządzenie podłączone do zepsutego obwodu neutralnego otrzymuje napięcie dużo wyższe niż 400V. To na pewno nie jest dobre dla sprzętu. Dlatego regularne sprawdzanie i konserwacja instalacji są kluczowe, żeby uniknąć takich problemów.

Pytanie 24

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Automat zmierzchowy.
C. Przekaźnik priorytetowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 25

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. aM
C. aR
D. gG
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 26

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy zwartych przewodach pomiarowych.
B. cyfrą 2 przy odłączonych przewodach pomiarowych.
C. cyfrą 1 przy odłączonych przewodach pomiarowych.
D. cyfrą 1 przy zwartych przewodach pomiarowych.
Poprawna odpowiedź to cyfrą 2 przy zwartych przewodach pomiarowych. Wyzerowanie omomierza jest kluczowym krokiem przed pomiarem rezystancji, ponieważ pozwala na zredukowanie wpływu wszelkich błędów pomiarowych. Przy zwartych przewodach pomiarowych nie ma żadnej rezystancji, co umożliwia ustawienie wskazówki miernika na 0 Ω. Dzięki temu uzyskujemy dokładniejsze wyniki pomiarów. W praktyce, wiele urządzeń pomiarowych, w tym profesjonalne omomierze, mają wbudowane funkcje umożliwiające automatyczne wyzerowanie, co jest zgodne z najlepszymi praktykami pomiarowymi. Prawidłowe wyzerowanie miernika przed przystąpieniem do pomiarów jest również zgodne z normami branżowymi, co podkreśla znaczenie tego procesu w zapewnieniu dokładności i wiarygodności wyników. Pamiętaj, że pomiar bez wcześniejszego wyzerowania może prowadzić do nieprecyzyjnych odczytów, co w kontekście pracy inżynierskiej lub domowego majsterkowania ma istotne znaczenie.

Pytanie 27

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.

Pytanie 28

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Schemat C pokazuje, jak powinny być połączone przewody fazowe (L) i neutralne (N). To jest ważne, bo tylko w ten sposób można dobrze zmierzyć, ile energii elektrycznej zużywa użytkownik. Licznik musi być odpowiednio podłączony, żeby dokładnie naliczał zużycie energii. Liczniki działają na zasadzie pomiaru prądu, który płynie przez obciążenie, a także napięcia między przewodami. Jeśli coś jest źle podłączone, to mogą być błędy w odczycie, a to nie jest zgodne z normami, które mówią o pomiarach energii elektrycznej, jak PN-EN 62053. Regularne kalibrowanie liczników też jest dobrym pomysłem, bo wtedy są bardziej dokładne i lepiej działają. Wiedza o tym, jak właściwie podłączać wszystko, jest naprawdę kluczowa dla elektryków i inżynierów zajmujących się pomiarami energii. Dzięki temu można lepiej zarządzać energią i unikać niepotrzebnych kosztów.

Pytanie 29

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Rozłącznik.
B. Odłącznik.
C. Wyłącznik.
D. Bezpiecznik.
Odpowiedź 'Wyłącznik' jest prawidłowa, ponieważ symbol przedstawiony na schemacie doskonale ilustruje funkcję wyłącznika w obwodach elektrycznych. Wyłącznik to kluczowe urządzenie, które pozwala na manualne lub automatyczne rozłączanie obwodu, co ma istotne znaczenie dla bezpieczeństwa instalacji oraz jej obsługi. Zastosowanie wyłączników pozwala na szybką reakcję w sytuacjach awaryjnych, takich jak zwarcia czy przeciążenia, co zabezpiecza przed uszkodzeniem urządzeń i instalacji. Wyłączniki są powszechnie stosowane w różnych aplikacjach, od domowych po przemysłowe, gdzie kontrola nad przepływem prądu jest kluczowa. Przykładem są wyłączniki nadprądowe, które automatycznie odcinają zasilanie w przypadku przekroczenia dopuszczalnego prądu, zgodnie z normami PN-EN 60898. Dobrą praktyką jest również regularne testowanie i konserwacja wyłączników, co wpływa na ich niezawodność oraz bezpieczeństwo użytkowników.

Pytanie 30

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Płaskim.
C. Nasadowym.
D. Oczkowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 31

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 4 mm2
B. 6 mm2
C. 2,5 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju przewodu może przynieść poważne problemy, zarówno pod względem bezpieczeństwa jak i wydajności. Odpowiedzi 1,5 mm2 i 6 mm2 są zupełnie nietrafione przy zasilaniu pieca rezystancyjnego o mocy 5000 W. Przewód 1,5 mm2 po prostu nie jest w stanie przeprowadzić prądu 21,74 A, co stwarza ryzyko przegrzania i różnych uszkodzeń. Przewody o zbyt małym przekroju mogą powodować spadki napięcia, co negatywnie wpłynie na działanie pieca. Z kolei przewód 6 mm2 jest za duży na to obciążenie, co zwiększa koszty materiałów i może sprawić problemy z montażem oraz wyglądem całej instalacji. Często ludzie przy wyborze przekroju skupiają się tylko na maksymalnej mocy, a zapominają o innych ważnych rzeczach, takich jak długość przewodu, temperatura otoczenia czy rodzaj izolacji. Takie błędne podejście do doboru przewodu to prosta droga do kłopotów i zagraża bezpieczeństwu użytkowników oraz poprawnemu działaniu systemu elektrycznego. Dlatego warto kierować się normami i wytycznymi branżowymi, by nie popełniać takich błędów.

Pytanie 32

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 16 A, 20 A
C. 20 A, 16 A, 20 A, 16 A
D. 16 A, 20 A, 20 A, 16 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 33

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,84
B. 0,69
C. 0,49
D. 0,39
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 34

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Natężenie oświetlenia.
B. Temperaturę barwową światła.
C. Światłość.
D. Luminancję.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 35

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Docinania przewodu.
B. Zaciskania końcówek tulejkowych.
C. Zaciskania końcówek oczkowych.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 36

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H07V-K
B. H03VV-F
C. H03VVH2-F
D. H07V2-U
Przewód przedstawiony na rysunku to H03VV-F, który jest typem przewodu elastycznego przeznaczonego do zastosowań w niskonapięciowych urządzeniach przenośnych. Charakteryzuje się on wieloma żyłami o różnorodnych kolorach izolacji, co jest zgodne z normą PN-EN 50525. H03VV-F jest często wykorzystywany w urządzeniach takich jak odkurzacze, małe sprzęty AGD i inne urządzenia o niewielkim obciążeniu. Jego konstrukcja umożliwia elastyczność i odporność na uszkodzenia mechaniczne, co czyni go idealnym do użytku w warunkach, gdzie przewód może być narażony na ruch. Dodatkowo, przewód ten spełnia normy dotyczące odporności na wysoką temperaturę oraz napotykane chemikalia, co zwiększa jego trwałość i bezpieczeństwo użytkowania. Stosując ten przewód, można mieć pewność, że urządzenie z niego zasilane będzie pracowało w sposób bezpieczny i efektywny.

Pytanie 37

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
C. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
D. Wykonując kontrolne doziemienie
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 38

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru oraz oznaczenia przewodów
B. doboru zabezpieczeń i urządzeń
C. układu tablic informacyjnych i ostrzegawczych
D. wartości natężenia oświetlenia w miejscach pracy
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 39

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 100 mA
C. 300 mA
D. 10 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 40

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 6,9 kW
B. 3,9 kW
C. 2,9 kW
D. 9,6 kW
Poprawna odpowiedź wynosi 6,9 kW, co odpowiada maksymalnej mocy, jaką można uzyskać z wyłącznika nadprądowego typu S-303 CLS6-C10/3. Wyłączniki nadprądowe klasy C są przeznaczone do ochrony obwodów, w których występują prądy rozruchowe, co jest typowe dla urządzeń takich jak kuchenki elektryczne. Wyłącznik C10 oznacza, że jego maksymalny prąd znamionowy wynosi 10 A, co przy napięciu 230 V (typowym dla obwodów kuchennych w mieszkaniach) pozwala na obliczenie mocy: P = U x I, czyli 230 V x 10 A = 2300 W (2,3 kW). Jednak w przypadku kuchni elektrycznej zasilanej z trójfazowego zasilania 400 V, możemy zastosować również moc obliczoną z trzech faz: P = √3 x U x I = √3 x 400 V x 10 A = 6928 W, co daje nam 6,9 kW. Stosowanie wyłączników nadprądowych zgodnych z normami PN-EN 60898 jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W praktyce, zainstalowanie kuchenki elektrycznej o mocy 6,9 kW umożliwia wygodne gotowanie oraz korzystanie z różnych funkcji, takich jak pieczenie i gotowanie na parze, bez ryzyka przeciążenia obwodu zasilającego.