Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 12:26
  • Data zakończenia: 7 grudnia 2025 12:36

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Przekaźnik czasowy
B. Wyłącznik nadprądowy
C. Bezpiecznik topikowy
D. Wyłącznik różnicowoprądowy
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 2

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. styk pomocniczy zwiemy.
C. przycisk rozwierny.
D. przycisk zwiemy.
Nieprawidłowe odpowiedzi na to pytanie często wynikają z nieporozumień dotyczących funkcji i zastosowania różnych typów przycisków oraz styków. Przyciski zwiemy i styki pomocnicze rozwierne różnią się zasadniczo w swojej funkcji. Przyciski zwiemy, nazywane również przyciskami zamykającymi, w momencie ich wciśnięcia zamykają obwód, co pozwala na przepływ prądu, a w stanie spoczynkowym obwód jest otwarty. Ta funkcjonalność jest wykorzystywana w wielu aplikacjach, takich jak włączniki świateł czy przyciski sterujące maszynami. Styk pomocniczy rozwierny działa na zasadzie podobnej do przycisku rozwiernego, ale jest używany w kontekście elementów sterujących i zabezpieczeń, gdzie ważne jest, aby w momencie awarii zasilania obwód został automatycznie otwarty, co zapobiega dalszym uszkodzeniom. Typowe błędy w myśleniu, które prowadzą do wybierania tych niepoprawnych odpowiedzi, opierają się na mylnym utożsamianiu funkcji tych elementów. Zrozumienie, że przycisk rozwierny odgrywa odwrotną rolę niż przycisk zwierny, jest kluczowe dla prawidłowego zrozumienia ich działania. Aby uniknąć tych błędów, warto dokładnie zapoznać się z dokumentacją techniczną oraz schematami obwodów, co pozwoli lepiej zrozumieć zasadę działania poszczególnych elementów oraz ich zastosowanie w praktyce.

Pytanie 3

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 25 mm2
B. 4,0 mm2
C. 16 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 4

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 3,8 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 5

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Rezystancję uziemienia odbiornika.
B. Prąd upływu.
C. Ciągłość przewodów.
D. Kolejność faz zasilających.
Dobra robota z wyborem odpowiedzi! To narzędzie, które widzisz na zdjęciu, to tester kolejności faz. Jest naprawdę ważny w elektryce, bo sprawdza, czy fazy są odpowiednio podłączone w instalacjach trójfazowych. Zrozumienie tej kolejności jest kluczowe, bo jak fazy się zamienią, to mogą być problemy z działaniem urządzeń, szczególnie silników. Bezpieczne uruchamianie nowych instalacji to podstawa, a ten tester naprawdę się przydaje. W branży elektrycznej normy mówią, że musimy pilnować tej kolejności, żeby uniknąć nieprawidłowości i niebezpieczeństw. Poza tym, jeśli w systemie jest nierównomierne obciążenie, to ten tester też może pomóc to zdiagnozować, a to ważne dla oszczędności energii.

Pytanie 6

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik priorytetowy.
C. Wyłącznik ciśnieniowy.
D. Ogranicznik mocy.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 7

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 1NO + 2NC
B. 3NO + 2NO + 1NC
C. 3NO + 1NO + 2NC
D. 3NC + 2NO + 1NC
Wybór niewłaściwej odpowiedzi często wynika z braku dokładnej analizy schematu elektrycznego oraz niepełnego zrozumienia funkcji zestyków w układzie. Istnieje kilka kluczowych błędów, które mogą prowadzić do nieprawidłowych wniosków. Po pierwsze, zestyk normalnie zamknięty (NC) nie powinien być nadużywany w układach, w których wymagane jest równoczesne włączenie kilku urządzeń; ich zadaniem jest raczej zapewnienie bezpieczeństwa poprzez odcięcie zasilania w przypadku awarii. W sytuacjach, gdzie pojawia się konieczność aktywacji kilku elementów, zestyk normalnie otwarty (NO) jest bardziej odpowiedni, ponieważ zapewnia ciągłość obwodu przy włączonym styczniku. Ponadto, niektóre odpowiedzi mogą sugerować nadmiar zestyków NC w układzie, co prowadzi do skomplikowania działania i może powodować problemy przy uruchamianiu urządzeń. Regularna analiza schematów i stosowanie się do dobrych praktyk, takich jak, na przykład, dobór elementów zgodnie z ich specyfikacją techniczną oraz normami bezpieczeństwa, jest niezbędne dla zapewnienia prawidłowego działania wszystkich komponentów układu. W każdym przypadku, kluczowe jest przemyślane podejście do projektowania i realizacji układów elektrycznych, które powinno łączyć teorię z praktyką, pozwalając na osiągnięcie optymalnych rezultatów.

Pytanie 8

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 9

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 16 A
B. 20 A
C. 6 A
D. 26 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 10

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YDYp
B. YnDYo
C. YLYp
D. YDYo
Odpowiedź YDYp jest poprawna, ponieważ oznaczenie to dokładnie opisuje charakterystykę przewodu, który możemy zaobserwować na zdjęciu. Litera 'Y' wskazuje na izolację wykonaną z polichlorku winylu (PVC), co jest powszechnie stosowane w przewodach elektrycznych dzięki swojej odporności na działanie chemikaliów i dobrej izolacyjności elektrycznej. Następnie litera 'D' informuje nas, że wewnątrz przewodu znajdują się żyły jednodrutowe, co jest istotne w kontekście zastosowania. Takie przewody są powszechnie stosowane w instalacjach elektrycznych, gdzie wymagana jest duża elastyczność i odporność na zginanie. Oznaczenie 'p' sugeruje, że przewód ma płaską konstrukcję, co może być korzystne przy instalacji w miejscach o ograniczonej przestrzeni. Zastosowanie przewodu YDYp możemy zaobserwować w domowych instalacjach elektrycznych, a także w różnych aplikacjach przemysłowych, gdzie wymagane są wysokie standardy bezpieczeństwa i niezawodności. Zgodność z normą PN-EN 50525-2-11 potwierdza wysoką jakość tego typu przewodów, czyniąc go odpowiednim wyborem w wielu zastosowaniach.

Pytanie 11

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Prądu obciążenia.
B. Czasu zadziałania.
C. Rezystancji izolacji.
D. Rzeczywistego prądu zadziałania.
Zrozumienie działania wyłączników różnicowoprądowych i ich pomiarów jest kluczowe dla bezpieczeństwa instalacji. Odpowiedzi dotyczące rezystancji izolacji, czasu zadziałania oraz prądu obciążenia wskazują na typowe nieporozumienia związane z funkcjonowaniem tych urządzeń. Rezystancja izolacji nie jest parametrem, który wpływa na działanie wyłącznika różnicowoprądowego, lecz na jego bezpieczeństwo względem przebicia do ziemi oraz inne aspekty dotyczące izolacji. Czas zadziałania odnosi się do momentu, w którym urządzenie zareaguje na określony poziom prądu różnicowego, ale nie jest to tożsame z pomiarem rzeczywistego prądu zadziałania, który jest kluczowy dla zabezpieczeń. Z kolei prąd obciążenia odnosi się do wartości prądu płynącego przez obciążenie, a nie do prądu różnicowego, który jest kluczowym czynnikiem dla zadziałania wyłącznika. Ważne jest, aby w kontekście pomiarów, takich jak te dotyczące wyłączników różnicowoprądowych, mieć na uwadze różnice między różnymi typami prądów oraz ich znaczeniem dla bezpieczeństwa. Typowe błędy myślowe mogą prowadzić do mylnego rozumienia, że wszystkie te parametry są równoważne, podczas gdy każdy z nich pełni inną rolę w ocenie bezpieczeństwa i skuteczności instalacji elektrycznej. Właściwe zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania wyłączników i zapewnienia ich efektywności w ochronie przed zagrożeniami elektrycznymi.

Pytanie 12

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są zwarte ze sobą.
B. Żyły a i b są zwarte ze sobą.
C. Żyły c i a są przerwane.
D. Żyły a i b są przerwane.
Pomiary rezystancji mogą prowadzić do różnych błędów w wnioskowaniu, zwłaszcza jak się ich nie przeanalizuje odpowiednio. Na przykład, mówienie o przerwach w żyłach c i a czy a i b, to nie jest dobra sprawa. Pomiary mówią, że brak połączenia mamy tylko między a i c oraz b i c. Warto to zrozumieć jako brak elektrycznego połączenia, a nie jakiekolwiek inne założenie. Typowy błąd to myślenie, że jeśli rezystancja jest nieskończona, to żyły są przerwane. A to wprowadza w błąd. Nieskończona rezystancja tylko pokazuje, że nie ma połączenia między a i c oraz b. Natomiast a i b, mając skończoną rezystancję, są ze sobą zwarte. W praktyce każdy technik powinien wiedzieć, że interpretacja rezystancji to nie tylko teoria, ale też praktyka pomiarów. Dobre praktyki w diagnozowaniu usterek to konieczność dokładnych sprawdzeń i powtarzania pomiarów, żeby uniknąć fałszywych informacji, które mogą kosztować sporo w naprawach i konserwacji systemów elektrycznych.

Pytanie 13

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. tylko przewody fazowe
B. przewody fazowe oraz ochronny
C. wszystkie przewody czynne
D. wyłącznie przewód neutralny
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 14

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,0 MΩ
B. 0,5 MΩ
C. 1,5 MΩ
D. 2,0 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 15

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Listwę zaciskową.
B. Szynę montażową.
C. Listwę elektroinstalacyjną.
D. Szynę łączeniową.
Szyna łączeniowa, którą rozpoznałeś na zdjęciu, pełni istotną rolę w systemach elektroinstalacyjnych. Jest to komponent, który umożliwia efektywne połączenie i dystrybucję energii elektrycznej pomiędzy różnymi urządzeniami w rozdzielnicy. Dzięki zastosowaniu szyny łączeniowej, możliwe jest zminimalizowanie oporów elektrycznych i zredukowanie strat energii, co jest kluczowe w projektowaniu nowoczesnych instalacji elektrycznych. W praktyce, takie szyny są często stosowane w obiektach komercyjnych oraz przemysłowych, gdzie wymagane jest jednoczesne podłączenie wielu urządzeń, takich jak wyłączniki, bezpieczniki czy urządzenia automatyki. Ponadto, zgodnie z normami IEC 61439, szyny łączeniowe muszą spełniać określone wymagania dotyczące przewodności oraz odporności na przeciążenia. Dzięki temu, ich stosowanie podnosi nie tylko efektywność, ale również bezpieczeństwo całej instalacji elektrycznej.

Pytanie 16

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. strugoszczelna.
B. nieodporna na wnikanie wody.
C. odporna na krople wody.
D. wodoszczelna.
Twoja odpowiedź jest trafna, bo jeśli przyjrzymy się rysunkowi oprawy oświetleniowej, to nie widać żadnych uszczelnień ani odpowiednich zabezpieczeń. To oznacza, że ten produkt nie nadaje się do używania w miejscach, gdzie może być wilgoć lub woda. W praktyce, oprawy, które można stosować w miejscach z podwyższoną wilgotnością, jak w łazienkach czy na zewnątrz, muszą spełniać pewne normy odporności na wodę, na przykład normy IP. Jeżeli nie zastosujemy takich standardów, to mogą wystąpić problemy z elektroniką, a nawet zagrożenie pożarowe. Dlatego warto zwracać uwagę na klasę ochrony przy wyborze opraw oświetleniowych, bo to sprawi, że będą one bezpieczniejsze i dłużej posłużą.

Pytanie 17

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Nie podłączono przewodu neutralnego
B. Zamieniono zacisk przewodu fazowego z neutralnym
C. Nie podłączono przewodu ochronnego
D. Zamieniono zacisk przewodu ochronnego z neutralnym
Zamiana zacisku przewodu ochronnego z neutralnym jest poważnym błędem w instalacji elektrycznej. W systemach elektrycznych, przewód ochronny (PE) ma na celu zapewnienie bezpieczeństwa poprzez odprowadzanie prądu awaryjnego w przypadku uszkodzenia izolacji urządzenia. Jeśli ten przewód zostanie zamieniony z przewodem neutralnym (N), to w przypadku zwarcia prąd zamiast do ziemi popłynie przez przewód neutralny, co może prowadzić do poważnych zagrożeń, w tym do porażenia prądem. Wyłączniki różnicowoprądowe są zaprojektowane do wykrywania różnicy prądu przepływającego między przewodem fazowym a neutralnym; jeśli coś pójdzie nie tak, a prąd zacznie płynąć przez przewód ochronny, wyłącznik zadziała, co może być objawem niepoprawnego podłączenia. W praktyce, przed podłączeniem gniazda wtyczkowego, należy zawsze upewnić się, że przewody są prawidłowo oznaczone i podłączone zgodnie z aktualnymi normami, takimi jak PN-IEC 60364, aby zminimalizować ryzyko błędów montażowych.

Pytanie 18

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. B.
B. D.
C. C.
D. A.
Wybór jakiegokolwiek innego zestawu narzędzi niż zestaw B do montażu instalacji natynkowej w rurach PCV jest obarczony ryzykiem nieprawidłowości oraz niedostatecznej efektywności. Zestaw A, C oraz D nie zawierają kluczowego narzędzia, jakim jest piła do cięcia, co uniemożliwia precyzyjne przygotowanie rur do montażu. Bez odpowiedniego cięcia, w instalacji mogą pojawić się szczeliny, które negatywnie wpływają na funkcjonalność i bezpieczeństwo całego systemu. W przypadku wyboru zestawu, który nie ma obcinaczek, łączenie elementów rur staje się kłopotliwe i czasochłonne, co może prowadzić do błędów w montażu, które są niebezpieczne w przypadku instalacji elektrycznych. Warto również zdawać sobie sprawę, że standardy branżowe wymagają stosowania właściwych narzędzi, aby zminimalizować ryzyko awarii i zagrożeń związanych z niewłaściwym montażem. Wybór niewłaściwych narzędzi często wynika z błędnego rozumienia wymagań dotyczących narzędzi do instalacji, co może wprowadzać w błąd i prowadzić do stosowania substytutów, które nie spełniają standardów jakości. Dlatego tak ważne jest zrozumienie, jak istotne jest korzystanie z odpowiednich narzędzi do danego zadania oraz znajomość dobrych praktyk w branży, które pozwolą na wykonanie pracy w sposób bezpieczny i efektywny.

Pytanie 19

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Polwinit i guma
B. Polwinit i mika
C. Mika i silikon
D. Silikon i guma
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 20

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Omomierza szeregowego
B. Mostka prądu zmiennego
C. Amperomierza cęgowego
D. Megaomomierza induktorowego
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 21

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. I
B. II
C. IV
D. III
Odpowiedź I jest poprawna, ponieważ oświetlenie miejscowe, które ma na celu dostarczenie światła do określonego obszaru, często stosuje oprawy klasy I. Oprawy te są zaprojektowane w taki sposób, aby zapewniały odpowiednią izolację i ochronę przed porażeniem prądem, co jest kluczowe w kontekście ich użycia w miejscach pracy i w przestrzeni publicznej. Klasa I oznacza, że urządzenia te muszą być uziemione, co znacząco zwiększa bezpieczeństwo ich użytkowania. Przykładowo, w biurach czy warsztatach, gdzie oświetlenie miejscowe jest niezbędne do precyzyjnego wykonania zadań, oprawy klasy I zapewniają, że pracownicy są chronieni przed ryzykiem porażenia prądem. W praktyce, oświetlenie miejscowe może być realizowane poprzez lampy biurkowe, które często mają dodatkowe funkcje regulacji intensywności światła. Stosowanie opraw klasy I w takich sytuacjach jest zgodne z normami bezpieczeństwa, co podkreśla znaczenie tego typu oświetlenia w przestrzeniach użytkowych.

Pytanie 22

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Lampę neonową.
C. Żarówkę wolframową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 23

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 24

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź C jest poprawna, ponieważ reprezentuje oprawę oświetleniową typu żyrandola, która jest idealna do zastosowania w oświetleniu ogólnym. Żyrandole montowane na suficie emitują światło w sposób równomierny, co pozwala na oświetlenie całego pomieszczenia, eliminując cienie i ciemne kąty. Tego typu oprawy są często stosowane w przestrzeniach takich jak salony, jadalnie czy biura, gdzie kluczowe jest zapewnienie odpowiedniego poziomu oświetlenia dla komfortu użytkowników. Żyrandole mogą również pełnić funkcję dekoracyjną, a ich design często wzbogaca estetykę wnętrza. W standardach oświetleniowych, takich jak normy EN 12464-1, określa się zalecane poziomy oświetlenia dla różnych typów pomieszczeń, co podkreśla znaczenie zastosowania odpowiednich opraw do osiągnięcia wymaganej wydajności świetlnej. W praktyce, wybór żyrandola do oświetlenia ogólnego powinien opierać się na wielkości pomieszczenia oraz jego przeznaczeniu, co pozwoli na optymalizację zarówno funkcjonalności, jak i stylu.

Pytanie 25

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 26

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 27

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 4 lata
B. 8 lat
C. 6 lat
D. 5 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 28

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F2:2 i 1
B. Neutralny między zaciskami F1:N2 i 2
C. Fazowy między zaciskami F1:2 i F2:1
D. Neutralny między zaciskami N i F1:N1
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 29

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są zwarte ze sobą.
B. Żyły a i b są przerwane.
C. Żyły c i a są przerwane.
D. Żyły a i b są zwarte ze sobą.
Wnioski wyciągnięte z pomiarów rezystancji są kluczowe dla właściwego diagnozowania stanu kabli. Nieprawidłowe interpretacje mogą prowadzić do fałszywych diagnoz, co z kolei może skutkować nieefektywnym użytkowaniem sprzętu lub nawet poważnymi awariami. Na przykład, uznanie, że żyły c i a są przerwane, pomija fakt, że w pierwszej serii pomiarów rezystancja była niska, co wskazuje na ich sprawność. Takie wnioski mogą wynikać z niepełnego zrozumienia zasad działania rezystancji i wpływu zwarcia na pomiary. Z kolei założenie, że żyły a i b są przerwane, jest również błędne, ponieważ ich rezystancja w drugiej serii była zbliżona do wartości ze pierwszej serii, co sugeruje ich zwarte połączenie. Dlatego kluczowe jest, aby technicy byli świadomi różnicy między pomiarami w trybie zwarcia i rozłączenia oraz umieli prawidłowo interpretować otrzymane wyniki. Używanie standardowych procedur pomiarowych, takich jak te określone w normach branżowych, może znacznie zwiększyć dokładność diagnoz. Należy unikać pułapek, w które wpadali technicy, którzy, zamiast analizować dane w kontekście całości, skupili się jedynie na fragmentarycznych wynikach, co prowadzi do błędnych konkluzji.

Pytanie 30

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze wysokoprężne.
B. Żarowe.
C. Wyładowcze niskoprężne.
D. Półprzewodnikowe.
Wybór źródła światła wyładowczego niskoprężnego, żarowego lub wyładowczego wysokoprężnego jest błędny z kilku powodów. Źródła wyładowcze niskoprężne, takie jak lampy fluorescencyjne, wymagają odpowiednich warunków ciśnienia, aby generować światło, co jest zupełnie inne niż zasada działania źródeł półprzewodnikowych. Te lampy są również mniej efektywne energetycznie, a ich żywotność jest znacznie krótsza w porównaniu do źródeł LED. Źródła żarowe działają na zasadzie podgrzewania włókna, co prowadzi do znaczących strat energii w postaci ciepła, a ich niska efektywność sprawia, że są mniej preferowane w nowoczesnych zastosowaniach. Wyładowcze wysokoprężne lampy, chociaż bardziej efektywne niż ich niskoprężne odpowiedniki, mają ograniczone zastosowanie w porównaniu do technologii LED, a ich konstrukcja oraz waga mogą być problematyczne w wielu aplikacjach. Często błędne założenia wynikają z nieznajomości różnic technicznych między tymi klasami źródeł światła oraz ich zastosowaniami w praktyce. Współczesne normy dotyczące oświetlenia, takie jak EN 12464-1, zwracają uwagę na znaczenie efektywności energetycznej oraz jakości światła, co wyklucza tradycyjne technologie na rzecz bardziej innowacyjnych rozwiązań, jak diody LED.

Pytanie 31

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Otokowy.
B. Promieniowy.
C. Pionowy.
D. Fundamentowy.
Uziom otokowy w instalacji piorunochronnej to naprawdę ważny element, który zapewnia ochronę budynków przed wyładowaniami. Widzisz, na rysunku dokładnie widać czerwoną linię, która pokazuje uziom wokół budynku, co jest zupełnie normalne w takiej ochronie. Tworzy się go z przewodów zakopanych wokół, które mają za zadanie odprowadzać energię elektryczną w razie uderzenia pioruna. Dzięki temu szansa na uszkodzenie budynku lub sprzętu elektronicznego jest znacznie mniejsza. Jak wiadomo, normy mówią, że uziomy otokowe są najlepszym rozwiązaniem, zwłaszcza w wysokich obiektach, bo lepiej rozkładają prąd piorunowy. Korzystanie z tego typu uziomu nie tylko jest zgodne z inżynieryjnymi standardami, ale także chroni życie i mienie, co jest przecież najważniejsze.

Pytanie 32

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
B. brak możliwości zadziałania załączonego wyłącznika
C. prawidłowe działanie wyłącznika
D. niemożność załączenia wyłącznika pod obciążeniem
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 33

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Rastrowa oprawa oświetleniowa jest kluczowym elementem w projektowaniu oświetlenia wnętrz, szczególnie w przestrzeniach biurowych oraz przemysłowych. Oprawy te wyposażone są w rastrowe klosze, które mają za zadanie efektywne rozpraszanie światła, minimalizując olśnienie i poprawiając komfort pracy. Na ilustracji 2 widoczna jest właśnie taka oprawa, której klosz wykonany jest z materiałów takich jak metal lub plastik, z charakterystycznym wzorem przypominającym kratkę, co pozwala na lepsze rozproszenie światła. Dobre praktyki w projektowaniu oświetlenia sugerują stosowanie rastrowych opraw w miejscach, gdzie wymagane jest równomierne oświetlenie dużych powierzchni roboczych, co wpływa na wydajność pracy. Warto również zwrócić uwagę na standardy dotyczące natężenia oświetlenia, które wskazują, jakie wartości są optymalne dla różnych typów przestrzeni. Wybierając odpowiednią oprawę oświetleniową, należy również uwzględnić efektywność energetyczną, co jest kluczowe w kontekście zrównoważonego rozwoju. Takie podejście przyczynia się do zmniejszenia kosztów eksploatacji oraz oszczędności energii.

Pytanie 34

Urządzenie pokazane na zdjęciu to

Ilustracja do pytania
A. regulator fotokomórki.
B. programowalny przełącznik czasowy.
C. łącznik zmierzchowy.
D. regulator natężenia oświetlenia.
Łącznik zmierzchowy to urządzenie, które automatycznie aktywuje oświetlenie, gdy poziom naturalnego światła spada poniżej określonego progu. Urządzenie, które widzimy na zdjęciu, ma charakterystyczne oznaczenie "AZH-S" oraz pokrętło z symbolami słońca i księżyca. Te elementy wskazują na jego funkcję detekcji zmierzchu. W praktyce, łącznik zmierzchowy jest powszechnie stosowany w systemach oświetleniowych w budynkach mieszkalnych oraz komercyjnych, umożliwiając automatyczne włączanie lamp w godzinach wieczornych. Dzięki zastosowaniu tego typu urządzenia, można znacznie zwiększyć efektywność energetyczną, ograniczając zużycie energii i jednocześnie poprawiając komfort użytkowników. Dodatkowo, zgodnie z aktualnymi standardami budowlanymi, wprowadzenie automatyzacji w systemach oświetleniowych staje się coraz bardziej popularną praktyką, co wpisuje się w globalne trendy oszczędności energii i zrównoważonego rozwoju.

Pytanie 35

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Obcowzbudnego prądu stałego.
C. Indukcyjnego klatkowego.
D. Synchronicznego z obcym wzbudzeniem.
Analizując dostępne odpowiedzi, można zauważyć kilka powszechnych nieporozumień związanych z różnymi typami silników elektrycznych. Silnik obcowzbudny prądu stałego jest konstrukcją, która charakteryzuje się oddzielnym źródłem zasilania dla pola magnetycznego, co nie znajduje odzwierciedlenia w schemacie i jego budowie. Silniki tego typu mają zupełnie inną architekturę i przeznaczenie, często używane w aplikacjach wymagających dużej kontroli nad prędkością obrotową, ale nie są w stanie dostarczyć tej samej elastyczności co silniki pierścieniowe. Z kolei silnik indukcyjny klatkowy, który posiada wirnik wykonany w formie klatki, jest prostszy w budowie i nie pozwala na taką regulację momentu obrotowego jak silnik pierścieniowy. Ta konstrukcja jest bardziej powszechna w zastosowaniach przemysłowych, jednak nie ma możliwości tak szczegółowego dostosowania parametrów pracy. Natomiast silnik synchroniczny z obcym wzbudzeniem, który również został wymieniony w odpowiedziach, opiera się na stałym polu magnetycznym i charakteryzuje się innym sposobem działania. W odróżnieniu od silników indukcyjnych, synchroniczne wykorzystują stałe źródło pola, co sprawia, że ich zastosowanie jest inne i wymagające. Zrozumienie różnic między tymi typami silników jest kluczowe, aby podejmować właściwe decyzje w kontekście wyboru odpowiedniej technologii do konkretnych zastosowań przemysłowych. Kluczowe jest, aby pamiętać o specyfikach konstrukcyjnych i ich wpływie na właściwości użytkowe, co może prowadzić do znacznych nieporozumień w praktyce inżynieryjnej.

Pytanie 36

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
B. Zwarcie przewodu ochronnego z przewodem neutralnym.
C. Włączenie odbiornika drugiej klasy ochronności.
D. Przerwa w przewodzie uziemiającym instalację.
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 37

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 38

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SRN
B. SZR
C. SPZ
D. SCO
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 39

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji IV.
B. Na ilustracji III.
C. Na ilustracji I.
D. Na ilustracji II.
Symbol graficzny rozłącznika, zaprezentowany na ilustracji II, jest kluczowym elementem schematów elektrycznych. Rozłączniki służą do przerywania obwodów elektrycznych w celu zapewnienia bezpieczeństwa podczas konserwacji lub napraw. Oznaczenie rozłącznika składa się z dwóch równoległych linii, które reprezentują przewody, oraz kółka, które wskazuje punkt styku, gdzie następuje rozłączenie obwodu. Zrozumienie tych symboli jest niezbędne dla projektowania i analizy obwodów elektrycznych. Przykładem zastosowania rozłączników jest ich wykorzystanie w systemach zasilania awaryjnego, gdzie pozwalają na szybkie wyłączenie zasilania w przypadku awarii. Zgodnie z normą IEC 60617, symbole graficzne muszą być jednolite i zrozumiałe, co zapewnia efektywną komunikację między inżynierami a technikami. Dlatego znajomość tych symboli jest nie tylko praktyczna, ale i konieczna w pracy zawodowej inżyniera elektryka.

Pytanie 40

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. Tylko w 2.
B. W l i 3.
C. W 1 i 2.
D. Tylko w 3.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.