Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 23:52
  • Data zakończenia: 20 grudnia 2025 00:49

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. przeglądu technicznego w trakcie przestoju
B. planowych napraw bieżących bez rozkładania całej maszyny
C. planowych napraw średnich realizowanych po demontażu całej maszyny
D. ogólnego remontu maszyny
Wybór innych opcji jako momentów do usunięcia nieszczelności w układzie smarowania lub cieczy chłodzącej może prowadzić do poważnych problemów w eksploatacji urządzeń hydraulicznych. Generalny remont maszyny, choć może obejmować naprawę nieszczelności, jest czasochłonny i kosztowny, a jego przeprowadzanie bez wyraźnej potrzeby prowadzi do nieefektywności operacyjnej. Podobnie, planowe naprawy średnie po demontażu całej maszyny powinny być zarezerwowane dla większych usterek wymagających kompleksowej interwencji, a nie drobnych nieszczelności, które można rozwiązać w czasie przestoju. Planowe naprawy bieżące bez demontażu całej maszyny mogą być niewystarczające, ponieważ nie zawsze pozwalają na pełną diagnostykę i naprawę problemu. Ignorowanie przeglądów technicznych i próba rozwiązywania problemów w trakcie pracy maszyny może prowadzić do awarii, które wpływają na bezpieczeństwo oraz wydajność pracy. Kluczowe jest, aby pracownicy zdawali sobie sprawę z istoty regularnych przeglądów jako elementu strategii utrzymania ruchu, co pozwala na wczesne wykrycie i eliminację potencjalnych zagrożeń.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Wartość parametru 20 V/1000 obr/min jest charakterystyczna dla

A. prądnicy tachometrycznej
B. induktosyna
C. sprzęgła elektromagnetycznego
D. resolvera
Parametr 20 V/1000 obr/min to typowa wartość dla prądnicy tachometrycznej, która służy do pomiaru prędkości obrotowej różnych maszyn, w tym silników. W praktyce oznacza to, że im szybciej coś się kręci, tym większe napięcie generuje ta prądnica. W przypadku, który mamy, to 20 V przy 1000 obrotach na minutę. To naprawdę przydatne w automatyce i kontrolowaniu procesów. Spotykamy je często w aplikacjach związanych z kontrolą prędkości silników elektrycznych i w systemach serwonapędów. Dlatego dobry wybór prądnicy tachometrycznej jest mega ważny, żeby pomiary były dokładne i stabilne. Z doświadczenia wiem, że to kluczowy element w nowoczesnych technologiach przemysłowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Zwiększenie częstotliwości sygnałów
B. Pomiar rezystancji izolacji
C. Obserwacja kształtu sygnałów elektrycznych
D. Zasilanie obwodów niskim napięciem
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 8

Do zakresu przeglądu technicznego łopatkowych kompresorów powietrza nie należy

A. wymiana manometru w każdym przypadku
B. obserwacja poziomu hałasu lub drgań stopnia sprężającego
C. wymiana wkładki sprzęgła bezpośredniego napędu stopnia sprężającego w ustalonym czasie
D. pomiar poboru energii elektrycznej przez silnik
Wybór odpowiedzi dotyczącej każdorazowej wymiany manometru jako elementu, który nie wchodzi w zakres przeglądu technicznego łopatkowych kompresorów powietrza, jest uzasadniony. Manometr, jako instrument pomiarowy, jest poddawany kalibracji i wymianie w zależności od jego stanu, lecz nie jest to standardowa procedura przeglądowa. Przeglądy techniczne koncentrują się przede wszystkim na monitorowaniu parametrów operacyjnych, takich jak głośność, wibracje oraz pobór prądu przez silnik, co jest kluczowe dla oceny efektywności i bezpieczeństwa pracy urządzenia. W praktyce, regularne sprawdzanie stanu technicznego kompresora powinno obejmować analizę wyników pomiarów, co pozwala na wczesne wykrycie ewentualnych usterek. Standardy branżowe, takie jak normy ISO dotyczące zarządzania jakością, zalecają systematyczne przeglądy wszystkich istotnych komponentów maszyny, aby zapewnić ich długotrwałą funkcjonalność i minimalizować ryzyko awarii. W związku z tym, odpowiedź dotycząca manometru jest poprawna, gdyż jego wymiana nie jest regularnie uwzględniana w standardowych przeglądach technicznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który składnik gwarantuje stabilne unieruchomienie nurnika pionowo umiejscowionego siłownika w sytuacji awarii hydraulicznego przewodu zasilającego?

A. Elektrohydrauliczny zawór proporcjonalny
B. Zamek hydrauliczny
C. Hydrauliczny regulator przepływu
D. Hydrauliczny zawór różnicowy
Odpowiedzi takie jak elektrohydrauliczny zawór proporcjonalny, hydrauliczny zawór różnicowy oraz hydrauliczny regulator przepływu nie są odpowiednie w kontekście zapewnienia unieruchomienia nurnika siłownika w przypadku awarii. Elektrohydrauliczny zawór proporcjonalny zazwyczaj reguluje przepływ cieczy hydraulicznej w zależności od sygnałów sterujących, co nie zapewnia stabilności w sytuacji krytycznej. Tego typu zawory są zaprojektowane do precyzyjnej kontroli ruchu, a nie do blokowania go. Podobnie hydrauliczny zawór różnicowy, który służy do równoważenia ciśnień w układzie hydraulicznym, nie ma zastosowania w kontekście unieruchomienia nurnika. Jego działanie polega na kierowaniu przepływu cieczy w odpowiedzi na różnice ciśnienia, a nie na zabezpieczeniu nurnika przed ruchem. Z kolei hydrauliczny regulator przepływu kontroluje prędkość przepływu cieczy, co również nie daje gwarancji unieruchomienia siłownika w przypadku awarii zasilania. Zrozumienie różnicy między tymi komponentami jest kluczowe dla właściwego doboru elementów w systemach hydraulicznych. W praktyce błędne jest zakładanie, że jakikolwiek z wymienionych komponentów mógłby pełnić funkcję zamka hydraulicznego, co może prowadzić do poważnych błędów w projektowaniu systemów hydraulicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. mieszanki wody i olejów roślinnych
B. oleje pochodzenia roślinnego
C. oleje mineralne oraz ciecze niepalne
D. mieszanki wody oraz olejów mineralnych
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 13

Jak powinna przebiegać poprawna kolejność instalacji systemu sprężonego powietrza z wykorzystaniem przewodów poliamidowych?

A. Cięcie przewodu, gratowanie krawędzi, montaż złączki, pomiar długości odcinka przewodu
B. Cięcie przewodu, gratowanie krawędzi, pomiar długości odcinka przewodu, montaż złączki
C. Pomiar długości odcinka przewodu, cięcie przewodu, gratowanie krawędzi, montaż złączki
D. Gratowanie krawędzi, pomiar długości odcinka przewodu, cięcie przewodu, montaż złączki
Poprawna odpowiedź wskazuje na właściwą kolejność działań przy instalacji sprężonego powietrza z przewodów poliamidowych. Wymierzenie długości odcinka przewodu jest kluczowym pierwszym krokiem, który zapewnia, że użyty materiał będzie odpowiedni do planowanej instalacji. Zbyt krótki przewód może uniemożliwić prawidłowe podłączenie złączek, natomiast zbyt długi może powodować zbędne straty ciśnienia i trudności w dalszej obróbce. Cięcie przewodu powinno następować po dokonaniu pomiarów, aby uzyskać dokładny odcinek. Gratowanie krawędzi jest niezbędne, aby usunąć wszelkie ostre krawędzie, które mogą uszkodzić uszczelki lub stwarzać zagrożenie dla użytkowników. Ostateczny etap to montaż złączki, który wykonujemy po odpowiednim przygotowaniu przewodu, aby zapewnić szczelność i bezpieczeństwo połączenia. Przestrzeganie tej kolejności jest zgodne z najlepszymi praktykami w branży oraz standardami bezpieczeństwa.

Pytanie 14

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy
A. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
B. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
C. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
D. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 15

Jaki program jest używany do gromadzenia wyników pomiarów, ich wizualizacji, zarządzania procesem, alarmowania oraz archiwizacji danych?

A. WinCC
B. AutoCAD
C. KiCAD
D. InteliCAD
Odpowiedzi takie jak KiCAD, InteliCAD oraz AutoCAD wskazują na pewne nieporozumienia dotyczące zastosowania tych programów. KiCAD jest narzędziem do projektowania obwodów elektronicznych, skupiającym się na tworzeniu schematów i płytek PCB. Jego funkcjonalności są całkowicie różne od tych wymaganych do zbierania danych pomiarowych i ich wizualizacji w kontekście kontroli procesów. Podobnie, InteliCAD jest platformą CAD, która służy do projektowania 2D i 3D, ale nie ma zastosowań w monitorowaniu procesów przemysłowych ani w zbieraniu wyników pomiarów. AutoCAD, z kolei, jest jednym z najbardziej znanych programów CAD do projektowania architektonicznego i inżynieryjnego, ale również nie jest przeznaczony do pracy z danymi pomiarowymi ani do automatyzacji procesów. Typowe błędy myślowe prowadzące do takich wyborów mogą wynikać z mylenia funkcji projektowych z funkcjami kontrolnymi. Użytkownicy mogą sądzić, że każdy program inżynieryjny może być użyty do monitorowania procesów, co nie jest prawdą. Kluczowe jest zrozumienie różnicy między programami dedykowanymi do projektowania a tymi, które są przeznaczone do automatyzacji i monitorowania procesów przemysłowych.

Pytanie 16

Jaki parametr siłownika zainstalowanego w prasie pneumatycznej ma wpływ na maksymalną wartość wysunięcia stempla?

A. Średnica tłoczyska
B. Skok siłownika
C. Średnica cylindra
D. Maksymalne ciśnienia zasilania
Skok siłownika jest kluczowym parametrem, który bezpośrednio wpływa na maksymalny wysuw stempla w prasie pneumatycznej. Oznacza on maksymalną odległość, jaką tłoczysko siłownika może przebyć od pozycji spoczynkowej do końca swojego ruchu. W praktyce oznacza to, że im większy skok siłownika, tym większy zakres ruchu stempla, co jest niezbędne w wielu zastosowaniach, takich jak formowanie, prasowanie czy tłoczenie. Zrozumienie tego parametru jest szczególnie istotne w kontekście projektowania urządzeń przemysłowych, gdzie optymalizacja wydajności jest kluczowa. W branży stosuje się różne normy dotyczące projektowania siłowników, takie jak ISO 15552, które definiują standardy dotyczące wymiarów i wydajności siłowników pneumatycznych. Dzięki tym standardom inżynierowie mogą dobierać odpowiednie komponenty, zapewniając efektywność i bezpieczeństwo urządzeń. Właściwy dobór skoku siłownika ma również wpływ na efektywność energetyczną całego systemu, co przekłada się na niższe koszty eksploatacji.

Pytanie 17

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. zmiany maksymalnej prędkości siłownika
C. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
D. zmiany maksymalnej siły wytwarzanej przez siłownik
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 18

Jakiego czujnika powinno się użyć w systemie pomiarowym do określenia naprężeń mechanicznych?

A. Tensometr
B. Wiskozymetr
C. Pirometr
D. Rotametr
Tensometr jest kluczowym elementem w układzie pomiarowym służącym do monitorowania naprężeń mechanicznych. Jego działanie opiera się na efekcie piezorezystywnym, który polega na zmianie rezystancji elektrycznej w odpowiedzi na odkształcenie materiału. Dzięki temu, tensometry są szeroko stosowane w inżynierii mechanicznej, budownictwie oraz w badaniach materiałowych. Na przykład, w konstrukcjach mostów czy budynków, tensometry mogą być umieszczane w strategicznych miejscach, aby na bieżąco monitorować naprężenia i zapobiegać ewentualnym uszkodzeniom. Zastosowanie tensometrów w praktyce wymaga przemyślanej kalibracji oraz umiejętności interpretacji danych pomiarowych. Warto również zauważyć, że zgodnie z normami PN-EN ISO 7500-1 i PN-EN 10002-1, właściwe pomiary naprężeń są niezbędne do oceny jakości materiałów oraz bezpieczeństwa konstrukcji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. zmniejszyć wartość sygnału ustawiającego
B. powiększyć szerokość histerezy
C. zwiększyć amplitudę sygnału kontrolującego
D. zmniejszyć szerokość histerezy
Zwiększenie amplitudy sygnału regulującego nie jest skuteczną metodą na redukcję oscylacji w układzie regulacji dwustanowej. W rzeczywistości, podniesienie amplitudy sygnału prowadzi do jeszcze większych odchyleń od wartości zadanej, co z kolei potęguje oscylacje i wprowadza dodatkowe problemy w stabilności systemu. W sytuacjach, gdy amplituda sygnału regulującego jest zbyt wysoka, system może stać się niestabilny, co skutkuje chaotycznym zachowaniem. Zwiększenie szerokości histerezy również nie prowadzi do pożądanej stabilizacji; wręcz przeciwnie, może pogłębić problem. Szerokość histerezy ma kluczowy wpływ na dynamikę układu – im szersza histereza, tym większe odchylenia, co prowadzi do dłuższych czasów reakcji i większych oscylacji. Zmniejszenie wartości sygnału zadającego także nie jest rozwiązaniem, ponieważ może to prowadzić do niedostatecznej reakcji regulatora na zmiany w systemie. Skuteczne zarządzanie oscylacjami wymaga zrozumienia i precyzyjnego dostosowania parametrów regulatora, a nie jedynie zwiększania lub zmniejszania wartości sygnałów. Warto pamiętać, że kluczowym celem regulacji jest utrzymanie stabilności i precyzji, a niewłaściwe działania mogą prowadzić do przeciwnych efektów niż zamierzone.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką grupę oznaczeń powinno się wykorzystać do przedstawienia przyłącza czterodrogowych rozdzielaczy hydraulicznych na schemacie układu hydraulicznego?

A. P, T, A, B
B. 1, 2, 3, 4
C. 1, A, 2, B
D. X, Y, Z, W
Wybór oznaczeń innych niż P, T, A, B pokazuje pewne nieporozumienia dotyczące zasadniczych koncepcji hydrauliki. Oznaczenia X, Y, Z, W nie mają uznania w standardach hydraulicznych i nie są powszechnie stosowane do reprezentowania funkcji przyłączy. Tego typu oznaczenia mogą prowadzić do niejasności w komunikacji między inżynierami oraz podczas konstrukcji systemów hydraulicznych, co może skutkować błędami w projektowaniu i montażu. Podobnie, wybór numeracji 1, 2, 3, 4 również nie jest adekwatny, ponieważ numery nie dostarczają żadnych informacji o funkcji lub przeznaczeniu poszczególnych przyłączy w układzie hydraulicznym. Takie podejście może prowadzić do błędnego zrozumienia schematów przez osoby pracujące z danym systemem. Warto podkreślić, że oznaczenia powinny być zgodne z przyjętymi standardami, aby zapewnić jednoznaczność i profesjonalizm w dokumentacji technicznej. Niekiedy inżynierowie mogą mylić się, zakładając, że jakiekolwiek oznaczenia mogą być użyte w schematach, co w praktyce prowadzi do chaosu i utrudnia serwisowanie oraz diagnostykę systemów hydraulicznych, które powinny być jak najbardziej przejrzyste i jednoznaczne.

Pytanie 24

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Bocznikowy
B. Klatkowy
C. Szeregowy
D. Obcowzbudny
Klatkowy silnik elektryczny, znany także jako silnik asynchroniczny, jest idealnym rozwiązaniem do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Jego działanie opiera się na różnicy prędkości między polem magnetycznym a wirnikiem, co pozwala na uzyskanie wysokiej efektywności energetycznej. W praktyce, silniki klatkowe charakteryzują się niskimi kosztami eksploatacji, łatwością wmontowania oraz niskimi wymaganiami konserwacyjnymi. Stosuje się je powszechnie w różnych aplikacjach przemysłowych, takich jak transport materiałów, ponieważ potrafią pracować z dużymi obciążeniami i są odporne na przeciążenia. W przypadku taśmociągów, kluczowe jest, aby silnik zapewniał stałą prędkość obrotową i był w stanie sprostać zmiennym warunkom operacyjnym, co silnik klatkowy realizuje w sposób optymalny, zgodnie z normami IEC 60034 dotyczącymi maszyn elektrycznych. Dodatkowo, ich konstrukcja jest prosta, co minimalizuje ryzyko awarii, co czyni je standardem w branży.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 2B3H
B. 1A4H
C. 1F3H
D. 10EH
Wybór innych odpowiedzi może wynikać z pewnych nieporozumień dotyczących konwersji między systemami liczbowymi. Na przykład, odpowiedź 1A4H sugeruje, że wartość binarna 1010110011 mogłaby być reprezentowana jako 1A4, co jest niepoprawne. Liczba heksadecymalna 1A4H odpowiada wartości dziesiętnej 420, która nie odpowiada liczbie 11 w zakresie bitów binarnych. Odpowiedź 10EH również nie jest właściwa, ponieważ jej wartość dziesiętna wynosi 270, co także nie zgadza się z naszymi obliczeniami. Możliwe, że problem wynika z nieprawidłowego założenia dotyczącego liczby cyfr wymaganych do konwersji lub błędnej interpretacji wartości poszczególnych cyfr szesnastkowych. Odpowiedzi te mogą też wskazywać na typowe błędy w obliczeniach związanych z mnożeniem potęg liczby 16, co jest kluczowym elementem zrozumienia konwersji. Prawidłowe podejście do tego zadania powinno polegać na zrozumieniu, że każda cyfra heksadecymalna odpowiada grupie 4 bitów, co oznacza, że przy 10 bitach konieczne jest odpowiednie zgrupowanie wartości, aby uzyskać dokładny wynik, a nie tylko poleganie na intuicji czy domysłach.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 400 V DC
B. 400 V AC
C. 230 V DC
D. 230 V AC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 33

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1
A. NOR
B. OR
C. XOR
D. NAND
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 34

Jaką rozdzielczość ma przetwornik A/C o 10-bitowej głębokości w sterowniku PLC, gdy zakres pomiarowy wynosi 0÷10 V?

A. 49,4 mV/bit
B. 9,8 mV/bit
C. 1,1 mV/bit
D. 100,5 mV/bit
Wybrane odpowiedzi, takie jak 49,4 mV/bit, 1,1 mV/bit oraz 100,5 mV/bit, są błędne i wynikają z różnych nieporozumień dotyczących sposobu obliczania rozdzielczości przetwornika A/C. Odpowiedź 49,4 mV/bit sugeruje, że zakładano inny zakres pomiarowy, co jest nieprawidłowe, ponieważ dla 10 V i 10 bitów rozdzielczość powinna wynosić 9,8 mV/bit. Z kolei odpowiedź 1,1 mV/bit może sugerować mylne założenie o znacznie większej liczbie bitów lub innej wartości zakresu, co jest technicznie niepoprawne. Odpowiedź 100,5 mV/bit ukazuje błędne zrozumienie zasad dotyczących konwersji analogowo-cyfrowej, gdzie ignoruje się istotny wpływ liczby bitów na podział zakresu. Typowe błędy myślowe obejmują nieuwzględnienie podstawowych zasad matematyki dotyczących potęg oraz niewłaściwe rozumienie, jak zakres pomiarowy wpływa na rozdzielczość. Zrozumienie tego zagadnienia jest kluczowe, ponieważ niewłaściwa interpretacja wyników pomiarów prowadzi do błędnych decyzji w projektowaniu systemów automatyki, co może wpłynąć na całkowitą efektywność i bezpieczeństwo operacji przemysłowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
B. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
C. Jest określany przez producenta maszyny w trakcie jej projektowania
D. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
Punkt zerowy przedmiotu toczenia w obrabiarce CNC jest kluczowym elementem, który pozwala na dokładne ustawienie narzędzi i precyzyjne wykonanie operacji. Wiele osób może błędnie sądzić, że jego położenie zależy jedynie od rodzaju narzędzia lub jest ustalane przez producenta maszyny, co jest niepoprawne. Ustalanie punktu zerowego na podstawie rodzaju narzędzia może prowadzić do sytuacji, w której obróbka jest niedokładna, ponieważ różne narzędzia mogą mieć różne wymiary i punkty odniesienia. Również założenie, że producent maszyny ustala ten punkt, jest mylne, ponieważ to operator odpowiedzialny jest za jego definicję w kontekście konkretnego zadania. Nieprzemyślane ustalanie punktu zerowego prowadzi do błędów technologicznych, a także do nieefektywności w produkcji. Dlatego kluczowe jest, aby operatorzy zrozumieli, że najlepszym rozwiązaniem jest ustalenie punktu zerowego na osi przedmiotu, co pozwala na optymalizację procesu obróbczy i minimalizację ryzyka wystąpienia błędów. W praktyce oznacza to, że każdy operator CNC powinien mieć świadomość, iż właściwe ustawienie punktu zerowego jest nie tylko kwestią wygody, ale również kluczowym wymogiem dla jakości produkcji oraz efektywności pracy maszyny.

Pytanie 39

Do którego portu komputera PC należy podłączyć przedstawiony na ilustracji kabel komunikacyjny?

Ilustracja do pytania
A. PS/2
B. USB.
C. RS232.
D. LPT.
Odpowiedź USB jest poprawna, ponieważ na ilustracji przedstawiony jest kabel komunikacyjny z wtyczką USB typu A, która jest standardowym złączem wykorzystywanym w większości nowoczesnych urządzeń komputerowych. USB, czyli Universal Serial Bus, to interfejs służący do komunikacji oraz dostarczania zasilania między komputerami a różnymi urządzeniami peryferyjnymi, takimi jak myszki, klawiatury, drukarki lub zewnętrzne dyski twarde. Wtyczki USB typu A są łatwe do rozpoznania dzięki swojemu prostokątnemu kształtowi. Standard USB ma wiele wersji, w tym USB 2.0, 3.0 oraz 3.1, które oferują różne prędkości transferu danych oraz możliwości zasilania. Dzięki swojej uniwersalności i prostocie użycia, USB stało się najpopularniejszym interfejsem w przemyśle komputerowym, co zapewnia jego szeroką kompatybilność z wieloma urządzeniami na rynku. Przykładowo, wiele laptopów, komputerów stacjonarnych, a także konsol do gier wykorzystuje złącza USB do podłączania zewnętrznych urządzeń, co znacząco ułatwia obsługę i wymianę danych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.