Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 stycznia 2026 11:25
  • Data zakończenia: 20 stycznia 2026 11:37

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PID
C. P
D. PD
Regulator PI, czyli proporcjonalno-całkujący, jest często stosowany w układach regulacji, ponieważ łączy zdolność szybkiej reakcji na zmiany z precyzyjnym osiąganiem wartości zadanej. Na prezentowanym wykresie widzimy, że odpowiedź skokowa regulatora ma początkowy skok, który odpowiada części proporcjonalnej (P), a następnie liniowe narastanie, co jest charakterystyczne dla części całkującej (I). Dzięki temu regulator PI jest w stanie nie tylko szybko zareagować na zmiany, ale również wyeliminować uchyb ustalony, co jest jego kluczową zaletą w stosunku do regulatorów P. W praktyce oznacza to, że PI jest często używany w systemach, gdzie dokładność jest kluczowa, na przykład w regulacji temperatury czy prędkości obrotowej. W wielu aplikacjach przemysłowych stosuje się algorytmy PI ze względu na ich prostotę i efektywność, a także łatwość implementacji w układach cyfrowych. Warto też zaznaczyć, że dobór parametrów regulatora PI, takich jak wzmocnienie proporcjonalne i czas całkowania, jest kluczowy dla osiągnięcia optymalnej wydajności systemu. Optymalizacja tych parametrów często bazuje na metodach takich jak Ziegler-Nichols, które pozwalają na szybkie i skuteczne dostrojenie regulatora do specyfiki danego układu.

Pytanie 2

Jaka jest właściwa kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Zainstalować nowy zawór.
  4. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
A.
  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
B.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
  3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
  4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
C.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  4. Zainstalować nowy zawór.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
D.
A. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 3. Za pomocą klucza maszynowego odkręcić zawór kulowy. 4. Zainstalować nowy zawór. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
B. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu. 4. Za pomocą klucza maszynowego odkręcić zawór kulowy. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
C. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Zainstalować nowy zawór. 4. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
D. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
To pytanie dotyczy wymiany elektropneumatycznego zaworu kulowego, gdzie odpowiednia sekwencja czynności jest kluczowa dla bezpiecznego i skutecznego przeprowadzenia całej operacji. Zaczynamy od wyłączenia mediów zasilających, co jest podstawowym krokiem bezpieczeństwa, aby uniknąć jakichkolwiek niespodziewanych sytuacji zagrażających zdrowiu i życiu. Następnie odłączenie przewodów elektrycznych i pneumatycznych jest konieczne, zanim zaczniemy demontaż zaworu – to pozwala na pracę bez ryzyka uszkodzeń instalacji czy porażenia prądem. Po odłączeniu przewodów możemy przystąpić do fizycznego demontażu zaworu kulowego przy użyciu odpowiedniego klucza maszynowego. Kiedy stary zawór jest już usunięty, instalujemy nowy, co musi być wykonane z należytą starannością, aby zapewnić szczelność i prawidłowe działanie. Podłączenie przewodów do nowo zainstalowanego zaworu kończy etap montażowy przed ponownym włączeniem mediów zasilających. Cała operacja musi przebiegać zgodnie z zasadami bezpieczeństwa i standardami przemysłowymi, aby zapewnić długotrwałe i bezawaryjne działanie układu. W praktyce, takie procedury są podstawą utrzymania ruchu w zakładach przemysłowych i często są ujęte w wewnętrznych instrukcjach BHP.

Pytanie 3

Dobierz narzędzie do montażu / demontażu przewodów podłączonych do sterownika, którego fragment przedstawiono na zdjęciu?

Ilustracja do pytania
A. Klucz nasadowy.
B. Wkrętak krzyżowy.
C. Wkrętak płaski.
D. Klucz imbusowy.
Do montażu i demontażu przewodów w sterownikach, jak ten przedstawiony na zdjęciu, najbardziej odpowiednim narzędziem jest wkrętak płaski. Dlaczego? Ponieważ te zaciski, które widzisz, są typowymi zaciskami śrubowymi, a śruby te mają nacięcia przystosowane właśnie do płaskiego wkrętaka. Wkrętaki płaskie są niezwykle wszechstronne i stosowane powszechnie w instalacjach elektrycznych, automatyce oraz wielu innych dziedzinach techniki. Gdy masz do czynienia z takimi zaciskami, korzystanie z wkrętaka płaskiego pozwala na precyzyjne dokręcenie bądź poluzowanie śruby, co jest kluczowe dla zapewnienia odpowiedniego kontaktu elektrycznego i uniknięcia problemów związanych z luźnymi połączeniami. W praktyce, dobre praktyki branżowe podpowiadają, aby zawsze stosować narzędzia dokładnie dopasowane do typu śrub, co minimalizuje ryzyko uszkodzenia zarówno śrub, jak i samego narzędzia. Takie podejście zwiększa niezawodność i trwałość połączeń, co jest istotne w kontekście długotrwałej pracy urządzeń. Warto zaznaczyć, że wkrętaki płaskie są częścią podstawowego wyposażenia każdego elektryka, co dodatkowo podkreśla ich znaczenie w branży. Właściwe ich stosowanie jest nie tylko kwestią praktyki, ale także bezpieczeństwa i jakości pracy.

Pytanie 4

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik napięcia AC na prąd AC.
B. regulowany wzmacniacz napięć lub prądów zmiennych.
C. konwerter łącza szeregowego na łącze światłowodowe.
D. przetwornik pomiarowy prądu lub napięcia AC.
Na schemacie przedstawiono konwerter łącza szeregowego RS-232 na łącze światłowodowe. Urządzenie tego typu przekształca standardowe sygnały elektryczne (TxD, RxD, 0V) w sygnały optyczne, które mogą być przesyłane na duże odległości za pomocą światłowodu. Na schemacie widać typowe oznaczenia dla interfejsu RS-232 – linie transmisji i odbioru danych (TxD, RxD) oraz ekranowanie (Sh). Po stronie FO (Fiber Optic) znajdują się diody nadawcze i odbiorcze, które zamieniają impulsy elektryczne na światło i odwrotnie. Tego typu konwertery stosuje się, gdy trzeba zapewnić odporność transmisji na zakłócenia elektromagnetyczne, wydłużyć dystans lub odizolować galwanicznie dwa urządzenia. Moim zdaniem to świetne rozwiązanie w przemyśle, szczególnie przy połączeniach między sterownikami PLC a komputerem operatorskim, gdzie odległość przekracza kilka metrów. Konwerter pozwala na zachowanie pełnej funkcjonalności RS-232, a jednocześnie gwarantuje niezawodność transmisji nawet w trudnych warunkach środowiskowych. Typowy zakres napięć zasilania (24–240 V AC/DC) pozwala na uniwersalne zastosowanie w szafach sterowniczych, co jest zgodne z przemysłowymi standardami komunikacji.

Pytanie 5

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 2 i 3.
B. 1 i 4.
C. 3 i 4.
D. 2 i 4.
Pozostałe odpowiedzi mogą wydawać się kuszące, ale warto zrozumieć dlaczego są mylne. Pin 1, oznaczony jako plus, to często zasilanie, ale nie służy do bezpośredniego przesyłania sygnałów do odbiorników. Podłączanie pinów 1 i 4 lub 1 i 3 do odbiorników może prowadzić do błędów w obwodzie, ponieważ nie będziesz miał pewności, czy sygnał jest prawidłowy czy to tylko zasilanie. Pin 3 to zazwyczaj minus lub wspólny, co również nie jest bezpośrednio używane do przesyłania sygnałów, ale raczej do zamykania obwodu zasilania. Typowe błędy w takich sytuacjach wynikają z niepełnego zrozumienia funkcji, jakie pełnią poszczególne piny. Z mojego doświadczenia, dobrym podejściem jest zawsze dokładne zapoznanie się ze schematem i upewnienie się, które piny pełnią rolę sygnałową, a które są przeznaczone do zasilania. Uważajmy też na standardy i dobre praktyki, które zalecają użycie oznaczeń NC i NO w kontekście sygnałów, aby uniknąć nieporozumień.

Pytanie 6

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. XOR.
B. NAND.
C. NOR.
D. OR.
Wybór niewłaściwej odpowiedzi może wynikać często z błędnego zrozumienia funkcji logicznych OR, XOR czy NAND. Funkcja OR, na przykład, aktywuje wyjście, gdy przynajmniej jedno z wejść jest aktywne. Jest to zdecydowane przeciwieństwo NOR, który wymaga, by oba wejścia były nieaktywne, aby uzyskać aktywne wyjście. Nieporozumienia mogą również dotyczyć funkcji XOR, która aktywuje wyjście tylko wtedy, gdy dokładnie jedno z wejść jest aktywne. Działanie XOR jest często mylone z OR, ale kluczową różnicą jest wymaganie XOR dotyczące różności sygnałów wejściowych. Kolejno, funkcja NAND, która jest odwrotnością funkcji AND, aktywuje wyjście, gdy przynajmniej jedno z wejść jest nieaktywne. Błędy myślowe mogą pochodzić z nieznajomości tych subtelnych różnic. Moim zdaniem, istotne jest, aby dobrze zrozumieć każdą z tych funkcji logicznych, ponieważ są one fundamentem w programowaniu PLC. Praktyka pokazuje, że dokładne przećwiczenie i zrozumienie każdego z operatorów logicznych pozwala na uniknięcie takich pomyłek w przyszłości. Zwiększa to również efektywność i bezpieczeństwo w projektowaniu systemów automatyki przemysłowej. Warto poświęcić czas na zapamiętanie, że NOR jest jednym z bardziej restrykcyjnych operatorów, wymagającym nieaktywnych sygnałów wejściowych.

Pytanie 7

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód B
Ilustracja do odpowiedzi A
B. Przewód D
Ilustracja do odpowiedzi B
C. Przewód A
Ilustracja do odpowiedzi C
D. Przewód C
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 8

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 1.
B. I2 = 0, I3 = 0.
C. I2 = 1, I3 = 0.
D. I2 = 1, I3 = 1.
Niepoprawne odpowiedzi wynikają z błędnego zrozumienia funkcji czujników B1 i B2 oraz ich wpływu na wejścia sterownika I2 i I3. Przy wsuniętym tłoczysku, tylko czujnik B1 powinien być aktywowany, co oznacza, że na I2 pojawia się sygnał logiczny 1, a na I3 sygnał logiczny 0, ponieważ B2 nie jest aktywowany. Często spotykanym błędem jest założenie, że oba czujniki mogą być aktywowane jednocześnie w tej pozycji, co prowadzi do błędnej odpowiedzi, że I3 również wynosi 1. Innym częstym nieporozumieniem jest mylenie stanów czujników, zakładając, że brak sygnału to stan wysoki, co jest przeciwieństwem rzeczywistości. W praktyce, zgodnie z zasadami działania czujników krańcowych, aktywacja czujnika (czyli przejście do stanu wysokiego) następuje w momencie, gdy element wykonawczy znajduje się w określonej pozycji. Uważam, że zrozumienie tych zależności jest kluczowe, aby uniknąć problemów w projektach automatyki, gdzie błędne założenia mogą prowadzić do nieprawidłowego działania całego systemu.

Pytanie 9

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. zaciskania wtyków RJ45.
C. cięcia przewodów.
D. ściągania izolacji.
Narzędzia przedstawione na ilustracjach to zaciskarki do końcówek tulejkowych. Służą one do zakładania tulejek na przewody wielodrutowe, co jest niezbędne, aby zapewnić pewny i bezpieczny kontakt w złączach śrubowych. Tulejki te, nazywane też ferrulami, pozwalają na właściwe ułożenie przewodów w zaciskach, co jest kluczowe w instalacjach elektrycznych. Z mojego doświadczenia, dobrze zaciśnięta tulejka znacząco poprawia jakość połączenia i zmniejsza ryzyko uszkodzenia przewodu. Zaciskanie tulejek jest standardem w profesjonalnych instalacjach, zwłaszcza tam, gdzie liczy się niezawodność i bezpieczeństwo. Narzędzia te są zaprojektowane tak, aby zapewnić odpowiednią siłę nacisku, co gwarantuje trwałość połączenia. To ważne, bo nieodpowiednio zaciśnięta tulejka może prowadzić do problemów z przewodnością lub wręcz awarii. Niektórzy twierdzą, że można się obyć bez tych narzędzi, ale moim zdaniem, ich użycie jest nie tylko dobrą praktyką, ale wręcz koniecznością w profesjonalnej pracy elektryka. Zaciskarki dostępne są w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w szerokim zakresie aplikacji, od domowych instalacji po przemysłowe systemy elektryczne.

Pytanie 10

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
B. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²
C. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
D. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 11

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 01001001, OUTPUT - 0000
B. INPUT - 10001100, OUTPUT - 0000
C. INPUT - 01011010, OUTPUT - 0110
D. INPUT - 01011010, OUTPUT - 1001
Wybór ustawienia INPUT - 01001001, OUTPUT - 0000 jest właściwy, ponieważ odpowiada on konfiguracji dla sygnału wejściowego 0 ÷ 20 mA, co jest idealne dla czujnika o zakresie 0 ÷ 100°C/0 ÷ 20 mA, oraz dla wyjścia sterownika PLC również ustawionego na 0 ÷ 20 mA. To ustawienie zapewnia poprawne skalowanie sygnałów, unikając nieprawidłowości w odczytach. Dzięki temu możemy być pewni, że dane z czujnika są przekazywane bez zniekształceń do PLC. W praktyce takie rozwiązanie jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie dokładność pomiarów jest kluczowa. Ważne jest, aby zawsze dobierać odpowiednie ustawienia DIP switcha do charakterystyki sygnału, co znacznie zwiększa niezawodność całego systemu. Moim zdaniem, znajomość takich konfiguracji to podstawowa wiedza dla każdego inżyniera automatyka, która pomaga uniknąć błędów w konfiguracji systemów sterowania. Stosowanie standardów jest nie tylko zgodne z dobrymi praktykami, ale także z normami branżowymi, co jest niezwykle istotne w kontekście jakości i bezpieczeństwa pracy urządzeń.

Pytanie 12

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 13

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. dolnego i górnego na 1
B. dolnego na 1
C. górnego na 1
D. środkowego na 100
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 14

Do wykonania połączeń w przedstawionej na rysunku puszce zaciskowej silnika elektrycznego należy wykorzystać

Ilustracja do pytania
A. wkrętak płaski.
B. klucz płaski.
C. klucz imbusowy.
D. wkrętak torx.
Do wykonania połączeń w puszce zaciskowej przedstawionej na zdjęciu należy użyć klucza płaskiego. Widoczne na fotografii śruby z sześciokątnymi łbami to typowe elementy stosowane w połączeniach elektrycznych silników trójfazowych – najczęściej do montażu mostków (zwór) w konfiguracji gwiazdy lub trójkąta. Klucz płaski pozwala na dokładne i równomierne dokręcenie tych połączeń, co jest bardzo istotne, ponieważ zbyt słabe dokręcenie może prowadzić do grzania się styków, a w konsekwencji do uszkodzenia izolacji lub nawet pożaru. Z kolei zbyt mocne dociśnięcie może zniszczyć końcówki oczkowe lub pęknięcie gwintu. W praktyce warto stosować klucz o odpowiednim rozmiarze (najczęściej 8, 10 lub 13 mm w zależności od silnika). Moim zdaniem to jeden z tych przypadków, gdzie precyzja manualna i świadomość techniczna mają ogromne znaczenie – silnik z luźnym połączeniem fazy to gotowy przepis na awarię. Dodatkowo, w profesjonalnym serwisie używa się kluczy dynamometrycznych, by zachować właściwy moment dokręcania zgodny z normami producenta.

Pytanie 15

Których diod należy użyć do montażu układu przedstawionego na schemacie?

Ilustracja do pytania
A. Pojemnościowych.
B. Prostowniczych.
C. Schottky'ego.
D. Zenera.
Schemat, który widzisz, przedstawia mostek prostowniczy, który jest używany do przekształcania prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod prostowniczych ułożonych w specyficzny sposób. Diody prostownicze są kluczowe w tym układzie, ponieważ przepuszczają prąd tylko w jednym kierunku, co pozwala na uzyskanie prądu stałego z prądu przemiennego. W praktyce, diody prostownicze są wykorzystywane w zasilaczach, ładowarkach oraz innych urządzeniach elektronicznych, gdzie konieczna jest konwersja prądu. Diody prostownicze są zaprojektowane tak, aby wytrzymywać duże wartości prądu i napięcia, co czyni je idealnymi do tego typu zastosowań. Standardy branżowe wskazują na użycie diod o odpowiedniej wytrzymałości napięciowej i prądowej, co zapewnia niezawodne działanie układu prostowniczego. To dlatego odpowiedź numer 3 jest poprawna - diody prostownicze są nieodzowne w poprawnym działaniu mostka prostowniczego.

Pytanie 16

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. szczypiec Segera.
B. kluczy nasadowych.
C. kluczy płaskich.
D. wkrętaków płaskich.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 17

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji izolacji żył L1, L2, L3
B. rezystancji żył L1, L2, L3, PEN
C. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
D. sumy rezystancji żył L1, L2, L3, PEN
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Izolacja ma za zadanie zapobiegać niepożądanym przepływom prądu między przewodami, które mogą prowadzić do zwarć lub porażenia prądem. Normy takie jak PN-EN 61557 określają minimalne wartości rezystancji izolacji, które powinny być zachowane w instalacjach elektrycznych. W praktyce, wysoka rezystancja izolacji, na poziomie kilku megaomów, świadczy o dobrej jakości izolacji i bezpieczeństwie użytkowania. Regularne pomiary pozwalają na wczesne wykrycie uszkodzeń mechanicznych lub starzenia się materiału izolacyjnego, co jest szczególnie istotne w środowiskach o wysokiej wilgotności lub narażonych na wpływy chemiczne. Przykład z życia: w przemyśle ciężkim, gdzie maszyny są narażone na działanie olejów i smarów, takie pomiary są standardową praktyką, aby zapobiec awariom i kosztownym przestojom produkcyjnym.

Pytanie 18

W dokumentacji powykonawczej nie należy umieszczać

A. certyfikatów użytych materiałów.
B. dowodów zakupu z cenami.
C. warunków gwarancji.
D. protokołów pomiarowych.
Wybór niepoprawnej odpowiedzi w tym przypadku często wynika z błędnego rozumienia roli dokumentacji powykonawczej. Dokumentacja ta ma za zadanie przedstawić pełny obraz techniczny i jakościowy ukończonego projektu, a nie aspekty finansowe, stąd obecność dowodów zakupu z cenami jest nieuzasadniona. Warunki gwarancji to nieodłączny element dokumentacji, ponieważ określają zasady odpowiedzialności producenta czy wykonawcy za ewentualne usterki. Protokoły pomiarowe dokumentują zgodność wykonania z projektem oraz normami, co stanowi podstawę do odbioru prac i weryfikacji jakości. Certyfikaty użytych materiałów potwierdzają, że zastosowane produkty spełniają określone normy i wymagania. Nie można ich pomijać, ponieważ są dowodem na użycie materiałów o właściwych parametrach, co wpływa na trwałość i bezpieczeństwo projektu. Typowym błędem jest myślenie, że każdy dokument związany z realizacją projektu powinien znaleźć się w dokumentacji powykonawczej. To prowadzi do niepotrzebnego przeładowania dokumentacji informacjami, które nie są istotne z punktu widzenia późniejszej eksploatacji obiektu. Warto zawsze pamiętać, że dokumentacja powykonawcza służy głównie do celów technicznych, dlatego powinna zawierać tylko te elementy, które są kluczowe dla oceny i utrzymania jakości projektu.

Pytanie 19

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosowany jest

A. tester przewodów.
B. miernik parametrów instalacji.
C. wykrywacz przewodów.
D. kamera termowizyjna.
Miernik parametrów instalacji, wykrywacz przewodów oraz kamera termowizyjna mają swoje specyficzne zastosowania, ale nie są optymalne do wykrywania nieciągłości w okablowaniu sieci. Miernik parametrów instalacji służy głównie do analizy jakości instalacji elektrycznej, oceniając takie parametry jak impedancja pętli zwarcia czy rezystancja izolacji. Można go użyć do ogólnej oceny stanu instalacji, ale nie zlokalizuje on precyzyjnie miejsca przerwania czy zwarcia w przewodach komunikacyjnych. Z kolei wykrywacz przewodów, chociaż potrafi lokalizować przebieg kabli w ścianach, sufitach czy podłogach, nie identyfikuje problemów z ciągłością sygnału wewnątrz przewodów. Ma on na celu raczej odnalezienie kabli bez konieczności fizycznego dostępu do nich. Kamera termowizyjna jest świetnym narzędziem do wykrywania problemów związanych z temperaturą, takich jak przegrzewające się złącza czy komponenty, ale nie wskaże nieciągłości elektrycznej w przewodach. Moim zdaniem, często mylnie uważa się, że zaawansowane urządzenia pomiarowe zastąpią podstawowe narzędzia diagnostyczne, ale praktyka pokazuje, że odpowiednie narzędzie do konkretnego zadania jest kluczem do skutecznych napraw i konserwacji. Zrozumienie ograniczeń i specyficznych zastosowań każdego z tych urządzeń jest niezbędne dla każdego technika pracującego z sieciami przemysłowymi, aby unikać błędnego identyfikowania problemów oraz przestoju w pracy.

Pytanie 20

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. P
B. PD
C. PID
D. PI
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 21

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
B. Zasady blokady programowej sygnałów wejściowych.
C. Zasady blokady sygnałów wyjściowych.
D. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
Zasady przerwy roboczej odnoszą się do sytuacji, kiedy w przypadku awarii lub potrzeby wyłączenia systemu, zewnętrzny sygnał wprowadza stan 0 na wejście sterownika PLC. To bardzo praktyczne podejście, ponieważ umożliwia szybkie i bezpieczne zatrzymanie działania systemu w sytuacji awaryjnej. W wielu aplikacjach przemysłowych, normy bezpieczeństwa, takie jak np. norma EN 60204-1 dotycząca bezpieczeństwa maszyn, zalecają, by wszystkie niebezpieczne urządzenia mogły być wyłączone przez odcięcie zasilania, co jest ekwiwalentem stanu 0. Moim zdaniem, taka zasada jest kluczem do utrzymania bezpieczeństwa w zakładzie produkcyjnym. Dodatkowo, zastosowanie przerwy roboczej jest intuicyjne i minimalizuje ryzyko błędów operatora, ponieważ zazwyczaj wyłączenie zasilania jest czymś naturalnym przy awariach. W praktyce, takie podejście może być implementowane za pomocą przycisków awaryjnych, które natychmiastowo wyłączają system przez zmuszenie sterownika do przejścia w stan 0. Warto też wspomnieć, że takie rozwiązania często są wspierane przez dodatkowe zabezpieczenia mechaniczne, co jeszcze bardziej podnosi poziom bezpieczeństwa.

Pytanie 22

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
B. Ta instalacja nie może być eksploatowana.
C. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
D. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
Taka instalacja nie może być eksploatowana. Nacięty przewód z uszkodzoną izolacją, nawet jeśli dotyczy tylko żyły neutralnej N, stanowi poważne zagrożenie porażeniowe oraz pożarowe. Zgodnie z normą PN-HD 60364-4-41 oraz zasadami eksploatacji urządzeń elektrycznych każda uszkodzona izolacja przewodów musi zostać natychmiast naprawiona lub wymieniona, ponieważ nie gwarantuje odpowiedniej ochrony przed dotykiem pośrednim. W miejscu przecięcia może dojść do przebicia lub łuku elektrycznego, szczególnie w wilgotnym otoczeniu, takim jak pomieszczenia z hydroforem. Moim zdaniem w praktyce najlepiej wymienić cały odcinek przewodu – prowizoryczne naprawy taśmą izolacyjną nie spełniają wymagań bezpieczeństwa. W zakładach przemysłowych i gospodarstwach domowych obowiązuje zasada: przewód z uszkodzoną izolacją natychmiast wycofuje się z użytkowania, aż do momentu przeprowadzenia kontroli i naprawy przez osobę z uprawnieniami SEP. To prosta zasada, ale ratuje życie.

Pytanie 23

Do trasowania na płaszczyźnie stosuje się

A. średnicówkę mikrometryczną.
B. pryzmę.
C. rysik.
D. wałeczki pomiarowe.
Do trasowania na płaszczyźnie najczęściej stosuje się rysik, co wynika z jego specyficznych właściwości i przeznaczenia. Rysik to narzędzie, które pozwala na precyzyjne nanoszenie linii na materiałach takich jak metal, drewno czy plastik. Jego ostro zakończona końcówka sprawia, że można nim kreślić bardzo dokładne linie, które są niezbędne w procesach produkcyjnych oraz podczas przygotowywania elementów do obróbki. W praktyce rysik używa się często w połączeniu z innymi narzędziami pomiarowymi, takimi jak suwmiarki czy kątowniki, aby zapewnić maksymalną dokładność i precyzję. Używanie rysika jest powszechną praktyką w branży mechanicznej, gdzie dokładność i precyzja są kluczowe. Dzięki temu narzędziu, inżynierowie i technicy mogą tworzyć projekty zgodne z wymogami technicznymi, co jest niezbędne do produkcji części mechanicznych czy konstrukcji stalowych. Warto też dodać, że rysikiem nie tylko trasuje się linie, ale również zaznacza miejsca wiercenia, co jest nieocenione przy przygotowywaniu elementów do dalszej obróbki. Moim zdaniem, dobrze znać właściwości i zastosowanie rysika, bo to kluczowe narzędzie w warsztacie.

Pytanie 24

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
B. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
C. Ta instalacja nie może być eksploatowana.
D. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
Taka instalacja nie może być eksploatowana. Nawet jeśli uszkodzenie dotyczy tylko izolacji zewnętrznej i nieużywanej żyły N, przepisy jasno zabraniają użytkowania przewodów z naruszoną izolacją. Zgodnie z normą PN-EN 50110-1 oraz zasadami eksploatacji urządzeń elektrycznych, każdy przewód musi mieć pełną, nienaruszoną izolację, gwarantującą ochronę przed porażeniem i zwarciem. W tym przypadku przewód jest nacięty – odsłonięty metalowy rdzeń może stanowić zagrożenie porażeniem, a także doprowadzić do zwarcia między żyłami. W praktyce zawodowej taki przewód należy niezwłocznie wymienić lub odciąć uszkodzony odcinek i wykonać nowe połączenie zgodne z normami. Moim zdaniem nie warto ryzykować – nawet najmniejsze nacięcie może w dłuższym czasie prowadzić do przegrzewania, utleniania i awarii całej instalacji, szczególnie w środowisku wilgotnym, jak przy hydroforze.

Pytanie 25

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. wkrętaka płaskiego.
C. wkrętaka krzyżowego.
D. klucza płaskiego.
Poprawna odpowiedź to klucz płaski. Na zdjęciu widać typowe przyłącze pneumatyczne z gwintem zewnętrznym i sześciokątną częścią korpusu, które umożliwia jego montaż lub demontaż za pomocą klucza płaskiego lub oczkowego. Ten kształt sześciokąta jest właśnie po to, by narzędzie dobrze przylegało do powierzchni i nie uszkodziło gwintu ani obudowy. W praktyce technicznej, szczególnie w pneumatyce i hydraulice, takie złącza występują w dużych ilościach, np. przy siłownikach, rozdzielaczach i przewodach ciśnieniowych. Klucz płaski pozwala uzyskać odpowiedni moment dokręcenia bez ryzyka zniszczenia gniazda, co bywa problemem przy użyciu kombinerek czy wkrętaków. Moim zdaniem warto pamiętać, by zawsze dobrać właściwy rozmiar klucza (np. 12 mm, 14 mm), a przed demontażem odłączyć źródło sprężonego powietrza – to drobiazg, ale często pomijany w warsztacie. Dobrą praktyką jest też użycie niewielkiej ilości taśmy teflonowej przy ponownym montażu, żeby zapewnić szczelność połączenia.

Pytanie 26

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Pomiar wielkości procesowych.
B. Zasilanie układu sterowania.
C. Wizualizacja przebiegu procesu.
D. Programowanie układu.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 27

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 2 oraz L
B. H oraz L
C. O oraz L
D. 5 oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 28

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 2
Ilustracja do odpowiedzi A
B. Rysunek 1
Ilustracja do odpowiedzi B
C. Rysunek 4
Ilustracja do odpowiedzi C
D. Rysunek 3
Ilustracja do odpowiedzi D
Symbol przedstawiony na rysunku 3 jest oznaczeniem napędu łącznika uruchamianego przez obrót. Jest to standard w projektowaniu schematów elektrycznych, gdzie symbole graficzne wizualizują funkcjonalność danego elementu. Taki sposób oznaczania jest bardzo przydatny w praktyce, zwłaszcza gdy mamy do czynienia z szafami sterowniczymi czy tablicami rozdzielczymi. Napęd obrotowy jest często stosowany w mechanizmach, które wymagają precyzyjnego i niezawodnego przełączania, jak np. przełączniki krzywkowe czy styczniki. Z mojego doświadczenia, dobrze jest znać różne symbole, bo to ułatwia pracę i komunikację w zespole projektowym. Pamiętaj też, że zgodność ze standardami, takimi jak normy IEC, zapewnia spójność i uniwersalność schematów elektrycznych. W praktyce, stosowanie poprawnych symboli pomaga w unikaniu błędów podczas montażu i konserwacji urządzeń, co przekłada się na bezpieczeństwo i efektywność pracy.

Pytanie 29

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A. Rysunek 2.
Ilustracja do odpowiedzi A
B. Rysunek 4.
Ilustracja do odpowiedzi B
C. Rysunek 3.
Ilustracja do odpowiedzi C
D. Rysunek 1.
Ilustracja do odpowiedzi D
Nie martw się, to dobry moment na naukę! Rozważmy, dlaczego pozostałe rysunki nie przedstawiają poprawnie sekwencji współbieżnej. Na Rysunku 1 widzimy, że po Kroku 1 następują Krok 2 i Krok 3, ale nie są one uruchamiane równocześnie. To oznacza, że sekwencja jest liniowa, a nie współbieżna, co nie odpowiada założeniom sieci SFC dla równoległego przetwarzania. Rysunek 2 również przedstawia liniową kontynuację po Kroku 1, co jest błędne, jeśli naszym celem jest równoległość. Podobnie jak Rysunek 1, nie zawiera on podwójnej linii, która sygnalizuje współbieżność. Rysunek 4 z kolei przedstawia bardziej złożoną strukturę, ale mimo to brakuje mu poprawnego oznaczenia równoczesnego startu Krok 2 i Krok 3. Podwójne linie występują tylko przy poszczególnych krokach, co nie jest zgodne z zasadami projektowania sieci współbieżnych. Typowym błędem prowadzącym do wyboru takich odpowiedzi jest nieznajomość standardów projektowania takich jak IEC 61131-3, które jasno definiują, jak powinny wyglądać sekwencje współbieżne. W przyszłości, zwracaj szczególną uwagę na symbole oznaczające równoległość, co pozwoli uniknąć takich pomyłek. Dobra praktyka projektowania wymaga, aby diagramy były nie tylko poprawnie wykonane technicznie, ale także przejrzyste dla innych użytkowników.

Pytanie 30

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. kołków rozprężnych.
B. pierścieni Segera.
C. podkładek dystansowych.
D. zabezpieczeń E-ring.
Zrozumienie różnicy między różnymi typami narzędzi do montażu zabezpieczeń jest kluczowe dla efektywnej pracy. Pierścienie Segera, znane również jako pierścienie sprężynujące, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Nie są to jednak te same końcówki, co w przypadku narzędzi do E-ringów. Zastosowanie niewłaściwego narzędzia może prowadzić do uszkodzenia pierścienia lub nawet samego mechanizmu. Podobnie, zabezpieczenia typu E-ring różnią się konstrukcją od pierścieni Segera i wymagają innych narzędzi. Kołki rozprężne to całkiem inna kategoria elementów mocujących, które są używane do zamocowania elementów w otworach, zwykle bez użycia dodatkowych narzędzi. Ich montaż zazwyczaj polega na wciśnięciu ich w miejsce docelowe, co nie wymaga użycia specjalnych szczypiec. Podkładki dystansowe służą do zapewnienia odpowiedniego odstępu między elementami, ale nie są montażowym zabezpieczeniem w tradycyjnym tego słowa znaczeniu. Mylenie tych elementów prowadzi często do błędnych wniosków, co może skutkować niewłaściwym doborem narzędzi i materiałów w pracy mechanicznej. Ważne jest, aby przed przystąpieniem do pracy dokładnie zidentyfikować, jakie zabezpieczenia są stosowane i jakie narzędzia są potrzebne do ich montażu.

Pytanie 31

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 32

Który przetwornik pomiarowy umożliwia bezdotykowy pomiar temperatury?

A. Termoelektryczny.
B. Rezystancyjny.
C. Pirometryczny.
D. Rozszerzalnościowy.
Pirometryczny przetwornik pomiarowy to fascynujące urządzenie, które umożliwia bezdotykowe pomiary temperatury dzięki emisji promieniowania podczerwonego przez ciała o temperaturze wyższej od zera absolutnego. Można zatem dokonywać pomiarów na odległość, co jest niezwykle przydatne w przemyśle, gdzie często mamy do czynienia z trudnymi warunkami, jak wysokie temperatury lub niebezpieczne substancje. Moim zdaniem to właśnie ta bezdotykowość czyni pirometry tak popularnymi w aplikacjach przemysłowych, takich jak monitoring wysokotemperaturowych procesów w hutach czy zakładach chemicznych. Zastosowanie pirometrów jest szerokie, od przemysłu spożywczego, gdzie ważne jest utrzymanie odpowiednich temperatur w procesach produkcyjnych, po medycynę, gdzie używa się ich do bezkontaktowego mierzenia temperatury ciała pacjentów. Pirometry są zgodne z normami ISO, co zapewnia ich dokładność i niezawodność. Oczywiście, jak każde urządzenie, wymagają kalibracji i regularnego serwisowania. Są jednak niezwykle precyzyjne i mogą mierzyć temperatury nawet do kilku tysięcy stopni Celsjusza. Pamiętajmy, że wybór odpowiedniego pirometru zależy od specyficznej aplikacji, w której ma być używany, więc warto zwrócić uwagę na wszelkie parametry techniczne przy zakupie.

Pytanie 33

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. skuteczności ochrony przeciwporażeniowej.
B. parametrów ekonomicznych.
C. obciążalności prądowej.
D. dopuszczalnego spadku napięcia.
Przy doborze przewodów w instalacji elektrycznej obciążalność prądowa, dopuszczalny spadek napięcia i skuteczność ochrony przeciwporażeniowej to kluczowe elementy, które muszą być uwzględniane, aby zapewnić bezpieczną i efektywną pracę instalacji. Obciążalność prądowa pozwala na ustalenie maksymalnego prądu, jaki przewód może przenosić bez przegrzewania się, co jest kluczowe dla uniknięcia pożarów i uszkodzeń. Bez prawidłowego dobrania obciążalności prądowej przewody mogą ulec przeciążeniu, co prowadzi do ich uszkodzenia. Dopuszczalny spadek napięcia z kolei wpływa na efektywność energetyczną instalacji. Zbyt duży spadek napięcia może prowadzić do nieprawidłowego działania urządzeń końcowych i zwiększonego zużycia energii. To szczególnie istotne w dużych instalacjach przemysłowych, gdzie długości przewodów są znaczne. Skuteczność ochrony przeciwporażeniowej zabezpiecza użytkowników przed porażeniem, co jest absolutnie niezbędne z punktu widzenia przepisów BHP i norm elektrycznych. Typowym błędem jest niedocenianie znaczenia tych parametrów na rzecz kosztów, co może prowadzić do niebezpiecznych sytuacji i awarii systemu. Rozważanie jedynie aspektów ekonomicznych w procesie projektowania instalacji może sugerować brak doświadczenia lub zrozumienia kluczowych zasad bezpieczeństwa i efektywności energetycznej w pracy elektryka. Dlatego też każdy projekt instalacji elektrycznej powinien być opracowywany z uwzględnieniem tych istotnych aspektów technicznych, a dopiero w dalszej kolejności rozważane powinny być aspekty ekonomiczne.

Pytanie 34

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. jarzma.
B. ucha.
C. łapy.
D. kołnierza przedniego.
Siłownik połączony ze słupkiem za pomocą ucha to jedno z najczęściej stosowanych rozwiązań w mechanice. Ucho, jako element maszyny, pozwala na łatwe i pewne przymocowanie siłownika, co jest kluczowe dla jego poprawnego działania. W praktyce, takie połączenie umożliwia obrót siłownika wokół osi ucha, co jest niezbędne w wielu aplikacjach, takich jak automatyka bram czy napędy maszynowe. Dzięki użyciu ucha można osiągnąć większą elastyczność konstrukcyjną oraz zapewnić odpowiednią wytrzymałość połączenia. W standardach projektowych, jak normy DIN czy ISO, uwzględnia się ten sposób montażu ze względu na jego skuteczność oraz łatwość implementacji. Dobrze zamocowane ucho minimalizuje ryzyko uszkodzeń i zwiększa trwałość całego systemu, co jest niezwykle ważne w długoterminowej eksploatacji. Przy projektowaniu takich połączeń inżynierowie zwracają uwagę na odpowiednie materiały oraz wytrzymałość na obciążenia dynamiczne.

Pytanie 35

Element przedstawiony na rysunku to

Ilustracja do pytania
A. pirometr.
B. czujnik pojemnościowy.
C. termometr rtęciowy.
D. czujnik rezystancyjny.
Rysunek przedstawia czujnik rezystancyjny, więc inne odpowiedzi mogą wprowadzać w błąd. Pirometr, często mylony z czujnikiem rezystancyjnym, mierzy temperaturę bezkontaktowo, wykorzystując promieniowanie podczerwone. Jest idealny do zastosowań, gdzie bezkontaktowy pomiar jest konieczny, jak w hutach czy przy monitorowaniu maszyn w ruchu. Z kolei termometr rtęciowy to klasyczne urządzenie, które wykorzystuje rozszerzalność cieplną rtęci w szklanej rurce, ale jego zastosowanie jest ograniczone przez kwestie bezpieczeństwa i dokładność w porównaniu z RTD. Czujnik pojemnościowy, używany do pomiaru wilgotności lub poziomu cieczy, działa na zasadzie zmiany pojemności elektrycznej pod wpływem środowiska. Wszystkie te technologie mają swoje miejsce, ale kluczowe jest zrozumienie, że czujnik rezystancyjny jest najlepszy do dokładnych, kontaktowych pomiarów temperatury. Typowe błędy myślowe obejmują nieznajomość zasad działania każdej z technologii, co prowadzi do błędnych skojarzeń. Wiedza o zastosowaniach i ograniczeniach każdej technologii jest niezbędna, aby dokonać właściwego wyboru w praktyce inżynierskiej.

Pytanie 36

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. dławik.
B. silnik prądu stałego.
C. transformator.
D. silnik prądu zmiennego.
Silnik prądu zmiennego, szczególnie synchroniczny, jest kluczowym elementem wielu urządzeń, które wykorzystują elektryczność przemienną. To właśnie on odpowiada za precyzyjne sterowanie ruchem i synchronizację, co czyni go idealnym do zastosowań takich jak napędy precyzyjnych mechanizmów zegarowych czy systemy automatyki. Takie silniki działają w określonym rytmie zgodnie z częstotliwością sieci zasilającej, co zapewnia im stabilność obrotów. Z mojego doświadczenia wynika, że ważnym aspektem jest również ich efektywność energetyczna, co przekłada się na mniejsze zużycie prądu w dłuższym okresie użytkowania. Warto zauważyć, że standardy takie jak IEC czy RoHS zapewniają, że są one produkowane zgodnie z rygorystycznymi normami jakości i bezpieczeństwa. Dzięki temu są nie tylko wydajne, ale też bezpieczne w użytkowaniu. W praktyce, wybierając silnik synchroniczny, masz pewność, że osiągniesz dużą precyzję i niezawodność działania, co jest kluczowe w wielu aplikacjach przemysłowych i domowych.

Pytanie 37

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Klucz nasadowy.
B. Wkrętak krzyżakowy.
C. Klucz oczkowy.
D. Wkrętak płaski.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 38

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 5,4 V DC
B. 10,0 V DC
C. 4,4 V DC
D. 15,0 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 39

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 3.
B. Tabliczka 4.
C. Tabliczka 1.
D. Tabliczka 2.
Przy analizie tabliczek znamionowych ważne jest zrozumienie, jak oznaczenia pracy wpływają na zastosowanie silnika. Każda tabliczka zawiera informacje o rodzaju pracy: S1, S2, S3 i S4. Tylko tabliczka 1 oznacza tryb pracy ciągłej (S1), co jest kluczowe w przypadku urządzeń działających bez przerw. Tabliczka 2 wskazuje tryb S3, co oznacza pracę przerywaną, często z krótkimi cyklami włączenia i wyłączenia. To typowe dla urządzeń, które muszą odpoczywać, aby uniknąć przegrzania. Tabliczka 3 z oznaczeniem S2 sugeruje krótki czas pracy ciągłej, co może być mylące, jeśli nie zrozumiemy, że jest to tryb limitowany czasowo, np. dla urządzeń startujących sporadycznie. Tabliczka 4 z trybem S4 obejmuje cykle pracy przerywanej z dodatkowym rozruchem, co jest specyficzne dla maszyn z dużymi obciążeniami startowymi. Typowe błędy myślowe dotyczą braku rozróżnienia między rodzajami pracy i związanych z nimi ograniczeń. Wybór niewłaściwego silnika może prowadzić do awarii, dlatego zrozumienie tych oznaczeń jest kluczowe.

Pytanie 40

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. cewkę.
B. rdzeń.
C. styki.
D. zworę.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.