Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 grudnia 2025 23:33
  • Data zakończenia: 7 grudnia 2025 23:52

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Długość belek stalowych dwuteowych, zastosowanych w nadprożu otworu okiennego, wykonanego w ścianie zewnętrznej przy klatce schodowej, w budynku, którego rzut przedstawiono na rysunku, wynosi

Ilustracja do pytania
A. 240 cm
B. 206 cm
C. 144 cm
D. 146 cm
Wybór nieprawidłowej długości belek stalowych dwuteowych może prowadzić do poważnych problemów konstrukcyjnych. Odpowiedzi 144 cm, 206 cm oraz 146 cm są niewłaściwe, ponieważ nie spełniają wymagań dotyczących długości belek w kontekście nadproży otworów okiennych. Często pojawiającym się błędem jest myślenie, że długość belek można dowolnie dobierać, co prowadzi do nieodpowiedniego wsparcia dla nadproży. Każda belka powinna być dostosowana do konkretnego wymiaru otworu oraz obciążeń, a ich długość powinna być co najmniej równa szerokości otworu z dodatkowymi marginesami dla zapewnienia stabilności. Odpowiedzi o zbyt małej długości, takie jak 144 cm, mogą sugerować niewłaściwe zrozumienie zasad projektowania, co jest kluczowe w branży budowlanej. Należy również pamiętać, że belki nie tylko muszą być odpowiedniej długości, ale również powinny być wykonane z odpowiedniego materiału i mieć właściwy przekrój, aby sprostać wymaganiom statycznym i dynamicznym. Błędne założenia co do długości mogą prowadzić do uszkodzeń w późniejszym etapie użytkowania budynku, co podkreśla znaczenie precyzyjnego projektowania zgodnie z normami i standardami branżowymi.

Pytanie 2

Jaki element budynku przedstawiony jest na zdjęciu?

Ilustracja do pytania
A. Gzyms.
B. Cokół.
C. Dylatacja.
D. Nadproże.
Odpowiedzi wskazujące na gzyms, dylatację lub nadproże nie są poprawne i wynikają z nieporozumień związanych z terminologią architektoniczną oraz funkcjami tych elementów. Gzyms to poziomy element architektoniczny, który znajduje się na górze ściany i często pełni funkcję dekoracyjną oraz odprowadzającą wodę deszczową, a nie ma bezpośredniego związku z dolną częścią budynku, która jest przedstawiona na zdjęciu. Dylatacja, z kolei, to szczelina projektowana w konstrukcji budynku, mająca na celu kompensację ruchów termicznych i osiadania, co również nie ma zastosowania w kontekście dolnej części ściany. Nadproże to element, który znajduje się nad otworami okiennymi i drzwiowymi, wspierając konstrukcję budynku, ale nie ma nic wspólnego z dolnym wykończeniem budynku. Typowe błędy myślowe prowadzące do niepoprawnych odpowiedzi często wynikają z braku zrozumienia, jak różne elementy budowlane współdziałają ze sobą, oraz jakie mają konkretne funkcje. W przypadku cokołu kluczowe jest uznanie jego roli w ochronie budynku przed wilgocią oraz wpływem gruntu, co jest istotne dla zachowania długowieczności konstrukcji. Dobrą praktyką w projektowaniu budynków jest uwzględnianie odpowiednich rozwiązań w zakresie cokół, aby zapewnić estetyczne i funkcjonalne wykończenie dolnych partii budowli.

Pytanie 3

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 50 m
B. 25 m
C. 60 m
D. 40 m
Rozmieszczanie przerw dylatacyjnych w budynkach murowanych jest kluczowym elementem projektowania, jednak wybór niewłaściwych odległości, takich jak 40 m, 25 m czy 50 m, może prowadzić do poważnych problemów z integralnością konstrukcji. Przykładowo, przerwy dylatacyjne co 40 m mogą być niewystarczające w przypadku dużych budowli, co skutkuje nadmiernym naprężeniem w murze, prowadząc do pęknięć i osiadania. Podobnie, 25 m jest zbyt małą odległością, co powoduje, że materiał nie ma wystarczającej swobody na rozszerzanie i kurczenie się, co w konsekwencji prowadzi do uszkodzeń. Z kolei opcja 50 m, choć bliższa prawidłowej odpowiedzi, nadal nie uwzględnia optymalnych warunków dla dużych obiektów, co może prowadzić do osłabienia strukturalnego. Zrozumienie, że przerwy dylatacyjne są projektowane w oparciu o konkretne normy i dobre praktyki budowlane, jest kluczowe dla zapewnienia bezpieczeństwa i trwałości budynków. W kontekście projektowania, należy również brać pod uwagę czynniki takie jak rodzaj użytych materiałów, klimat oraz przewidywane obciążenia, aby dobrać właściwe interwały dylatacyjne dla konkretnej konstrukcji.

Pytanie 4

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany nośnej wewnętrznej w pokoju, jeżeli wysokość pomieszczenia wynosi 2,90 m.

Ilustracja do pytania
A. 9,22 m2
B. 10,49 m2
C. 9,42 m2
D. 11,02 m2
Aby obliczyć powierzchnię ściany nośnej wewnętrznej, kluczowe jest zrozumienie, że powierzchnia ta jest wynikiem pomnożenia długości ściany przez jej wysokość. W tym przypadku, długość ściany wynosi 3,80 m, a wysokość pomieszczenia to 2,90 m. Stosując wzór: powierzchnia = długość × wysokość, otrzymujemy: 3,80 m × 2,90 m = 11,02 m2, co jest wartością prawidłową. W kontekście architektonicznym, znajomość takich obliczeń jest niezbędna nie tylko dla estetyki, ale także dla stabilności i efektywności energetycznej budynków. W obliczeniach tych uwzględnia się również materiały budowlane oraz ich właściwości, co jest istotne podczas planowania prac budowlanych. Należy pamiętać, że poprawne pomiary oraz obliczenia wpływają na późniejsze etapy budowy, takie jak wykończenie wnętrz czy montaż instalacji. Warto również zwrócić uwagę, że zgodność z normami budowlanymi i standardami, takimi jak PN-EN 1991-1-1, jest niezbędna dla zapewnienia bezpieczeństwa i trwałości konstrukcji.

Pytanie 5

Przedstawione na rysunku narzędzie, które służy do przycinania twardych bloków wapienno-piaskowych, to

Ilustracja do pytania
A. piła.
B. strug.
C. gilotyna.
D. prowadnica.
Odpowiedź "gilotyna" jest prawidłowa, ponieważ narzędzie to jest specjalnie zaprojektowane do precyzyjnego przycinania twardych materiałów, takich jak wapień i piaskowiec. Gilotyna do kamienia wykorzystuje mechaniczny nacisk ostrza, co pozwala na uzyskanie dokładnych i czystych cięć. W praktyce, zastosowanie gilotyny jest niezbędne w kamieniarstwie, gdzie precyzja cięcia jest kluczowa dla zachowania estetyki i funkcjonalności końcowych produktów. Gilotyny tego typu są standardem w wielu zakładach zajmujących się obróbką kamienia, a ich stosowanie przyczynia się do zwiększenia efektywności pracy oraz redukcji odpadów materiałowych. Warto również wspomnieć, że gilotyny są wykorzystywane w różnych technikach budowlanych i dekoracyjnych, w tym w tworzeniu nagrobków, elementów architektonicznych i rzeźb. Zastosowanie odpowiednich narzędzi, jak gilotyna, jest zgodne z najlepszymi praktykami branżowymi, co podkreśla ich znaczenie w profesjonalnej obróbce materiałów kamiennych.

Pytanie 6

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3
A. 4 600,00 zł
B. 3 400,00 zł
C. 4 450,00 zł
D. 2 975,00 zł
Aby obliczyć łączny koszt zakupu zapraw, niezbędne jest przemnożenie ilości zaprawy przez ich cenę jednostkową, co stanowi standardową praktykę w zarządzaniu kosztami budowy. W opisywanym przypadku mamy 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12. Każdy z tych typów zapraw ma różne ceny, które powinny być znane z cennika. Pomnożenie objętości zaprawy przez jednostkową cenę daje koszt dla każdej z zapraw. Następnie, poprzez zsumowanie tych dwóch wartości, uzyskujemy łączny koszt zakupu. Przykładowo, jeżeli cena jednostkowa zaprawy M 7 wynosi 300 zł/m3, a zaprawy M 12 550 zł/m3, to koszt wynosi odpowiednio 1800 zł dla M 7 oraz 9350 zł dla M 12, co daje łączny koszt 11150 zł. Poprawne podejście do obliczeń kosztów materiałowych jest kluczowe w procesie budowlanym, ponieważ wpływa na ostateczny budżet projektu oraz jego rentowność. Dobrą praktyką jest również uwzględnienie ewentualnych zniżek lub kosztów dodatkowych, co może pomóc w dokładniejszym szacowaniu.

Pytanie 7

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 14,0 litrów
B. 7,0 litrów
C. 10,5 litra
D. 3,5 litra
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 8

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. styropian, wełnę mineralną
B. styropian, papę
C. wełnę mineralną, masy bitumiczne
D. wełnę mineralną, emulsję asfaltową
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 9

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z dwóch warstw lepiku asfaltowego
B. z folii kubełkowej
C. z pojedynczej warstwy folii PVC
D. z papy asfaltowej
Izolacje w piwnicach to naprawdę istotna sprawa, bo źle zrobione mogą prowadzić do problemów. Folia PVC niby jest wodoodporna, ale w piwnicach, gdzie woda gruntowa jest cały czas obecna, nie jest najlepszym rozwiązaniem. Moim zdaniem, może spowodować nieszczelności. Folia kubełkowa też jest popularna, ale nie jest to to samo co lepik asfaltowy. Często się myli, że jedna warstwa lepiku wystarczy, ale tak naprawdę dwie warstwy dają dużo lepszą ochronę przed wilgocią. Papa asfaltowa, mimo że można ją stosować, to nie jest tak skuteczna jak lepik w warunkach wysokiej wilgotności i wody gruntowej. Ważne jest, żebyśmy rozumieli, że dobór materiałów wpływa nie tylko na koszty, ale też na długowieczność budynku.

Pytanie 10

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. wysokich.
B. niskich.
C. średniowysokich.
D. wysokościowych.
Zrozumienie, jak się klasyfikuje budynki według wysokości, to bardzo ważna sprawa, bo mogą się pojawić jakieś niejasności. Można spotkać się z odpowiedziami, które mówią, że budynek biurowy z 9 piętrami to coś średniowysokiego, niskiego albo wyskokowego, ale to mija się z prawdą. W przepisach nie ma dokładnej definicji 'średniowysoki', co może prowadzić do zamieszania. Budynek o 27 metrach zdecydowanie nie może być uznany za niski, bo te zazwyczaj mieszczą się poniżej 12 metrów. Jeśli się to pomija, to można wyciągnąć złe wnioski co do projektowania i budowy. Kiedy uznajemy, że budynek jest wysoki, projektanci muszą wziąć pod uwagę różne normy, co wpływa na systemy zabezpieczeń, takie jak windy przeciwpożarowe czy inne instalacje. Jeśli ktoś nie rozumie tego, to może to prowadzić do złego projektowania i niebezpiecznych sytuacji. Dlatego architekci i inżynierowie powinni znać definicje, ale też praktyczne skutki związane z klasyfikacją budynków.

Pytanie 11

Przedstawiony na ilustracji sprzęt, stosowany do usuwania gruzu podczas rozbiórki budynku, to

Ilustracja do pytania
A. kontener na gruz.
B. przenośnik taśmowy.
C. zsyp budowlany.
D. pompa do gruzu.
Zsyp budowlany, przedstawiony na ilustracji, jest kluczowym urządzeniem wykorzystywanym w procesie rozbiórki budynków. Jego główną funkcją jest bezpieczne i efektywne transportowanie gruzu z wyższych kondygnacji na dół, co znacząco przyspiesza i ułatwia pracę ekip budowlanych. Zsypy budowlane są projektowane tak, aby minimalizować ryzyko wypadków i kontuzji, co jest zgodne z obowiązującymi normami bezpieczeństwa w branży budowlanej. Umożliwiają one również skuteczne zarządzanie odpadami budowlanymi, co jest ważne w kontekście ochrony środowiska. W praktyce, gdy rozbiórka odbywa się na dużych wysokościach, zsyp staje się nieoceniony, pozwalając na ciągłe usuwanie gruzu, co zwiększa wydajność całego procesu. Zastosowanie zsypów budowlanych jest zgodne z zasadami BHP i efektywności, a ich stosowanie jest zalecane przez instytucje zajmujące się nadzorem budowlanym i standardami budowlanymi. Dobrą praktyką jest regularna kontrola stanu technicznego zsypów, aby zapewnić ich niezawodność w trakcie realizacji projektów budowlanych.

Pytanie 12

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. łopatę
B. czerpaka szufelkowego
C. wiadra z podziałką
D. taczki
Wybór wiadra z podziałką do objętościowego dozowania kruszywa i wody jest uzasadniony ze względu na precyzję oraz łatwość w użyciu. Wiadro z podziałką pozwala na dokładne odmierzenie objętości materiałów sypkich oraz cieczy, co jest kluczowe w procesach budowlanych i inżynieryjnych, gdzie precyzyjne proporcje są niezbędne do uzyskania pożądanych właściwości mieszanki betonowej. Przykładowo, przy przygotowywaniu betonu, niewłaściwe proporcje wody do kruszywa mogą prowadzić do obniżenia wytrzymałości i trwałości gotowego produktu. Zastosowanie wiadra z podziałką umożliwia również łatwe utrzymanie standardów jakości, co jest wymagane w wielu regulacjach budowlanych. Dobrą praktyką jest korzystanie z narzędzi, które zapewniają powtarzalność dozowania, co sprawia, że wiadro z podziałką spełnia te wymagania, a jego użycie może być dostosowane do różnych projektów budowlanych. Pozwala to na zachowanie spójności w mieszankach, co jest kluczowe dla uzyskania wysokiej jakości konstrukcji.

Pytanie 13

Rysunek przedstawia umowne i uproszczone oznaczenie klatki schodowej w rzucie i dotyczy kondygnacji

Ilustracja do pytania
A. najniższej
B. wyrównawczej
C. najwyższej
D. powtarzalnej
Wybór odpowiedzi, która nie dotyczy kondygnacji najniższej, może wynikać z paru nieporozumień na temat architektury i układu budynków. Na przykład, wybranie kondygnacji najwyższej dotyczy przestrzeni na samej górze budynku, co w przypadku klatki schodowej prowadzącej w dół po prostu nie ma sensu. Ważne jest, żeby zrozumieć, że projektując budynek, klatki schodowe powinny umożliwiać przejście pomiędzy różnymi poziomami, a kierunek ich prowadzenia jest kluczowy dla określenia, na jakiej kondygnacji się znajdujemy. Wybierając odpowiedź, która sugeruje schody prowadzące do poziomu powtarzalnego, można się pomylić, bo powtarzalne kondygnacje zazwyczaj dotyczą wielu poziomów o tej samej funkcji, jak w biurowcach. A w przypadku odpowiedzi sugerującej kondygnację wyrównawczą, to już w ogóle nie jest zgodne z definicją, bo odnosi się do poziomów, które niekoniecznie mają coś wspólnego z układem schodów. Całkiem istotne jest, żeby być świadomym, że błędne zrozumienie oznaczeń i ich kontekstu w projektowaniu budynków może prowadzić do nieprzyjemnych sytuacji i trudności w orientacji, co w kryzysie naprawdę może być problematyczne. Dlatego warto znać właściwe terminy i rozumieć zasady projektowania budynków.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Na rysunku przedstawiono fragment ściany zewnętrznej z oblicówką konstrukcyjną. Wykonanie takiej ściany polega na wymurowaniu

Ilustracja do pytania
A. warstwy zewnętrznej, a po jej stwardnieniu, domurowaniu warstwy wewnętrznej.
B. ze szczeliną powietrzną pomiędzy warstwą wewnętrzną a zewnętrzną.
C. obu warstw jednocześnie na całej wysokości.
D. najpierw warstwy wewnętrznej, a po jej stwardnieniu, wykonaniu okładziny zewnętrznej.
Nieprawidłowe podejście do wykonania ściany z oblicówką konstrukcyjną, polegające na wymurowaniu najpierw warstwy zewnętrznej, a po jej stwardnieniu warstwy wewnętrznej, jest obarczone istotnymi błędami myślowymi. Przede wszystkim, takie podejście prowadzi do problemów związanych z osiadaniem poszczególnych warstw, co może skutkować powstawaniem szczelin, a tym samym pogorszeniem parametrów izolacyjnych. Murowanie warstwy zewnętrznej przed wewnętrzną narusza jedność materiałową, prowadząc do ryzyka wpływu na trwałość całej konstrukcji. Dodatkowo technika ta nie uwzględnia odpowiedniego połączenia warstw, co może prowadzić do problemów z izolacją termiczną i akustyczną. Wykonując obie warstwy jednocześnie, eliminujemy ryzyko różnic w osiadaniu, co jest zgodne z normami budowlanymi dotyczącymi stabilności konstrukcji. Warto również zauważyć, że popełniając błąd w kolejności murowania, można spotkać się z nieprawidłowym odwodnieniem oraz nieefektywną wentylacją, co może prowadzić do zjawisk kondensacji wilgoci wewnątrz ściany. Takie błędne podejście jest sprzeczne z zasadami dobrych praktyk budowlanych i może prowadzić do poważnych konsekwencji w kontekście trwałości i funkcjonalności budynku.

Pytanie 16

Zalecana ilość domieszki napowietrzającej wynosi 0,5 kg na 1 m3 mieszanki betonowej. Jaką ilość domieszki trzeba dodać do 750 dm3 mieszanki betonowej?

A. 0,375 kg
B. 0,750 kg
C. 0,250 kg
D. 0,550 kg
Odpowiedź 0,375 kg jest w porządku, bo zużycie tej domieszki napowietrzającej to 0,5 kg na każdy metr sześcienny mieszanki betonu. Jak przeliczymy jednostki, to 750 dm³ wychodzi nam 0,75 m³ (bo 1 m³ to 1000 dm³). Żeby obliczyć potrzebną ilość domieszki, mnożymy objętość mieszanki przez to, co jest zalecane: 0,75 m³ razy 0,5 kg/m³ daje nam 0,375 kg. To podejście jest zgodne z tym, co stosuje się w budownictwie, gdzie dokładne dozowanie materiałów jest super ważne dla jakości betonu. Warto pamiętać, że te domieszki poprawiają też cechy betonu, takie jak odporność na mróz czy wodoszczelność, co jest istotne, szczególnie w naszym zmiennym klimacie. Dlatego ważne jest, żeby stosować odpowiednie dawki, bo to zapewnia lepszą wydajność i trwałość mieszanki. Ostatecznie wpływa to nie tylko na właściwości mechaniczne betonu, ale też na jego długowieczność i odporność na różne warunki atmosferyczne.

Pytanie 17

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. wiszące
B. na kozłach
C. ramowe
D. stojakowe
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowanie na kozłach zapewnia stabilną i bezpieczną platformę roboczą, co jest kluczowe podczas rozbiórki ścianek działowych. Rusztowania tego typu są łatwe do ustawienia i można je łatwo dostosować do różnych wysokości, co czyni je idealnym rozwiązaniem w przypadku prac w pomieszczeniach o zróżnicowanej wysokości. Wysokość rusztowania może być regulowana, co daje możliwość pracy na różnych poziomach bez konieczności przestawiania całej konstrukcji. Przykładem zastosowania rusztowania na kozłach może być praca w biurze, gdzie konieczne jest usunięcie przestarzałych ścianek działowych w celu otwarcia przestrzeni. Dodatkowo, rusztowania na kozłach są zgodne z normą PN-EN 12811, która określa wymagania dotyczące bezpieczeństwa konstrukcji rusztowań. W praktyce, ich użycie minimalizuje ryzyko wypadków związanych z upadkiem podczas pracy na wysokości, co jest kluczowe w branży budowlanej. Użycie takiego rusztowania sprzyja efektywności pracy oraz zwiększa komfort osób pracujących w trudnych warunkach budowlanych.

Pytanie 18

Który rodzaj wiązania dwuwarstwowego przedstawiony jest na rzutach dwóch warstw fragmentu narożnika muru?

Ilustracja do pytania
A. Krzyżykowe.
B. Pierścieniowe.
C. Gotyckie.
D. Pospolite.
Wybór krzyżykowego wiązania, choć popularny w niektórych konstrukcjach, nie jest odpowiedni dla tego rodzaju narożnika muru. Wiązanie krzyżykowe polega na układaniu cegieł w sposób, który nie przewiduje naprzemiennego ułożenia warstw, co prowadzi do osłabienia struktury oraz zwiększa ryzyko pęknięć. Z kolei odpowiedź dotycząca wiązania gotyckiego, które charakteryzuje się bardziej ozdobnym niż funkcjonalnym ułożeniem cegieł, nie jest zastosowaniem standardowym w murach dwuwarstwowych. Wiązanie gotyckie jest typowe dla architektury sakralnej i nie odpowiada oczekiwaniom stawianym przed murami o solidnej nośności. Odpowiedź dotycząca wiązania pierścieniowego, które zapewnia zamknięcie konstrukcji, również nie odnosi się do tematu, ponieważ tego typu wiązanie stosowane jest głównie w budowach cylindrycznych lub okrągłych. Przy wyborze odpowiedzi warto zwrócić uwagę na podstawowe zasady konstrukcyjne i funkcjonalne, a także na kontekst aplikacji poszczególnych technik murarskich. Zrozumienie zastosowania każdego z typów wiązań w praktyce budowlanej jest kluczowe dla poprawnego rozpoznawania ich właściwości oraz funkcji.

Pytanie 19

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. belek nośnych na ścianach
B. zbrojenia żeber rozdzielczych
C. zbrojenia belek monolitycznych
D. pustaków ceramicznych na deskowaniu
Odpowiedź o rozpoczęciu wykonania stropu Fert od ułożenia belek nośnych na ścianach jest poprawna, ponieważ belki nośne stanowią podstawowy element konstrukcyjny, na którym opiera się cały strop. Belki te muszą być odpowiednio zaprojektowane i wykonane, aby zapewnić nośność oraz stabilność całej konstrukcji. W przypadku stropów Fert, belki nośne powinny być instalowane jako pierwsze, ponieważ to one przenoszą obciążenia na ściany budynku i muszą być solidnie zamocowane. Na belkach nośnych następnie układa się zbrojenie i pustaki, co stanowi kolejne etapy budowy stropu. Przykładem dobrych praktyk w tej dziedzinie jest wykorzystanie zgodnych z normami projektowania i wykonania belek oraz ich odpowiednie zabezpieczenie przed uszkodzeniami mechanicznymi podczas kolejnych prac budowlanych. Zgodnie z normą PN-EN 1992-1-1, prawidłowe wykonanie belek nośnych jest kluczowe dla bezpieczeństwa i funkcjonalności całej konstrukcji budowlanej.

Pytanie 20

Który z elementów architektonicznych ściany przedstawiono na rysunku?

Ilustracja do pytania
A. Filar.
B. Ryzalit.
C. Pilaster.
D. Wykusz.
Ryzalit to wysunięta część ściany, która wyróżnia się na tle pozostałej bryły budynku. Jego zastosowanie w architekturze ma na celu nie tylko wzmocnienie estetyki obiektu, ale również poprawę funkcjonalności przestrzeni. Ryzality często stosowane są w pałacach, kościołach oraz budynkach użyteczności publicznej, gdzie ich obecność pomaga w tworzeniu dynamicznych, interesujących elewacji. Dzięki wysunięciu w stosunku do reszty ściany, ryzalit może tworzyć naturalne porty i podcienia, co z kolei wpływa na ciekawe rozwiązania przestrzenne oraz lepsze oświetlenie pomieszczeń. W kontekście praktycznym, projektanci wykorzystują ryzalit do akcentowania wejść czy stref reprezentacyjnych, co jest zgodne z zasadami projektowania architektonicznego obiektów. Warto również dodać, że ryzalit często występuje w połączeniu z innymi elementami architektonicznymi, co pozwala na uzyskanie harmonijnej kompozycji budynku.

Pytanie 21

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ściany murowanej pokazanej na rysunku.

Ilustracja do pytania
A. 14,80 m2
B. 13,80 m2
C. 14,16 m2
D. 16,16 m2
Odpowiedź 14,16 m2 jest poprawna, ponieważ zgodnie z zasadami przedmiarowania robót murarskich, należy od powierzchni ścian odejmować powierzchnie otworów, które przekraczają 0,5 m2. W analizowanym przypadku całkowita powierzchnia ściany murowanej wynosi 16,8 m2. Po dokładnym pomiarze i odjęciu powierzchni otworów, które mają łączną wartość 2,64 m2, uzyskujemy wymaganą powierzchnię 14,16 m2. Takie podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla oceny kosztów i materiałów potrzebnych do realizacji projektu. W praktyce, poprawne obliczanie powierzchni przy użyciu tych zasad jest istotne dla wykonawców oraz inspektorów budowlanych, aby zapewnić dokładność w wycenach oraz w planowaniu robót budowlanych.

Pytanie 22

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Cięgna z prętów stalowych i kątowniki mocujące
B. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
C. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
D. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
Wybór klamr stalowych Ø15-18 mm oraz zaczynu cementowego do naprawy pęknięć muru o głębokości większej niż 30 mm jest uzasadniony ze względu na wysoką wytrzymałość materiałów oraz ich zdolność do zapewnienia stabilności strukturalnej. Klamry stalowe są stosowane w celu wzmocnienia połączeń w murze, co jest kluczowe w przypadku głębokich pęknięć. Dzięki odpowiedniej średnicy klamr, możliwe jest efektywne przeniesienie obciążeń na otaczające materiały. Zaczyn cementowy, z kolei, charakteryzuje się doskonałymi właściwościami wiążącymi oraz odpornością na działanie czynników atmosferycznych. W praktyce, taka kombinacja materiałów pozwala nie tylko na skuteczne wypełnienie pęknięć, ale także na ich długotrwałe zabezpieczenie przed dalszymi uszkodzeniami. Stosowanie klamr stalowych w połączeniu z zaczynem cementowym jest zgodne z dobrymi praktykami budowlanymi, które wskazują na konieczność używania wytrzymałych materiałów w przypadku napraw strukturalnych.

Pytanie 23

Aby zbudować murowane ścianki działowe o grubości do 12 cm i jak najmniejszym ciężarze objętościowym, należy zastosować cegłę

A. dziurawki
B. ceramicznej pełnej
C. klinkierową
D. silikatową pełną
Dziurawka, czyli cegła ceramiczna z otworami, jest doskonałym materiałem do budowy murowanych ścianek działowych o grubości do 12 cm z uwagi na swoje właściwości izolacyjne oraz niski ciężar objętościowy. Dzięki otworom w cegłach, ich masa jest znacznie niższa, co przyczynia się do zmniejszenia obciążenia konstrukcyjnego budynku. Dziurawki charakteryzują się również dobrą izolacyjnością akustyczną, co sprawia, że są idealnym materiałem do budowy ścianek działowych w biurach i mieszkaniach, gdzie istotne jest oddzielenie pomieszczeń. W normach budowlanych, takich jak PN-EN 771-1, określono wymagania dotyczące właściwości materiałów budowlanych, a cegły dziurawki spełniają te standardy, oferując wysoką jakość i trwałość. Przykładem zastosowania dziurek mogą być ścianki działowe w nowoczesnych budynkach mieszkalnych, gdzie niskie koszty transportu i łatwość w obróbce przekładają się na efektywność całego projektu budowlanego.

Pytanie 24

Na zdjęciu przedstawiono uszkodzenie warstwy zbrojącej (rozerwanie siatki) i warstwy izolacyjnej na elewacji budynku. Aby rozpocząć naprawę tego uszkodzenia, należy

Ilustracja do pytania
A. wyciąć uszkodzony fragment ocieplenia i usunąć tynk wokół wyciętego fragmentu pasem o szerokości 10 cm.
B. przykleić fragment rozerwanej siatki do podłoża i uzupełnić fragment uszkodzonego styropianu.
C. okleić taśmą papierową miejsce uszkodzenia.
D. wyciąć siatkę i tynk na powierzchni całej ściany, na której znajduje się uszkodzenie.
Twoja odpowiedź dotycząca wycięcia uszkodzonego fragmentu ocieplenia i usunięcia tynku w promieniu 10 cm jest zdecydowanie na miejscu. To naprawdę właściwe podejście, bo pozwala na solidne przygotowanie podłoża pod nową warstwę izolacyjną. W praktyce, coś takiego sprawia, że naprawiony fragment lepiej zespoli się z resztą elewacji, co jest kluczowe, jeśli zależy nam na długotrwałych efektach. Dodatkowo, usunięcie tynku wokół uszkodzenia zapobiega dalszym problemom, które mogą się pojawić z powodu złego przylegania materiałów. Jak mówi norma PN-EN 13499, dobre przygotowanie podłoża i używanie odpowiednich materiałów to podstawa, żeby cała konstrukcja dobrze funkcjonowała.

Pytanie 25

Na rysunku przedstawiono izolację przeciwwilgociową

Ilustracja do pytania
A. pionową z emulsji asfaltowej.
B. poziomą z folii polietylenowej.
C. pionową z folii kubełkowej.
D. poziomą z papy.
Izolacja przeciwwilgociowa pionowa z folii kubełkowej jest najskuteczniejszym rozwiązaniem dla ochrony fundamentów budynków przed wilgocią gruntową. Materiał ten charakteryzuje się unikalną strukturą z wypukłościami, które tworzą przestrzeń między folią a ścianą budynku, umożliwiając odprowadzenie wody, co jest kluczowe w zapobieganiu zawilgoceniu, a w konsekwencji także degradacji materiałów budowlanych. W praktyce, stosowanie folii kubełkowej pozwala na efektywną ochronę w miejscach o wysokim poziomie wód gruntowych, gdzie istnieje ryzyko podnoszenia się wilgoci. W zgodzie z normami budowlanymi, odpowiednia izolacja przeciwwilgociowa powinna być częścią integralnego projektu konstrukcji, co jest wskazane w Polskich Normach budowlanych. Warto również podkreślić, że folia kubełkowa jest łatwa w montażu i może być łączona z innymi systemami hydroizolacyjnymi, co zwiększa jej funkcjonalność i zapewnia długotrwałą ochronę.

Pytanie 26

Bloczek z betonu komórkowego został przedstawiony na rysunku

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybierając odpowiedzi inne niż A, można napotkać poważne nieporozumienia związane z identyfikacją materiałów budowlanych. Bloczek z betonu komórkowego ma specyficzną strukturę z pustkami, co jest istotnym elementem jego charakterystyki. Wiele osób może błędnie rozpoznać inne materiały, takie jak bloczki z betonu zwykłego lub silikatowego, które mają zupełnie inną budowę. Bloki betonowe posiadają gęstą, jednolitą strukturę, która nie zawiera pustek, co sprawia, że są znacznie cięższe i mają inne zastosowanie w budownictwie. Z kolei silikaty charakteryzują się wyższą wytrzymałością, ale nie oferują tak dobrych właściwości izolacyjnych jak beton komórkowy. Błędy w identyfikacji mogą pochodzić z braku wiedzy na temat procesów produkcyjnych i właściwości materiałów budowlanych. Na przykład, niewłaściwa analiza wizualna prowadzi do wniosku, że materiały o podobnych kolorach lub fakturach mogą być tymi samymi produktami, co jest mylne. Warto pamiętać, że dobór odpowiednich materiałów budowlanych powinien opierać się na ich parametrach technicznych oraz zastosowaniach zgodnych z obowiązującymi normami, takimi jak PN-EN 771-4. Dlatego istotne jest zrozumienie różnic między tymi materiałami oraz ich zastosowania w praktyce budowlanej.

Pytanie 27

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. na warstwie izolacji cieplnej
B. bezpośrednio na podsypce z piasku
C. bezpośrednio na ziemi
D. na warstwie chudego betonu
Pozioma izolacja przeciwwilgociowa podłogi parteru w budynku niepodpiwniczonym jest kluczowym elementem ochrony przed wilgocią gruntową. Układanie tej izolacji na warstwie chudego betonu jest zgodne z normami budowlanymi oraz dobrą praktyką w budownictwie. Warstwa chudego betonu, czyli cienka posadzka betonowa o niskim stopniu zbrojenia, działa jako stabilna baza dla izolacji, zapewniając równocześnie odpowiednią powierzchnię nośną. Dzięki temu, izolacja przeciwwilgociowa jest chroniona przed mechanicznymi uszkodzeniami oraz zapewnia skuteczniejsze działanie. Przykładowo, w przypadku zastosowania papy termozgrzewalnej lub folii wodochronnej, ich właściwe zamocowanie i uszczelnienie w obrębie chudego betonu umożliwia skuteczne zapobieganie przenikaniu wilgoci do wnętrza budynku. Zastosowanie tej metody jest potwierdzone standardami, takimi jak PN-B-03020, które wskazują na konieczność stosowania izolacji przeciwwilgociowej w odpowiednich warunkach budowlanych, co chroni przed negatywnymi skutkami wilgoci, takimi jak rozwój pleśni czy degradacja materiałów budowlanych.

Pytanie 28

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. polimerowej
B. szamotowej
C. ciepłochronnej
D. wodoszczelnej
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 29

Warstwę konstrukcyjną ściany przedstawionej na rysunku wykonano z betonu

Ilustracja do pytania
A. zwykłego niezbrojonego.
B. komórkowego niezbrojonego.
C. zwykłego zbrojonego.
D. komórkowego zbrojonego.
Odpowiedź 'komórkowego niezbrojonego' jest poprawna, ponieważ analiza rysunku ujawnia strukturę ściany wykonaną z pustaków, co jest charakterystyczne dla betonu komórkowego. Beton komórkowy, często stosowany w budownictwie, charakteryzuje się niską gęstością oraz wysoką izolacyjnością termiczną i akustyczną. W budynkach mieszkalnych oraz użyteczności publicznej wykorzystuje się go do wznoszenia ścian działowych oraz zewnętrznych, gdzie kluczowe znaczenie ma efektywność energetyczna. Standardy budowlane, takie jak PN-EN 771-4, definiują wymogi dla betonów komórkowych, w tym ich wytrzymałość i zastosowanie w różnych warunkach. Przykład zastosowania betonu komórkowego można zobaczyć w nowoczesnych domach pasywnych, gdzie jego właściwości izolacyjne przyczyniają się do obniżenia kosztów ogrzewania i chłodzenia budynku. Ponadto, brak prętów zbrojeniowych sugeruje, że jest to struktura niezbrojona, co również potwierdza prawidłowość odpowiedzi. W kontekście nowoczesnych trendów budowlanych, beton komórkowy niezbrojony jest często preferowany ze względu na szybkość montażu oraz oszczędności materiałowe.

Pytanie 30

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
B. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
C. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
D. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 31

Na rysunku przedstawiony jest budynek

Ilustracja do pytania
A. dwukondygnacyjny i podpiwniczony.
B. z dwuspadowym dachem.
C. dwukondygnacyjny i niepodpiwniczony.
D. z poddaszem użytkowym.
Odpowiedź "dwukondygnacyjny i niepodpiwniczony" jest prawidłowa, ponieważ budynek na rysunku posiada wyraźnie wydzielone dwie kondygnacje: parter oraz pierwsze piętro. W zgłoszonej wysokości pomieszczeń poniżej poziomu 0.0 wynoszącej -0.4m, nie osiąga się standardowych parametrów piwnicy, co klasyfikuje budynek jako niepodpiwniczony. W praktyce, architektura budynków często wymaga dokładnych pomiarów i ocen wysokości pomieszczeń, aby określić ich przeznaczenie. Zgodnie z normami budowlanymi, piwnica powinna mieć minimalną wysokość 2.4 m, aby mogła być uznana za przestrzeń użytkową. W tym przypadku, ze względu na zbyt niską wysokość, przestrzeń pod poziomem gruntu nie może być wykorzystana jako piwnica. Wiedza na temat klasyfikacji budynków jest kluczowa w procesie projektowania i budowy, ponieważ wpływa na funkcjonalność oraz zgodność z przepisami budowlanymi.

Pytanie 32

Jaki typ spoiwa wykorzystuje się do przygotowania zaprawy do murowania ścian fundamentowych?

A. Cement portlandzki
B. Gips budowlany
C. Wapno gaszone
D. Wapno hydratyzowane
Cement portlandzki to najczęściej stosowane spoiwo w budownictwie, szczególnie w kontekście murowania ścian fundamentowych. Charakteryzuje się wysoką wytrzymałością na ściskanie, co jest kluczowe w aplikacjach wymagających nośności, jak fundamenty budynków. W procesie murowania cement portlandzki łączy się z wodą, tworząc zaprawę, która wiąże i twardnieje, zapewniając trwałość oraz stabilność konstrukcji. W standardach budowlanych, takich jak PN-EN 197-1, cement portlandzki jest klasyfikowany jako spoiwo hydrauliczne, co oznacza, że wiąże pod wpływem wody. Dodatkowo, cement ten jest odporny na działanie wody, co jest niezwykle istotne w kontekście fundamentów, gdzie kontakt z wilgocią jest nieunikniony. Przykłady zastosowania obejmują nie tylko murowanie ścian fundamentowych, ale także ich wzmocnienie poprzez zastosowanie stropów i płyt betonowych, co pozwala na tworzenie stabilnych i bezpiecznych konstrukcji budowlanych.

Pytanie 33

Tynk klasy IVf wykonuje się

A. trójwarstwowo, wygładzając packą na gładko
B. dwuwarstwowo, wygładzając packą na ostro
C. dwuwarstwowo, wygładzając packą styropianową
D. trójwarstwowo, wygładzając packą pokrytą filcem
Poprawna odpowiedź wskazuje, że tynk kategorii IVf wykonuje się trójwarstwowo, zacierając packą obłożoną filcem. Proces ten jest zgodny z aktualnymi normami budowlanymi i najlepszymi praktykami w branży tynkarskiej. Tynki IVf charakteryzują się wysoką odpornością na warunki atmosferyczne oraz wymagają szczególnego podejścia podczas aplikacji. Trójwarstwowy system tynkowy pozwala na uzyskanie optymalnej trwałości i estetyki powłok. Pierwsza warstwa, zwana podkładową, ma na celu zapewnienie odpowiedniej przyczepności do podłoża, podczas gdy druga warstwa odpowiada za wyrównanie powierzchni. Ostatnia, zewnętrzna warstwa, zacierana packą obłożoną filcem, tworzy gładką i estetyczną powłokę, która jest jednocześnie odporniejsza na uszkodzenia mechaniczne oraz działanie czynników zewnętrznych. Prawidłowe wykonanie tynków IVf ma kluczowe znaczenie dla ich funkcjonalności oraz przedłużenia żywotności budynku, dlatego należy przestrzegać wszystkich wskazówek producentów oraz norm budowlanych.

Pytanie 34

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 3 920,00 zł
B. 5 880,00 zł
C. 7 980,00 zł
D. 1 596,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.

Pytanie 35

Na ilustracji przedstawiono etap badania konsystencji mieszanki betonowej metodą

Ilustracja do pytania
A. Ve-be.
B. stolika rozpływowego.
C. oznaczania stopnia zagęszczalności.
D. opadu stożka.
Wybór odpowiedzi związanych z oznaczaniem stopnia zagęszczalności, metodą Ve-be oraz stolikiem rozpływowym wskazuje na pewne nieporozumienia dotyczące metod oceny konsystencji mieszanki betonowej. Metoda oznaczania stopnia zagęszczalności nie jest właściwa w kontekście podanego zdjęcia, ponieważ skupia się na ocenie stopnia zagęszczenia betonu, a nie na pomiarze jego płynności. Z kolei metoda Ve-be, będąca innym podejściem do oceny konsystencji, polega na określaniu czasu potrzebnego na zmieszanie betonu w specjalnym stożku, co również nie jest związane z przedstawioną ilustracją. Stoliki rozpływowe są kolejnym narzędziem wykorzystywanym w badaniach konsystencji, jednak ich zasada działania różni się od metody opadu stożka, gdyż polega na pomiarze rozprzestrzenienia się betonu na płaskiej powierzchni. Typowe błędy myślowe, prowadzące do tych wyborów, to niepoprawne utożsamienie różnych metod badawczych oraz ich zastosowań. Zrozumienie, że każda z tych metod ma specyficzne zastosowanie i odpowiada na różne potrzeby w zakresie badania betonu, jest kluczowe dla prawidłowego przeprowadzenia procesu badawczego oraz zapewnienia odpowiednich standardów jakości w budownictwie.

Pytanie 36

Izolację przeciwwilgociową, gdy wykonujemy podłogę na gruncie, należy umieścić na

A. izolacji cieplnej
B. gruntowym podłożu
C. chudym betonie
D. podkładzie posadzki
Izolacja przeciwwilgociowa jest potrzebna, żeby budynki nie miały problemów z wilgocią, ale ważne jest gdzie ją umieścimy, bo to wpływa na to, jak dobrze działa. Ułożenie jej na podkładzie pod posadzką, na gruncie albo na izolacji termicznej to błędy. Jak położysz izolację na podkładzie pod posadzką, to ona może się uszkodzić przez obciążenia i nie będzie dobrze działać. Na podłożu gruntowym to też kiepski pomysł, bo grunt to właśnie jest źródło wilgoci, więc nie ochroni nas przed nią. Poza tym, może to prowadzić do kondensacji pary wodnej, co sprzyja pleśni i grzybom. Izolacja termiczna, mimo że jest ważna dla oszczędności energii, nie chroni przed wilgocią z gruntu i jej stosowanie w takim kontekście może być mylące. Duży błąd to nieodróżnienie różnych rodzajów izolacji i ich przeznaczenia, co potem prowadzi do źle zaplanowanych rozwiązań budowlanych i w konsekwencji do wysokich kosztów napraw.

Pytanie 37

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 147,00 zł
B. 514,50 zł
C. 411,60 zł
D. 1 440,60 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 38

Aby połączyć mury, które były wznoszone w różnych okresach, należy użyć na długości muru

A. szczelinę dylatacyjną
B. strzępia schodkowe
C. spoinę zbrojoną
D. zaprawę plastyfikowaną
Szczelina dylatacyjna jest stosowana do kompensacji ruchów termicznych i osiadania budynków, ale nie jest odpowiednia do łączenia murów, które zostały wzniesione w różnym czasie. Jej głównym celem jest zapobieganie pękaniu materiałów budowlanych, a nie ich wzmocnienie. Użycie dylatacji w miejscach połączeń różnych etapów budowy może prowadzić do powstawania słabych punktów w konstrukcji. Podobnie, spoina zbrojona, która ma na celu wzmocnienie połączeń w elementach betonowych, nie jest najlepszym rozwiązaniem w przypadku murów, ponieważ nie zapewnia odpowiedniej elastyczności i może prowadzić do niepożądanych naprężeń. Z kolei zaprawa plastyfikowana, choć przydatna w wielu zastosowaniach, nie rozwiązuje problemu estetyki i stabilności połączenia murów. Często błędne przekonania wynikają z mylenia funkcji różnych materiałów i technik budowlanych, co prowadzi do stosowania niewłaściwych rozwiązań. W przypadku połączeń murów, które muszą wytrzymać różne obciążenia i ruchy, kluczowe jest zrozumienie, że zastosowanie odpowiednich technik, takich jak strzępia schodkowe, jest niezbędne dla zachowania integralności całej konstrukcji.

Pytanie 39

Główne komponenty mieszanki betonowej do produkcji betonu standardowego to cement i woda oraz

A. popiół i wapno
B. piasek i wapno
C. piasek i żwir
D. popiół i keramzyt
Beton zwykły powstaje z kilku kluczowych składników: cementu, wody, piasku i żwiru. Te elementy razem tworzą mieszankę, która ma odpowiednie właściwości mechaniczne. Cement działa jak spoiwo, a woda wprowadza reakcję hydratacji. Piasek i żwir są ważne, bo nadają betonu odpowiednią strukturę oraz wytrzymałość. W praktyce, dobór tych składników w odpowiednich proporcjach jest mega ważny, żeby beton miał dobre parametry, takie jak odporność na ściskanie czy warunki atmosferyczne. W budowlance mamy normy, jak PN-EN 206, które mówią, jak powinny wyglądać składniki mieszanki, żeby wszystko było wysokiej jakości i bezpieczne.

Pytanie 40

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 101,25 kg
B. 10 125 kg
C. 1 012,5 kg
D. 10,125 kg
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.