Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.05 - Użytkowanie obrabiarek skrawających
  • Data rozpoczęcia: 8 grudnia 2025 14:50
  • Data zakończenia: 8 grudnia 2025 15:03

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z podanych materiałów na ostrza narzędzi skrawających pozwala na toczenie stali z najwyższą prędkością skrawania?

A. Stal narzędziowa niestopowa
B. Stal szybkotnąca
C. Węgliki spiekane
D. Stal narzędziowa stopowa
Stal niestopowa narzędziowa, stal szybkotnąca oraz stal stopowa narzędziowa to materiały, które posiadają swoje unikalne właściwości, lecz nie są dostosowane do toczenia stali z maksymalnymi prędkościami skrawania. Stal niestopowa narzędziowa charakteryzuje się dobrą twardością, ale jej odporność na wysoką temperaturę jest ograniczona w porównaniu do węglików spiekanych. W wyniku wysokich temperatur generowanych podczas skrawania, stal niestopowa może szybko tracić swoje właściwości użytkowe, co prowadzi do szybszego zużycia narzędzia. Stal szybkotnąca, chociaż zaprojektowana do pracy przy wyższych prędkościach, również nie osiąga takich parametrów, jak węgliki spiekane, a jej zastosowanie w toczeniu stali wymaga dokładnego monitorowania, co ogranicza efektywność produkcji. Z kolei stal stopowa narzędziowa, mimo że oferuje poprawione właściwości w porównaniu do stali niestopowej, wciąż nie jest w stanie konkurować z węglikami spiekanymi pod względem długości życia narzędzi i stabilności skrawania. Typowym błędem myślowym w wyborze tych materiałów jest niedocenianie znaczenia odporności na ciepło oraz twardości, które są kluczowymi czynnikami przy wyborze narzędzi skrawających do intensywnych procesów takich jak toczenie, co skutkuje nieefektywnym skrawaniem i potencjalnymi stratami w produkcji.

Pytanie 2

Zabierak chomątkowy jest wykorzystywany do przekazywania momentu obrotowego na

A. przeciągarce
B. frezarce
C. tokarce
D. dłutownicy
Wybór przeciągarki, frezarki lub dłutownicy jako urządzeń, w których zastosowanie znalazłby zabierak chomątkowy, jest nieprawidłowy i oparty na nieporozumieniach dotyczących funkcji oraz konstrukcji tych maszyn. Przeciągarka, skupiająca się na procesie przeciągania materiałów przez narzędzia, nie wymaga stosowania zabieraka chomątkowego do przenoszenia momentu obrotowego, gdyż jej głównym mechanizmem jest siła akcji i przeciągania, a nie rotacja. Frezarka, choć również obrabia materiały, operuje głównie poprzez ruch obrotowy narzędzi skrawających, gdzie zastosowanie zabieraka chomątkowego nie jest konieczne, ponieważ moment obrotowy przekazywany jest bezpośrednio przez wrzeciono na narzędzie skrawające. Z kolei dłutownica koncentruje się na procesie dłutowania, w którym narzędzie porusza się w linii prostej, co również nie wymaga przenoszenia momentu obrotowego w sposób, jaki realizuje zabierak chomątkowy. Często dochodzi do nieporozumień w rozumieniu funkcji różnych obrabiarek, co prowadzi do błędnych wniosków. Kluczowym błędem jest zakładanie, że każda maszyna obróbcza wymaga podobnych mechanizmów, co skutkuje mylnym przypisaniem funkcji zabieraka do tych urządzeń, gdzie jego zastosowanie jest zbędne.

Pytanie 3

W trybie jakim realizowane są ruchy pomocnicze lub nastawcze w obrabiarkach CNC?

A. AUTO
B. REPOS
C. EDYCJA
D. JOG
Wybranie trybów AUTO, EDYCJA czy REPOS to nie jest dobry pomysł, jeśli chodzi o ruchy pomocnicze w obrabiarce CNC. Tryb AUTO ma swoje zalety w produkcji seryjnej, bo działa automatycznie, ale tu operator nie ma możliwości manualnego ustawiania narzędzia. Tryb EDYCJA zazwyczaj służy do modyfikowania programów, a nie do ruchu narzędzia. Kiedy wchodzimy w tryb edycji, skupiamy się na zmianie ustawień, a to nie pomaga w ruchach pomocniczych. Co do trybu REPOS, to on bardziej dotyczy zapamiętywania pozycji, więc też nie daje pełnej kontroli nad sterowaniem narzędziem. Często wybiera się te tryby przez niepełne zrozumienie ich zastosowania w CNC. Dlatego warto wiedzieć, że każdy z tych trybów ma swoje konkretne zadanie i nie zastąpi precyzyjnej kontroli w trybie JOG. Dobrze dobrany tryb do sytuacji produkcyjnej i stanu maszyny to klucz do efektywności i bezpieczeństwa w pracy z CNC.

Pytanie 4

W trybie AUTOMATIC operator nie ma możliwości

A. modyfikować programu
B. uruchamiać chłodziwa
C. zmieniać posuwu
D. regulować obrotów
Podczas pracy w trybie AUTOMATIC operator nie ma możliwości poprawiania programu, co jest zgodne z zasadami bezpieczeństwa i wydajności w zakładach produkcyjnych. W tym trybie maszyna działa zgodnie z wcześniej ustalonymi parametrami, a wszelkie zmiany w programie mogłyby prowadzić do nieprzewidzianych błędów, a nawet uszkodzeń maszyny. Przykładowo, w przypadku obrabiarki CNC, zmiana programu w trakcie pracy mogłaby skutkować niewłaściwym wykonaniem detalu, co z kolei prowadziłoby do odpadów i zwiększenia kosztów produkcji. Z tego powodu, w standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie kontrolowania procesów oraz minimalizowania ryzyka, co jest realizowane poprzez ograniczenie możliwości modyfikacji programu w trybie AUTOMATIC. Operatorzy powinni znać te zasady, aby zapewnić płynność i bezpieczeństwo procesu produkcyjnego, stosując się do wytycznych dotyczących zarządzania jakością i bezpieczeństwa pracy.

Pytanie 5

Jaki przyrząd obróbczy jest głównie stosowany w procesie obróbki elementów na frezarkach i umożliwia cykliczne lub stałe obracanie obiektu o dany kąt?

A. Podzielnica
B. Trzpień
C. Imadło kątowe
D. Głowica kątowa
Podzielnica to specjalistyczny przyrząd obróbczy, który umożliwia precyzyjne ustawienie przedmiotu obrabianego w określonym kącie, co jest kluczowe w wielu procesach frezarskich. Dzięki możliwości podziału kątów na mniejsze jednostki, podzielnice są często stosowane w produkcji elementów wymagających dużej dokładności oraz powtarzalności, jak np. w przemyśle motoryzacyjnym, lotniczym czy przy wytwarzaniu złożonych konstrukcji. Użycie podzielnicy pozwala na efektywne realizowanie procesów takich jak frezowanie zębów, kształtowanie narożników czy wykonywanie otworów o specyficznych kątach. Warto zaznaczyć, że standardy branżowe rekomendują wykorzystywanie podzielnic przy obróbce mechanicznej na frezarkach CNC, co zwiększa efektywność produkcji oraz minimalizuje ryzyko błędów. Dodatkowo, podzielnice mogą współpracować z innymi urządzeniami, co umożliwia realizację bardziej skomplikowanych projektów obróbczych. Z praktycznego punktu widzenia, ich zastosowanie jest niezbędne w obróbce precyzyjnej, gdzie każdy detal ma znaczenie, a techniki takie jak frezowanie pod kątem są powszechnie stosowane.

Pytanie 6

W sytuacji, gdy zauważysz nieprawidłowe funkcjonowanie obrabiarki CNC, które może stanowić zagrożenie dla osób lub doprowadzić do uszkodzenia maszyny, należy bezzwłocznie

A. nacisnąć przycisk w kolorze zielonym
B. zatrzymać proces obróbczy
C. odjechać w trybie ręcznym narzędziem od przedmiotu obrabianego
D. nacisnąć przycisk w kolorze czerwonym z żółtą obwódką
Naciśnięcie czerwonego przycisku z żółtą obramówką to coś, co powinno się robić w sytuacjach kryzysowych związanych z obrabiarkami CNC. Te awaryjne przyciski są po to, żeby w razie potrzeby jak najszybciej zatrzymać maszynę. To nie tylko chroni nas, ale też zapobiega dalszym uszkodzeniom sprzętu. Kiedy coś idzie nie tak, jak awarie czy inne problemy, czas jest kluczowy. Dlatego ważne, żebyśmy wiedzieli, gdzie jest ten przycisk i jak go używać. Regularne przypomnienia i szkolenia na pewno pomagają w zmniejszeniu ryzyka w pracy. Dobrze jest też, żeby te przyciski byłyłatwo dostępne i widoczne, bo wtedy szybciej można zareagować w kryzysie. Pamiętaj, że prawidłowe używanie przycisku awaryjnego może uratować życie i zdrowie, a także oszczędzić kosztowny sprzęt.

Pytanie 7

Która z wymienionych funkcji pomocniczych "M" oznacza zakończenie programu z powrotem do jego początku?

A. M30
B. M33
C. M04
D. M17
Odpowiedź M30 jest prawidłowa, ponieważ pełni funkcję, która kończy program z opcją skoku na początek, co jest kluczowe w kontekście programowania w języku G-code. Funkcja ta jest szeroko stosowana w automatyzacji procesów CNC, gdzie po zakończeniu zadania maszyna może wrócić do punktu początkowego, co zapewnia efektywność i oszczędność czasu. W praktyce, programiści CNC często używają M30 na końcu programu, aby przygotować maszynę do wykonania kolejnego cyklu produkcyjnego bez konieczności ręcznej interwencji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie funkcji M30 pozwala na zwiększenie bezpieczeństwa i precyzji operacji, eliminując potencjalne błędy ludzkie podczas zmiany ustawień. Dodatkowo, M30 wspiera organizację kodu, czyniąc go bardziej przejrzystym i zrozumiałym dla operatorów maszyn, co jest istotne w kontekście współczesnych procesów produkcyjnych.

Pytanie 8

Przy procesie obróbczej High Speed Cutting konieczne jest ustawienie

A. wysokiego posuwu narzędzia oraz dużej grubości warstwy skrawanej
B. niskiego posuwu narzędzia oraz niskiej grubości warstwy skrawanej
C. niskiego posuwu narzędzia oraz wysokiej grubości warstwy skrawanej
D. wysokiego posuwu narzędzia oraz niskiej grubości warstwy skrawanej
Ustawienie dużego posuwu narzędzia w połączeniu z małą grubością warstwy skrawanej jest kluczowe w technologii High Speed Cutting (HSC). Tego rodzaju obróbka umożliwia osiągnięcie znacznych prędkości skrawania, co przekłada się na zwiększenie wydajności produkcji oraz poprawę jakości obrabianych powierzchni. W praktyce, duży posuw narzędzia pozwala na szybsze usuwanie materiału, co jest szczególnie korzystne w obróbce dużych serii komponentów. Ponadto, zastosowanie małej grubości warstwy skrawanej minimalizuje obciążenia, co z kolei prowadzi do mniejszego zużycia narzędzi skrawających oraz poprawia ich trwałość. Przykładem może być przemysł motoryzacyjny, gdzie precyzyjne i efektywne procesy obróbcze są niezbędne do produkcji wysokiej jakości komponentów silnikowych. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tej strategii obróbczej wpływa na optymalizację kosztów produkcji oraz skrócenie czasów realizacji zleceń.

Pytanie 9

Liniał krawędziowy wykorzystywany jest przy weryfikacji

A. równoległości płaszczyzn.
B. prostopadłości powierzchni.
C. płaskości powierzchni.
D. bicia czołowego.
Liniał krawędziowy jest kluczowym narzędziem używanym do sprawdzania płaskości powierzchni. Dzięki swojej sztywności i prostoliniowości, pozwala na precyzyjne pomiary, które są niezbędne w wielu dziedzinach inżynierii oraz obróbki materiałów. Użycie liniału krawędziowego umożliwia wykrycie nierówności na powierzchni, co jest istotne w kontekście zapewnienia wysokiej jakości produktów i procesów technologicznych. Na przykład, w produkcji elementów maszyn, gdzie jakiekolwiek odchylenia od płaskości mogą prowadzić do problemów w dopasowaniu i funkcjonowaniu złożonych układów. Standardy takie jak ISO 1101 dotyczące tolerancji geometrycznych, podkreślają znaczenie pomiarów płaskości, co czyni liniał krawędziowy narzędziem niezbędnym w kontroli jakości. Ponadto, w praktyce przemysłowej, kontrola płaskości jest niezbędna przy montażu powierzchni roboczych, takich jak stoły frezarskie czy szlifierskie, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla wydajności i dokładności produkcji.

Pytanie 10

Aby zmierzyć średnicę wałka Ø28±0,01, jaka metoda pomiarowa będzie odpowiednia?

A. suwmiarka uniwersalna (0 do 140/0,05)
B. średnicówka mikrometryczna (25 do 30/0,01)
C. mikrometr zewnętrzny (25 do 50/0,01)
D. suwmiarka uniwersalna (0 do 140/0,02)
Mikrometr zewnętrzny o zakresie pomiarowym od 25 do 50 mm oraz dokładności 0,01 mm jest idealnym narzędziem do precyzyjnego pomiaru średnicy wałka o nominalnej średnicy Ø28 mm z tolerancją ±0,01 mm. Mikrometry są zaprojektowane do pomiarów z dokładnością, która znacznie przewyższa to, co oferują suwmiarki, co czyni je bardziej odpowiednimi do zastosowań wymagających wysokiej precyzji. W przypadku wałków mechanicznych, mikrometry często są standardowym narzędziem używanym w warsztatach i laboratoriach metrologicznych. Dzięki temu, że mikrometr ma śrubę mikrometryczną, umożliwia on bardzo precyzyjne dostosowanie do wymiaru, co pozwala na dokładne odczyty. Oprócz tego, ważne jest, aby pamiętać o odpowiednim użytkowaniu mikrometru – przed pomiarem należy go skalibrować, a także dbać o czystość i stan ostrzy, aby uniknąć błędów pomiarowych. Stosowanie mikrometrów zewnętrznych jest zgodne z normami metrologicznymi, co zapewnia wysoką jakość pomiarów i ich powtarzalność.

Pytanie 11

Możliwość obróbki powierzchni czołowej tarczy o średnicy 1200 mm występuje na tokarce

A. rewolwerowej
B. kłowej
C. uniwersalnej
D. karuzelowej
Tokarki uniwersalne, kłowe czy rewolwerowe mogą być dość wszechstronne, ale do obróbki dużych elementów, jak tarcze o średnicy 1200 mm, nie nadają się za bardzo. Tokarka uniwersalna ma swoje ograniczenia i może nie dawać stabilności przy dużych detalach. Z kolei tokarka kłowa to raczej maszyna dla mniejszych rzeczy, a tym bardziej tokarka rewolwerowa, która jest stworzona do seryjnej obróbki małych części. Często zdarza się, że ludzie myślą, że każde narzędzie nadaje się do wszystkiego, a to tylko prowadzi do problemów i możliwych uszkodzeń zarówno detalu, jak i samej maszyny. Dlatego warto pamiętać, żeby wybierać odpowiednie narzędzia do konkretnego zadania, bo to nie tylko zwiększa efektywność, ale także jakość obrabianych elementów.

Pytanie 12

Do zadań związanych z obsługą oraz konserwacją układu hydraulicznego maszyny CNC nie należy

A. czyszczenie filtra
B. sprawdzanie efektywności pompy hydraulicznej obrabiarki
C. sprawdzenie wymaganego ciśnienia
D. uzupełnianie płynu hydraulicznego
Wszystkie wymienione rzeczy jak uzupełnianie płynu hydraulicznego, czyszczenie filtrów i sprawdzanie ciśnienia są naprawdę ważne dla działania układu hydraulicznego w CNC. Uzupełnienie płynu jest kluczowe, bo bez odpowiedniego poziomu cieczy siłowniki nie będą działały jak trzeba. Jak będzie za mało płynu, to można uszkodzić układ, a to już poważna sprawa. Czyszczenie filtra też jest istotne, bo zanieczyszczony filtr może ograniczać przepływ płynu i spowodować problemy z wydajnością. Regularne czyszczenie filtra jest więc niezbędne, by chronić pompę i inne elementy przed brudem. Sprawdzenie ciśnienia również ma ogromne znaczenie, bo ciśnienie hydrauliczne wpływa na całe działanie układu. Jak ciśnienie jest za niskie, to maszyna nie ma mocy, a jak za wysokie, to może uszkodzić części. Dlatego pominięcie tych czynności może prowadzić do poważnych problemów na produkcji, a w dłuższym terminie do ogromnych kosztów napraw. Krótko mówiąc, te rutynowe rzeczy są niezbędne dla prawidłowego działania hydrauliki, więc warto je regularnie robić.

Pytanie 13

Bezpośrednim wskaźnikiem zużycia ostrza narzędzia tokarskiego jest

A. niska jakość obrobionej powierzchni
B. głębokość utworzonego żłobka na powierzchni natarcia
C. nieodpowiednie warunki łamania oraz odprowadzania wiórów
D. pojawianie się zadziorów na obrabianej powierzchni
Złe warunki łamania i odprowadzania wiórów, powstawanie zadziorów na obrobionej powierzchni oraz niska jakość obrobionej powierzchni nie są bezpośrednimi wskaźnikami zużycia ostrza noża tokarskiego, lecz raczej skutkami niewłaściwej obróbki lub stanu narzędzi. Złe warunki łamania i odprowadzania wiórów mogą prowadzić do zwiększonego nagrzewania się narzędzia oraz jego przyspieszonego zużycia, jednak nie dostarczają jednoznacznych informacji o stanie samego ostrza. Powstawanie zadziorów na powierzchni obrabianej wskazuje na problemy z parametrami obróbczy, ale nie jest bezpośrednim wskaźnikiem zużycia narzędzia. Niska jakość obrobionej powierzchni, choć może sugerować, że ostrze nie działa prawidłowo, również nie dostarcza konkretnych danych o głębokości żłobka, co jest kluczowym wskaźnikiem. Typowe błędy myślowe, prowadzące do takich wniosków, obejmują mylenie objawów z przyczynami. W rzeczywistości, aby ocenić zużycie narzędzi, konieczne jest wyznaczenie konkretnych wskaźników, takich jak wspomniana głębokość żłobka, co pozwala na dokładniejszą analizę i podejmowanie świadomych decyzji dotyczących konserwacji narzędzi oraz poprawy procesów obróbczych.

Pytanie 14

W jakim dokumencie opisano błędy układu sterowania oraz ich możliwe przyczyny w obrabiarce CNC?

A. w instrukcji obsługi i programowania obrabiarki
B. w instrukcji smarowania obrabiarki
C. w karcie uzbrojenia obrabiarki
D. w wykazie narzędzi do obróbki
Właściwe zrozumienie i identyfikacja błędów układu sterowania w obrabiarce CNC jest kluczowe dla zapewnienia wysokiej jakości produkcji oraz bezpieczeństwa pracy. Instrukcja użytkowania i programowania obrabiarki stanowi kompleksowy dokument, który zawiera nie tylko podstawowe informacje dotyczące obsługi maszyny, ale również szczegółowy opis ewentualnych problemów związanych z jej funkcjonowaniem. W instrukcji tej znajdziemy wykaz potencjalnych usterek, ich przyczyny oraz zalecane procedury diagnostyczne. Przykładowo, jeśli dojdzie do błędu w ruchu osi, instrukcja może wskazać na niewłaściwe ustawienie parametrów maszyny lub zużycie komponentów. Dodatkowo, zgodnie z normami ISO 9001, dokumentacja użytkowa powinna być regularnie aktualizowana, co pozwala na ciągłe doskonalenie procesów produkcyjnych i minimalizację ryzyka wystąpienia usterek. Ponadto, edukacja operatorów w zakresie analizy błędów przyczynia się do szybszego reagowania na problemy, co w efekcie podnosi efektywność produkcji.

Pytanie 15

Funkcja gwintowania G33 wymaga

A. wskazania parametrów średnicy gwintu, liczby przejść oraz głębokości skrawania przy każdym etapie.
B. wskazania parametrów średnicy gwintu oraz głębokości skrawania przy każdym etapie.
C. wskazania parametrów średnicy gwintu oraz liczby przejść.
D. ręcznego zaprogramowania każdego etapu działania narzędzia.
Podanie parametrów średnicy gwintu i liczby przejść bez uwzględnienia ręcznego programowania narzędzia prowadzi do istotnych nieporozumień w zakresie procesu toczenia gwintu G33. W praktyce, sama znajomość średnicy gwintu i liczby przejść nie jest wystarczająca, ponieważ gwinty wymagają precyzyjnego dostosowania parametrów skrawania do konkretnego materiału oraz geometrii narzędzia. Użytkownicy często zapominają, że każdy materiał ma swoje unikalne właściwości skrawne, które mogą znacząco wpłynąć na wydajność obróbki. Ponadto, przejścia narzędzia muszą być dobrze zaplanowane, aby uniknąć problemów związanych z przeciążeniem narzędzia lub zbyt małą głębokością skrawania, co może prowadzić do niewłaściwego kształtu gwintu. Ręczne programowanie pozwala na elastyczne dostosowywanie głębokości skrawania oraz prędkości posuwu w odpowiedzi na zmieniające się warunki obróbcze. Typowym błędem jest przekonanie, że automatyzacja bez odpowiedniego nadzoru operatora wystarczy do osiągnięcia pożądanych efektów. Bez osobistego nadzoru i programowania na poziomie przejścia, jakość wykończenia i dokładność gwintu mogą być znacznie poniżej wymaganych standardów, co może prowadzić do odrzucenia detali podczas kontroli jakości.

Pytanie 16

Jakiej czynności nie przeprowadza się przed toczeniem powierzchni o kształcie stożkowym?

A. Przesuwanie osi konika
B. Przymocowanie liniału do łoża
C. Zabezpieczenie sań narzędziowych
D. Odkręcenie konika z łoża
Zdemontowanie konika z łoża to czynność, której nie wykonuje się przed toczeniem powierzchni stożkowych, ponieważ konik jest niezbędny do stabilizacji obrabianego elementu oraz zapewnienia odpowiedniego wsparcia podczas obróbki. W procesie toczenia stożków, konik wykorzystuje się do podpierania końca wałka lub innego elementu obrabianego, co jest kluczowe dla utrzymania precyzyjnych wymiarów i kształtu. Dobre praktyki w toczeniu wskazują, że konik powinien być odpowiednio umiejscowiony i dostosowany do wymagań obróbczych. Na przykład, w przypadku toczenia dużych wałów, właściwe umiejscowienie konika zapobiega wibracjom oraz zapewnia lepszą jakość powierzchni obrabianej. Zatem, jego demontaż przed przystąpieniem do toczenia byłby nie tylko nieefektywny, ale także mogłoby to prowadzić do pogorszenia jakości obróbki oraz zwiększenia ryzyka uszkodzeń. Ważne jest, aby zawsze przestrzegać standardów obróbczych, które podkreślają rolę konika w zapewnieniu stabilności i dokładności procesu.

Pytanie 17

Jaką liczbę wartości korekcyjnych mają wiertła używane w obrabiarkach CNC?

A. Dwie
B. Jedną
C. Cztery
D. Trzy
Wybór innych wartości korekcyjnych dla wierteł CNC może wydawać się logiczny, jednak jest to nieporozumienie związane z funkcjonalnością i zastosowaniem tych narzędzi. Wiertła nie mogą mieć dwóch, trzech, czy czterech wartości korekcyjnych, ponieważ takie podejście wprowadzałoby chaos w procesie obróbczej. Głównym celem stosowania jednego wskaźnika korekcyjnego jest uproszczenie zarządzania narzędziami i zwiększenie efektywności operacyjnej. W przypadku wprowadzenia wielu wartości korekcyjnych operator musiałby na bieżąco śledzić i zarządzać tymi parametrami, co prowadziłoby do zwiększenia ryzyka błędów i spadku dokładności produkcji. W praktyce, stosowanie różnych wartości korekcyjnych mogłoby skomplikować oprogramowanie sterujące, co jest niezgodne z zasadami efektywności w obróbce CNC. W branży obróbczej, gzie precyzja i powtarzalność są kluczowe, najlepsze praktyki skupiają się na minimalizacji zmiennych, które mogą wpływać na wyniki. Dlatego też, w większości zastosowań, użycie jednej wartości korekcyjnej dla wierteł CNC jest standardem, który sprzyja wydajności i precyzyjnej obróbce.

Pytanie 18

Funkcja gwintowania G33 wymaga określenia współrzędnej Z oraz

A. głębokości skrawania w każdym cyklu.
B. ilości przejść oraz głębokości skrawania w każdym cyklu.
C. ilości przejść.
D. skoku gwintu.
Wskazywanie głębokości skrawania przy każdym przejściu, liczby przejść, czy też ich kombinacji z głębokością skrawania jako odpowiedzi na pytanie o funkcję toczenia gwintu G33 jest nieprawidłowe, ponieważ te parametry są istotne w innych kontekstach obróbczych, ale nie są bezpośrednio związane z toczeniem gwintów. Głębokość skrawania odnosi się do maksymalnej wartości, na jaką narzędzie wkracza w materiał w jednym przejściu i jest bardziej kluczowa w operacjach takich jak frezowanie czy toczenie cylindryczne. W przypadku toczenia gwintów, głównym celem jest uzyskanie prawidłowego profilu gwintu, co osiąga się poprzez precyzyjne określenie skoku gwintu oraz prędkości obrotowej. Liczba przejść jest również parametrem stosowanym w ogólnym toczeniu, ale w kontekście toczenia gwintów skupiamy się przede wszystkim na tym, jak każdy obrót wrzeciona wpływa na kształt gwintu, a nie na liczbę przejść czy głębokości skrawania. Typowym błędem jest mylenie tych koncepcji, co może prowadzić do nieodpowiednich ustawień maszyn i w efekcie do produkcji wyrobów o niewłaściwych wymiarach oraz tolerancjach. W obróbce gwintów istotne jest, aby operacje były zharmonizowane z wymaganiami projektowymi, co wymaga zrozumienia, jakie parametry są krytyczne w tym konkretnym procesie.

Pytanie 19

Zużyte chłodziwo w postaci emulsji wodno-olejowej można

A. przechowywać tymczasowo w wyznaczonym miejscu, do chwili przekazania firmie zajmującej się utylizacją
B. przelać przez gęste sito i wykorzystywać do konserwacji narzędzi pomiarowych
C. stosować do obróbki cieplno-chemicznej elementów metalowych
D. użyć jako środek do konserwacji prowadnic w obrabiarkach konwencjonalnych
Odpowiedź dotycząca składowania zużytego chłodziwa w wyznaczonym miejscu do momentu przekazania firmie utylizującej jest prawidłowa, ponieważ zgodnie z przepisami prawa ochrony środowiska, odpady niebezpieczne, do których należy zaliczyć zużyte emulsje wodno-olejowe, muszą być odpowiednio przechowywane do czasu ich utylizacji. Przechowywanie takich substancji w wyznaczonych miejscach minimalizuje ryzyko ich przypadkowego uwolnienia do środowiska, co mogłoby prowadzić do zanieczyszczenia gleby i wód gruntowych. Przykładem dobrych praktyk jest stosowanie specjalistycznych pojemników zabezpieczających, które są przystosowane do przechowywania substancji chemicznych. Rekomendowane jest także prowadzenie ewidencji dotyczącej ilości oraz rodzaju składowanych odpadów, co ułatwia ich późniejsze przekazanie do odpowiednich firm zajmujących się utylizacją. Właściwe postępowanie z takimi odpadami jest kluczowe dla zachowania zgodności z normami ISO 14001, które dotyczą zarządzania środowiskowego.

Pytanie 20

Aby w programie NC zmienić kierunek interpolacji kołowej z ruchu zgodnego z ruchem wskazówek zegara na przeciwny, funkcję G02 należy zastąpić funkcją

A. G00
B. G0I
C. G03
D. G04
Funkcja G03 w programowaniu CNC służy do interpolacji kołowej w kierunku przeciwnym do ruchu wskazówek zegara. Gdy w programie NC chcemy zrealizować ruch w przeciwną stronę niż standardowa G02 (czyli zgodnie z ruchem wskazówek zegara), musimy użyć G03. Przykładowo, jeśli mamy wykonać okrąg o określonym promieniu, zmieniając kierunek na przeciwny, należy zastosować funkcję G03 i odpowiednio zdefiniować punkt końcowy oraz promień. W praktyce, w programowaniu CNC, ważne jest zrozumienie kierunków ruchu oraz odpowiednie przyporządkowanie funkcji, aby uniknąć błędów w produkcji. Dobry programista CNC powinien również znać różnice między G02 a G03, aby móc optymalnie zarządzać procesami frezarskimi, na przykład przy obróbce detali o złożonych kształtach. Użycie G03 w odpowiednim kontekście pozwala na uzyskanie precyzyjnych i zaplanowanych trajektorii narzędzia, co jest kluczowe w przemyśle obróbczo-mechanicznym.

Pytanie 21

Cykle stałe są wykorzystywane na przykład do programowania

A. gwintowania nożem
B. zatrzymania obrabiarki CNC
C. uruchomienia obrabiarki CNC
D. określania narzędzi
Cykle stałe, w kontekście programowania obrabiarek CNC, to zbiory instrukcji, które mają na celu realizację określonych operacji w sposób zautomatyzowany i powtarzalny. Gwintowanie nożem jest jednym z kluczowych zastosowań cykli stałych, ponieważ wymaga precyzyjnego i kontrolowanego ruchu narzędzia. W standardzie G-code, który jest powszechnie używany w programowaniu CNC, cykle gwintujące, takie jak G76, G85 czy G32, umożliwiają efektywne i powtarzalne wykonanie gwintów o różnych parametrach. Odpowiednie skonfigurowanie tych cykli pozwala na zminimalizowanie błędów i zwiększenie wydajności produkcji. Przykładowo, przy produkcji śrub o wysokiej precyzji, zastosowanie cykli gwintujących pozwala na zachowanie tolerancji wymiarowych oraz poprawne wykończenie powierzchni gwintu, co jest kluczowe dla funkcjonalności końcowego produktu. W praktyce, operatorzy obrabiarek CNC często korzystają z cykli stałych, aby uprościć programowanie i zredukować czas przestoju maszyn, co przekłada się na wyższą efektywność procesów produkcyjnych.

Pytanie 22

Przy użyciu oprzyrządowania przedstawionego na rysunku przedmiot obrabiany jest ustalany i mocowany przy pomocy

Ilustracja do pytania
A. łap dociskowych.
B. specjalnych stołów magnetycznych.
C. specjalnych imadeł maszynowych.
D. systemów modularnych.
Wybór niewłaściwych opcji, takich jak łapy dociskowe, specjalne imadła maszynowe czy specjalne stoły magnetyczne, wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania tych narzędzi w procesie mocowania przedmiotów obrabianych. Łapy dociskowe są często używane do prostego mocowania detali, jednak ich zastosowanie w kontekście zmiennych konfiguracji, które wymagają precyzyjnego dopasowania, jest ograniczone. Ich konstrukcja nie pozwala na elastyczne dostosowywanie, co jest kluczowe w nowoczesnych procesach obróbczych. Specjalne imadła maszynowe, mimo że zapewniają stabilność, również nie oferują takiej moduralności jak systemy modularne. Ich zastosowanie w jednorodnych procesach może być korzystne, jednak w przypadku zmiennych zadań produkcyjnych mogą być mniej efektywne. Stoły magnetyczne, z drugiej strony, są używane głównie do mocowania ferromagnetycznych materiałów, co ogranicza ich uniwersalność. W praktyce, każda z tych odpowiedzi pomija kluczowe cechy systemów modularnych, takie jak możliwość szybkiej wymiany narzędzi, co jest istotne w kontekście nowoczesnych strategii produkcyjnych. Typowym błędem myślowym jest zakładanie, że tradycyjne metody mocowania mogą w pełni zastąpić bardziej zaawansowane systemy, które oferują nie tylko precyzję, ale również znacznie większą elastyczność i efektywność.

Pytanie 23

W sekcji programu kontrolnego kod G91 oznacza

A. ustawienie stałej prędkości obrotowej wrzeciona
B. programowanie bezwzględne
C. programowanie względne
D. ustawienie stałej prędkości obróbczej
Kod G91 w programowaniu CNC oznacza programowanie przyrostowe, co oznacza, że wszelkie ruchy maszyny są określane w odniesieniu do bieżącej pozycji narzędzia. Zamiast podawać absolutne współrzędne w przestrzeni, jak ma to miejsce w przypadku programowania absolutnego (G90), programowanie przyrostowe pozwala na dynamiczne dostosowywanie ruchów. Przykładowo, jeśli narzędzie jest aktualnie w pozycji X=10, Y=5, to przesunięcie o G91 o 2 jednostki w prawo i 3 jednostki w górę skutkuje nową pozycją X=12, Y=8. Jest to niezwykle przydatne w sytuacjach, gdzie precyzyjne dostosowanie ruchów narzędzia jest kluczowe, zwłaszcza w skomplikowanych operacjach obróbczych. Programowanie przyrostowe często stosowane jest w sytuacjach, gdy operatorzy pracują z powtarzalnymi sekwencjami ruchów, co zwiększa efektywność i redukuje czas obróbczy. Warto również zauważyć, że w praktyce, po zastosowaniu G91, niezbędne jest powrócenie do programowania absolutnego (G90) przed zakończeniem cyklu, aby zapewnić poprawne działanie kolejnych komend.

Pytanie 24

Na rysunku przedstawiono ustalenie i zamocowanie przedmiotu obrabianego

Ilustracja do pytania
A. na trzpieniu stałym.
B. na stole magnetycznym.
C. w kłach obrotowym i stałym.
D. na trzpieniu rozprężnym.
Wybór innej odpowiedzi niż 'na stole magnetycznym' wskazuje na pewne nieporozumienia dotyczące technik mocowania przedmiotów obrabianych. Mocowanie na trzpieniu stałym czy rozprężnym, choć stosowane w obróbce, nie jest efektywne w kontekście płaskiej powierzchni bez widocznych elementów mocujących. Trzpienie stałe wymagają otworów w obrabianym przedmiocie, co nie jest zgodne z przedstawionym obrazem, gdzie nie widać takich elementów. Z kolei trzpień rozprężny, mimo że może być stosowany w obróbce, nie zapewnia stabilności jak stół magnetyczny i jest bardziej skomplikowany w użyciu, co wpływa na czas i precyzję obróbki. Użycie kłów obrotowych i stałych również nie odpowiada sytuacji przedstawionej na zdjęciu, gdyż wymagają one bardziej skomplikowanego mocowania i nie zapewniają takiej samej wszechstronności jak stół magnetyczny. Powszechny błąd myślowy polega na zakładaniu, że każda odpowiedź, która wydaje się technicznie uzasadniona, jest poprawna. W rzeczywistości kluczowe jest zrozumienie kontekstu danego rozwiązania i jego praktycznych zastosowań w obróbce materiałów, co w tym przypadku wskazuje jednoznacznie na stół magnetyczny.

Pytanie 25

Aby wykonać zęby w kole ślimakowym (ślimacznicy), powinno się użyć

A. strugarki poprzecznej
B. dłutownicy Maaga
C. dłutownicy Fellowsa
D. frezarki obwiedniowej
Kiedy używasz niewłaściwych narzędzi do wytwarzania zębów na kole ślimakowym, to mogą się zdarzyć poważne błędy w konstrukcji i to obniża wydajność mechanizmów. Dłutownica Fellowsa, mimo że to narzędzie skrawarskie, nie nadaje się do robienia zębów ślimacznicy. Ona jest bardziej do prostszych prac, gdzie nie trzeba aż takiego odwzorowania skomplikowanych kształtów. Strugarka poprzeczna też nie jest odpowiednia, bo działa inaczej, bardziej wzdłuż prostych linii, a to nie spełnia wymagań dotyczących kształtu zębów kół ślimakowych. Wybór dłutownicy Maaga może być lepszy niż poprzednie narzędzia, ale nadal nie daje takiej precyzji, jak frezarka obwiedniowa. Często można zauważyć, że niektórzy nie doceniają skomplikowania geometrii ząbków w przekładniach ślimakowych, co prowadzi do złego doboru narzędzi. Jeśli chcemy mieć wysoką jakość zębów w takich mechanizmach, to musimy używać narzędzi, które są dostosowane do precyzyjnej obróbki, czyli lepiej wybrać zaawansowane frezarki obwiedniowe, a nie proste systemy skrawające.

Pytanie 26

Który instrument jest wykorzystywany do określenia grubości zębów kół zębatych na średnicy podziałowej?

A. Średnicówka mikrometryczna
B. Mikrometr wewnętrzny
C. Suwmiarka modułowa
D. Passametr (transametr)
Suwmiarka modułowa to narzędzie pomiarowe, które zostało zaprojektowane z myślą o dokładnym pomiarze grubości zębów kół zębatych na średnicy podziałowej. Jej konstrukcja umożliwia precyzyjne i powtarzalne pomiary, a także łatwe odczytywanie wyników. Suwmiarki tego typu są wyposażone w specjalne szczęki, które idealnie pasują do profilu zębów kół zębatych, co pozwala na uzyskanie dokładnych danych dotyczących grubości zębów. W praktyce inżynieryjnej, stosowanie suwmiarki modułowej w celu weryfikacji wymiarów kół zębatych jest niezwykle istotne, ponieważ zapewnia właściwe dopasowanie elementów w przekładniach oraz minimalizuje ryzyko awarii mechanicznych. W branży produkcyjnej i inżynieryjnej, zgodnie z normami ISO, precyzyjne pomiary grubości zębów kół zębatych są kluczowe dla zapewnienia jakości i powtarzalności w procesach produkcyjnych. Należy również pamiętać o regularnej kalibracji narzędzi pomiarowych, co jest zalecane w standardach jakościowych takich jak ISO 9001, aby utrzymać wysoką precyzję pomiarów.

Pytanie 27

Na rysunku przedstawiono sposób ustalenia i zamocowania przedmiotu obrabianego na tokarce w

Ilustracja do pytania
A. uchwycie tulejkowym z zabierakiem czołowym.
B. kłach przy użyciu tarczy zabierakowej i zabieraka.
C. uchwycie trójszczękowym samocentrującym z podparciem kłem.
D. uchwycie specjalnym do kół pasowych.
Odpowiedź dotycząca mocowania przedmiotu obrabianego za pomocą kłów, tarczy zabierakowej i zabieraka jest prawidłowa, ponieważ dokładnie odzwierciedla sposób, w jaki można stabilnie zamocować element na tokarce. Kły są kluczowym elementem w obróbce, zwłaszcza w przypadku długich elementów, ponieważ zabezpieczają je z obu stron, eliminując ryzyko drgań podczas tokarki. Tarcza zabierakowa oraz zabierak odgrywają istotną rolę w przenoszeniu momentu obrotowego z wrzeciona na obrabiany przedmiot, co jest niezbędne do uzyskania precyzyjnych wymiarów i kształtów. W praktyce, takie mocowanie jest stosowane w przemysłowych tokarkach do obróbki metali, co jest zgodne z najlepszymi praktykami branżowymi. Stosując tę metodę, operatorzy mogą skutecznie osiągać wysoką jakość powierzchni i dokładność wymiarową, co jest kluczowe w produkcji elementów maszyn oraz narzędzi.

Pytanie 28

Obróbkę powierzchni w kształcie wzoru można przeprowadzić na tokarce

A. kopiarce
B. uniwersalnej
C. produkcyjnej
D. karuzelowej
Kopiarka to maszyna, która została zaprojektowana specjalnie do obróbki powierzchni kształtowych według określonych wzorców. W tym procesie stosuje się różne narzędzia skrawające, które są prowadzone zgodnie z konturem wzorca. Dzięki temu możliwe jest uzyskanie detali o skomplikowanych kształtach z wysoką precyzją. Przykładem zastosowania kopiarek są produkcje w branży motoryzacyjnej, gdzie wymagane są elementy o specyficznych profilach, jak wały korbowe czy obudowy silników. Dobre praktyki w obróbce na kopiarce obejmują odpowiednie ustawienie narzędzi skrawających, kontrola wymiarów podczas pracy oraz regularne konserwacje maszyny, co przekłada się na zwiększenie wydajności oraz dokładności produkcji. Warto zauważyć, że w obróbce przestrzennej kopiarki wykorzystują także skanowanie 3D wzorców, co znacznie ułatwia i przyspiesza proces produkcji.

Pytanie 29

Krążek stalowy o średnicy O200 x 30 mm należy zamocować do obróbki czołowej na frezarce przy użyciu

A. imadła maszynowego
B. stołu magnetycznego
C. podzielnicy uniwersalnej
D. stołu obrotowego
Imadło maszynowe, mimo że jest powszechnie używane do mocowania elementów w obróbce skrawaniem, nie jest najlepszym wyborem w przypadku krążka stalowego o wymiarach O200 x 30 mm, szczególnie gdy wymagane jest precyzyjne frezowanie w różnych pozycjach. Imadło zapewnia stabilne mocowanie, ale jego ograniczenia związane z brakiem możliwości obracania elementu mogą prowadzić do błędów w obróbce, szczególnie gdy konieczne jest wykonanie skomplikowanych nacięć. Stół magnetyczny, z drugiej strony, jest dostosowany do mocowania ferromagnetycznych materiałów, ale w przypadku dużych elementów, takich jak krążek stalowy, może nie zapewnić wystarczającej siły mocowania w czasie obróbki, co może skutkować przesunięciem materiału i, w konsekwencji, obniżeniem jakości produkcji. Podzielnica uniwersalna jest narzędziem, które również może być użyteczne w obróbce, jednak jej zastosowanie jest bardziej odpowiednie w kontekście precyzyjnego podziału kątowego, a nie do stałego mocowania dużych elementów. W praktyce, wybór niewłaściwego sposobu mocowania może prowadzić do typowych błędów, takich jak zniekształcenie elementu, niewłaściwe wymiary lub uszkodzenia narzędzi skrawających. Właściwe zrozumienie zastosowania narzędzi mocujących jest kluczowe dla uzyskania wysokiej jakości obróbki skrawaniem i unikania niepotrzebnych strat materiałowych oraz czasu produkcji.

Pytanie 30

Jakie narzędzie należy zastosować do pomiaru wałka o średnicy ϕ16h7(-0,018)?

A. mikrometru wewnętrznego
B. sprawdzianu szczękowego
C. suwmiarki uniwersalnej
D. macek wewnętrznych
Macek wewnętrznych to nie najlepszy wybór do pomiaru średnicy wałków z tolerancją h7. Generalnie, macek wewnętrznych używa się do mierzenia wewnętrznych średnic otworów, a nie do oceny zewnętrznych wymiarów wałków. Używanie ich w ten sposób może prowadzić do błędów w pomiarach i niezgodności z normami. Suwmiarka uniwersalna, chociaż może być użyta do mierzenia średnic, to nie daje takiej dokładności i powtarzalności jak sprawdzian szczkowy, szczególnie przy detalach, które mają wysokie wymagania tolerancyjne. Mikrometr wewnętrzny, chociaż jest bardzo precyzyjny, to jednak służy do pomiarów średnic wewnętrznych, więc nie nadaje się do mierzenia średnic zewnętrznych wałków. Często spotykane błędy w tym temacie wynikają z braku zrozumienia specyfikacji tolerancji oraz złego doboru narzędzi do rodzaju wytwarzanych detali. W praktyce inżynieryjnej ważne jest, by dobierać narzędzia pomiarowe zgodnie z wymaganiami technicznymi, żeby zapewnić jakość i precyzję produkcji.

Pytanie 31

Podzielnicę wykorzystuje się przy procesie frezowania

A. gwintów wewnętrznych
B. listew zębatych
C. ślimaków
D. wielokątów
Podzielnica jest narzędziem stosowanym w procesie frezowania, szczególnie w kontekście obróbki wielokątów. Umożliwia ona precyzyjne podziałanie materiału, co jest kluczowe dla osiągnięcia pożądanych kształtów i wymiarów. Frezowanie wielokątów za pomocą podzielnicy pozwala na uzyskanie dokładnych kątów oraz równo rozłożonych ścianek, które są niezbędne w wielu zastosowaniach inżynieryjnych. Na przykład, w produkcji elementów do maszyn, takich jak obudowy czy uchwyty, precyzyjne wykonanie wielokątów ma istotne znaczenie dla ich funkcjonalności i estetyki. Dobre praktyki w zakresie frezowania wielokątów zalecają korzystanie z podzielnicy w celu skrócenia czasu obróbki oraz zwiększenia dokładności wymiarowej. Warto również podkreślić, że korzystanie z podzielnicy jest zgodne z normami jakościowymi, takimi jak ISO, które kładą nacisk na efektywność i precyzję w procesach obróbczych. W związku z tym, odpowiedź "wielokątów" jest nie tylko poprawna, ale także odzwierciedla zrozumienie zaawansowanych technik obróbczych.

Pytanie 32

Jaką wartość ma posuw wiertła w mm/min przy danych parametrach: prędkość skrawania vc = 30 m/min, średnica wiertła D = 10 mm, posuw na obrót fo = 0,1 mm/obrót? Należy przyjąć, że π = 3

A. 10 mm/min
B. 1000 mm/min
C. 1 mm/min
D. 100 mm/min
Jak widzę, błędne odpowiedzi często się biorą z niezrozumienia, jak prędkość skrawania ma się do średnicy narzędzia i posuwu. Na przykład, wybierając 10 mm/min, można pomyśleć, że to prostsze, ale w rzeczywistości to za mało, co prowadzi do nieefektywności narzędzi. Z kolei 1 mm/min to tak mały posuw, że narzędzie może się szybko przegrzewać i psuć, co jest całkowicie wbrew zasadom obróbczo. Odpowiedź 1000 mm/min wygląda na zbyt dużo, co grozi uszkodzeniem materiału przez nadmierne ciepło i ciśnienie. Rozumienie tych obliczeń w praktyce jest kluczowe, bo wpływa na to, jakie parametry skrawania dobieramy, a to przekłada się na jakość i efektywność naszej produkcji. W przemyśle widać, że źle dobrany posuw może prowadzić do deformacji materiałów i problemów technologicznych, co zwiększa koszty i przestoje.

Pytanie 33

Pryzmę magnetyczną najczęściej wykorzystuje się do ustalania oraz mocowania

A. ceowników aluminiowych
B. dwuteowników żeliwnych
C. teowników stalowych
D. wałków stalowych
Mocowanie teowników stalowych, ceowników aluminiowych czy dwuteowników żeliwnych pryzmami magnetycznymi może być, delikatnie mówiąc, nieodpowiednie. Te materiały mają różne właściwości, co wpływa na to, jak skutecznie można je mocować. Teowniki, nawet jak są stalowe, często mają mniejsze profile, więc równomierne przyłożenie siły magnetycznej może być kłopotliwe. Jeśli nie użyjesz odpowiednich pryzm, to elementy mogą się osunąć podczas obróbki, a to na pewno wpłynie na jakość końcowego produktu. Co do ceowników aluminiowych, to ich niska przewodność magnetyczna sprawi, że pryzma nie będzie w stanie ich dobrze trzymać, więc mogą się przesuwać lub obracać, co nie jest niczym dobrym. A dwuteowniki żeliwne? Tu to już w ogóle może być problem – mają dużą masę i są kruche. W takich przypadkach lepiej użyć mechanicznych metod mocowania, jak dociski czy imadła, bo one zapewniają większą stabilność i zmniejszają ryzyko uszkodzenia materiału. Ważne, żeby zrozumieć, jak różne materiały zachowują się podczas obróbki, bo to klucz do efektywnej produkcji i uniknięcia strat.

Pytanie 34

Jakie urządzenie wykorzystuje się do pomiaru średnicy wałka ø20+0,03?

A. Mikrometr zewnętrzny
B. Suwmiarkowy wysokościomierz
C. Uniwersalną suwmiarkę
D. Mikrometryczną średnicówkę
Mikrometr zewnętrzny to narzędzie pomiarowe, które jest idealne do dokładnego pomiaru średnicy wałków, szczególnie w przypadkach wymagających precyzyjnych pomiarów, jak w omawianym przypadku średnicy wałka ø20+0,03 mm. Mikrometr zewnętrzny pozwala na pomiar z dokładnością do 0,01 mm, co czyni go doskonałym wyborem w zastosowaniach inżynieryjnych, gdzie precyzja jest kluczowa. W praktyce mikrometr zewnętrzny jest używany do pomiaru elementów cylindrycznych, takich jak wałki, tuleje czy pręty, a jego konstrukcja umożliwia łatwe i powtarzalne pomiary. Dobra praktyka przemysłowa wymaga regularnej kalibracji narzędzi pomiarowych, co zapewnia dokładność wyników. Mikrometry są zgodne z normami ISO, co podkreśla ich znaczenie w pomiarach w przemyśle jakościowym. Dodatkowo, ze względu na ich specyfikę, można je używać w różnych warunkach, co czyni je narzędziem uniwersalnym w warsztatach i laboratoriach pomiarowych.

Pytanie 35

Na rysunku przedstawiono sposób mocowania tulei na tokarce za pomocą trzpienia

Ilustracja do pytania
A. stałego z chwytem stożkowym.
B. stałego i podkładki wysuwnej.
C. rozprężnego specjalnego.
D. centrującego zewnętrznego.
Mocowanie tulei na tokarce za pomocą trzpienia rozprężnego specjalnego jest niewłaściwe, ponieważ taki typ mocowania nie zapewnia odpowiedniej stabilności potrzebnej do precyzyjnej obróbki. Trzpienie rozprężne są zazwyczaj używane w sytuacjach, gdzie wymagana jest szybka wymiana narzędzi, jednak mogą one prowadzić do niewłaściwego ustawienia obrabianego elementu, co jest nieakceptowalne w procesach wymagających wysokiej dokładności. Z kolei trzpień centrujący zewnętrzny mógłby teoretycznie pełnić rolę w centrowaniu, ale jego konstrukcja nie pozwala na pewne i trwałe mocowanie tulei, co jest kluczowym elementem efektywnej obróbki. Typowe błędy, jakie pojawiają się w myśleniu o tych rozwiązaniach, to brak uwagi na różnice w stabilności mocowania oraz na wpływ tych różnic na jakość końcowego produktu. Nieodpowiednie mocowanie, takie jak stałe z chwytem stożkowym, również prowadzi do problemów związanych z centrowaniem oraz możliwością przesunięcia elementu podczas obróbki, co skutkuje nieprecyzyjnymi wymiarami i powierzchnią obrabianą. W praktyce, każdy element mocujący powinien być dobrany zgodnie z wymaganiami technologicznymi oraz specyfiką obrabianego materiału, w przeciwnym razie może dojść do znacznych strat materiałowych oraz obniżenia efektywności produkcji.

Pytanie 36

W systemie sterowania CNC funkcja G90 oznacza

A. ustawienie stałej prędkości obrotowej wrzeciona
B. ustawienie stałej prędkości skrawania
C. cykl obróbczy
D. programowanie absolutne
G90 to tryb programowania absolutnego, co jest bardzo ważnym pojęciem w pracy z maszynami CNC. Kiedy używasz G90, wszystkie współrzędne, które podajesz w programie, odnoszą się do jednego, stałego punktu, którym zazwyczaj jest punkt zerowy. Na przykład, jeśli wpiszesz X=50 i Y=30, to narzędzie dokładnie przemieści się do tej lokalizacji względem punktu zerowego, niezależnie od tego, gdzie aktualnie się znajduje. G90 jest super przydatne, bo ułatwia planowanie ruchów i zmniejsza błędy, które mogą się zdarzyć, gdy korzystasz z G91, gdzie współrzędne są względem aktualnej pozycji. W praktyce operatorzy CNC wolą G90, bo to pozwala łatwiej zmieniać programy i ma to znaczenie przy obróbce bardziej skomplikowanych elementów.

Pytanie 37

Zapis PN-EN ISO 6411-B2,5/8, stosowany na rysunkach technicznych, oznacza

A. otworów nieprzelotowych
B. nakiełków
C. gwintowania
D. mocowań w kłach
Wybierając odpowiedzi inne niż nakiełków, można popaść w zamieszanie związane z rozumieniem oznaczeń technicznych. Użycie terminu gwintowanie sugeruje, że odnosi się ono do kształtowania lub obróbki gwintów, co jest inną kategorią elementów. Gwintowanie dotyczy procesów produkcyjnych i wykończeniowych, a nie samego oznaczenia, które ma na celu opisanie specyficznych typów mocowań. Natomiast odpowiedzi odnoszące się do mocowań w kłach są również mylące, gdyż kły stosowane są typowo w kontekście mocowania narzędzi i nie mają bezpośredniego związku z oznaczeniem PN-EN ISO 6411-B2,5/8. Otwory nieprzelotowe to kolejny koncept, który nie odpowiada poprawnej interpretacji tego oznaczenia. Otwory te są istotne w kontekście obróbki, lecz nie są tożsame z nakiełkami, które są elementami mocującymi. Typowe błędy myślowe, prowadzące do wyboru tych odpowiedzi, mogą wynikać z nieprecyzyjnej znajomości terminologii technicznej lub mieszania pojęć związanych z różnymi aspektami projektowania i produkcji. Każde z tych elementów ma swoje specyficzne zastosowanie i oznaczenie, dlatego kluczowe jest, aby inżynierowie i technicy dokładnie zrozumieli różnice między nimi oraz umieli stosować odpowiednie standardy w praktyce.

Pytanie 38

Elementem służącym do zmiany kierunku ruchu mechanicznego sań wzdłużnych przy zachowaniu kierunku obrotu wrzeciona jest

A. gitara
B. nawrotnica
C. skrzynka suportowa
D. wałek pociągowy
Nawrotnica jest mechanizmem, który umożliwia zmianę kierunku przesuwu mechanicznego sań wzdłużnych bez zmiany kierunku obrotów wrzeciona. Jest to kluczowy element w wielu maszynach, w tym tokarkach i frezarkach, gdzie precyzyjne manewrowanie narzędziami skrawającymi jest niezbędne do osiągnięcia wysokiej jakości obróbki. Działa ona na zasadzie przekazywania ruchu, co pozwala na efektywne zarządzanie kierunkiem ruchu elementów roboczych przy zachowaniu stałego kierunku obrotów. Przykładem zastosowania nawrotnicy jest tokarka, gdzie umożliwia ona zmianę kierunku ruchu sań w celu wykonania różnych operacji skrawania, co zwiększa wszechstronność maszyny. Zastosowanie nawrotnicy jest zgodne z dobrymi praktykami branżowymi, które kładą nacisk na efektywność i elastyczność procesów obróbczych. Dzięki zastosowaniu nawrotnicy operatorzy mają możliwość szybkiej adaptacji do różnych zadań bez potrzeby przestawiania maszyny, co oszczędza czas i zwiększa wydajność produkcji.

Pytanie 39

Obrabiarka przedstawiona na zdjęciu, to wiertarka

Ilustracja do pytania
A. kadłubowa.
B. stołowa.
C. współrzędnościowa.
D. promieniowa.
Wiertarka stołowa to urządzenie charakteryzujące się stabilną konstrukcją, która zapewnia precyzyjne wiercenie w materiałach takich jak drewno, metal czy tworzywa sztuczne. Wyróżnia ją płaska podstawa oraz stół roboczy, na którym można umieścić elementy obrabiane. Głowica wiertarki, zamocowana na pionowym słupie, umożliwia regulację głębokości wiercenia oraz kątów nachylenia, co jest kluczowe przy obróbce skomplikowanych kształtów. W praktyce wiertarka stołowa znajduje zastosowanie w stolarstwie, metaloplastyce oraz w warsztatach hobbystycznych. Używanie wiertarki stołowej zwiększa efektywność i dokładność pracy, co jest zgodne z normami bezpieczeństwa i efektywności w przemyśle. Wiertarki tego typu są często wykorzystywane w szkoleniach zawodowych, gdzie uczniowie uczą się zasad obróbki materiałów oraz bezpiecznego posługiwania się narzędziami. Wybór odpowiedniej wiertarki stołowej powinien być uzależniony od rodzaju materiału oraz specyfiki wykonywanych prac, co jest zgodne z dobrą praktyką inżynierską.

Pytanie 40

Smar ŁT-41, używany w utrzymaniu maszyn i urządzeń, jest rodzajem środka smarnego

A. płynnym
B. stałym
C. gazowym
D. mazistym
Smar ŁT-41 to smar mazisty, co oznacza, że ma konsystencję pasty lub masy, która jest wystarczająco gęsta, aby pozostawać na powierzchniach kontaktowych pod wpływem sił działających w czasie pracy maszyn. Smary maziste, takie jak ŁT-41, są często stosowane w przemyśle ze względu na ich zdolność do długotrwałego smarowania i ochrony przed zużyciem, korozją oraz innymi niekorzystnymi czynnikami. Przykładowo, są one idealne do użycia w łożyskach, przekładniach i innych elementach mechanicznych, gdzie wymagana jest długotrwała ochrona. Zgodnie z normami branżowymi, takim jak ISO 6743-9, smary maziste są klasyfikowane do różnych zastosowań w oparciu o ich właściwości fizyczne i chemiczne. Właściwy dobór smaru jest kluczowy dla efektywności pracy maszyn, a także dla wydłużenia ich żywotności, co ma bezpośredni wpływ na koszty eksploatacji i konserwacji urządzeń.