Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 07:27
  • Data zakończenia: 8 grudnia 2025 07:40

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z którym czujnikiem współpracuje magnes zamontowany w siłowniku w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Ciśnienia.
B. Optycznym.
C. Kontaktronowym.
D. Indukcyjnym.
Czujnik kontaktronowy współpracuje z magnesem dzięki zastosowaniu zjawiska magnetycznego, które jest kluczowe w wielu aplikacjach automatyki i technologii. Gdy magnes zainstalowany w siłowniku zbliża się do czujnika, pola magnetyczne aktywują styk w czujniku kontaktronowym, co skutkuje jego zamknięciem lub otwarciem. Takie rozwiązania są powszechnie stosowane w systemach bezpieczeństwa, automatyce budynkowej oraz w różnorodnych urządzeniach przemysłowych, takich jak zautomatyzowane bramy czy systemy monitoringu. Dzięki swojej prostocie i efektywności, czujniki kontaktronowe stają się standardem w aplikacjach, gdzie wymagana jest detekcja ruchu lub pozycji. Zgodnie z najlepszymi praktykami inżynieryjnymi, instalacja czujników powinna być przeprowadzona zgodnie z wytycznymi producenta oraz obowiązującymi normami, co zapewnia ich niezawodność oraz długowieczność w działaniu.

Pytanie 2

Na podstawie rysunku określ sposób mocowania siłownika pneumatycznego.

Ilustracja do pytania
A. Gwintowe.
B. Kołnierzowe.
C. Wahliwe.
D. Na łapach.
Siłownik pneumatyczny, który jest mocowany w sposób wahliwy, charakteryzuje się przegubem umożliwiającym ruch wokół osi. Takie mocowanie pozwala na elastyczne wykorzystanie siłowników w różnych aplikacjach, szczególnie tam, gdzie wymagane jest dostosowanie kąta działania. W praktyce, zastosowanie wahliwego mocowania najczęściej spotyka się w systemach automatyki przemysłowej, na przykład w urządzeniach do pakowania lub montażu, gdzie siłownik musi przeprowadzać ruchy o zmiennym kącie. Z punktu widzenia standardów branżowych, wahliwe mocowanie jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności działania systemów pneumatycznych. Dobrą praktyką w projektowaniu systemów pneumatycznych jest również zapewnienie, aby mocowanie siłownika było dostosowane do warunków pracy, co zwiększa trwałość i niezawodność instalacji. Na podstawie rysunku można również zaobserwować, że przegub zapewnia stabilność, co jest kluczowe w zastosowaniach obciążeniowych, gdzie siłowniki muszą poradzić sobie z dynamicznymi siłami.

Pytanie 3

W przedstawionym na rysunku układzie sterowania siłownikiem jednostronnego działania, którego schemat przedstawiono na rysunku, tłoczysko siłownika wysuwa się po naciśnięciu jednego z przycisków. W opisanej sytuacji znakiem "?" oznaczono zawór

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Zawór oznaczony znakiem "?" w przedstawionym układzie musi spełniać kluczowe wymagania dotyczące kierowania przepływem medium, co jest niezbędne do prawidłowego działania siłownika jednostronnego działania. Odpowiedź C, przedstawiająca zawór 5/2 sterowany elektromagnetycznie, jest prawidłowa, ponieważ ten typ zaworu charakteryzuje się pięcioma portami i dwoma stanami, co umożliwia efektywne zarządzanie kierunkiem przepływu. W praktyce, zawory 5/2 są szeroko stosowane w automatyzacji, gdzie wymagane jest szybkie przełączanie między pozycjami siłownika. Ich zastosowanie jest zgodne z normami ISO 1219, które określają zasady rysowania schematów pneumatycznych i hydraulicznych. Warto również zwrócić uwagę na aspekt bezpieczeństwa, ponieważ poprawnie dobrany zawór zapobiega niekontrolowanemu ruchowi siłownika, co jest kluczowe w aplikacjach wymagających precyzyjnego sterowania. Przykłady zastosowania tego typu zaworów obejmują maszyny przemysłowe, systemy transportowe oraz automatyzację procesów produkcyjnych, gdzie niezawodność i precyzyjność są kluczowe.

Pytanie 4

Którą czynność powinien wykonać użytkownik podczas uruchamiania komercyjnej wersji programu Proficy iFIX po ukazaniu się przedstawionego na rysunku komunikatu, aby program działał dłużej niż 2 godziny?

Ilustracja do pytania
A. Sprawdzić, czy została zainstalowana właściwa wersja systemu operacyjnego.
B. Zainstalować sterownik klucza sprzętowego.
C. Kontynuować uruchamianie programu Proficy iFIX.
D. Ponownie zainstalować program Proficy iFIX.
Zainstalowanie sterownika klucza sprzętowego jest kluczowym działaniem, które każdego użytkownika programu Proficy iFIX powinno skłonić do podjęcia działań w momencie napotkania komunikatu o braku detekcji klucza sprzętowego. Klucz sprzętowy jest fizycznym urządzeniem zabezpieczającym, które umożliwia legalne użytkowanie oprogramowania. Bez jego obecności program automatycznie ogranicza swoje działanie do 2 godzin. Dlatego zainstalowanie odpowiedniego sterownika jest niezbędne do zapewnienia ciągłości pracy. W praktyce, użytkownicy powinni upewnić się, że klucz jest prawidłowo podłączony do portu USB oraz że zainstalowano właściwe sterowniki, które mogą być dostępne na stronie producenta oprogramowania. Zgodnie z najlepszymi praktykami w zakresie zarządzania oprogramowaniem, regularne aktualizacje oprogramowania oraz jego komponentów, takich jak sterowniki, powinny być standardową procedurą. Dzięki temu użytkownik ma pewność, że korzysta z najnowszych funkcji i zabezpieczeń, co jest kluczowe w kontekście pracy z systemami automatyki przemysłowej.

Pytanie 5

Odczytaj wynik pomiaru wykonanego mikrometrem przedstawionym na rysunku.

Ilustracja do pytania
A. 5,583 mm
B. 5,780 mm
C. 5,783 mm
D. 5,030 mm
Wybór niepoprawnej odpowiedzi może wynikać z kilku błędnych koncepcji związanych z odczytem mikrometru. Na przykład, w odpowiedziach, w których podano wartości takie jak 5,583 mm, 5,780 mm lub 5,030 mm, można zauważyć nieprawidłowe zrozumienie, jak odczytywać skalę główną i bębnową mikrometru. Często błąd polega na pominięciu wyraźnych wartości na bębnie lub na niewłaściwym ich zaokrąglaniu. Ważne jest, aby zwrócić uwagę na to, że każda nieprawidłowa interpretacja wyników może prowadzić do znacznych różnic w końcowym pomiarze, co ma bezpośredni wpływ na jakość produktu. W kontekście inżynierii, takie pomyłki mogą skutkować niezgodnościami w wymiarach produktów i ich wykonaniu. Warto zwrócić uwagę, że dokładne umiejętności pomiarowe są niezbędne, aby spełniać wymogi norm jakościowych, takich jak ISO. Niezrozumienie tego procesu może prowadzić do rutynowych błędów, które mogą być kosztowne zarówno w kontekście czasu, jak i zasobów. Dlatego warto ćwiczyć czytanie mikrometru, zwracając szczególną uwagę na precyzyjne oparcie się o trzy kluczowe wartości – główną, bębnową i drobne podziałki, aby uniknąć takich nieporozumień.

Pytanie 6

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. wykonać szlifowanie komutatora
B. umyć komutator wodą
C. posmarować olejem szczotki
D. przetrzeć komutator olejem
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 7

Do czego służy klucz dynamometryczny?

A. do ułatwienia odkręcania i dokręcania śrub
B. do dokręcania śrub w trudno dostępnych miejscach
C. do dokręcania śrub z określonym momentem obrotowym
D. do odkręcania zardzewiałych śrub
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 8

Który z przekształtników używanych w systemach zasilania dla urządzeń mechatronicznych przekształca energię prądu stałego na energię prądu przemiennego z regulowanymi wartościami częstotliwości i napięcia?

A. Prostownik
B. Rozruch progresywny
C. Falownik
D. Regulator napięcia przemiennego
Wybór odpowiedzi, która nie wskazuje na falownik, może wynikać z niepełnego zrozumienia roli różnych urządzeń w układach zasilających. Sterownik napięcia przemiennego to urządzenie, które reguluje parametry napięcia AC, ale nie zamienia prądu stałego na prąd przemienny. Jego główną funkcją jest kontrola stabilności oraz jakości dostarczanego napięcia, bez konwersji źródła energii. Softstart z kolei jest mechanizmem stosowanym do kontrolowania rozruchu silników, zmniejszając skutki tzw. uderzenia prądowego, ale nie ma on możliwości generowania prądu przemiennego z prądu stałego. Prostownik, z drugiej strony, konwertuje energię prądu przemiennego na prąd stały, co jest odwrotnością działania falownika. W praktyce, nieprawidłowy wybór może prowadzić do nieefektywnego działania systemu, co skutkuje zwiększonym zużyciem energii oraz potencjalnymi uszkodzeniami urządzeń. Aby uniknąć takich błędów, warto zrozumieć podstawowe funkcje i zasady działania tych urządzeń, co z pewnością wpłynie na poprawę efektywności i niezawodności systemów mechatronicznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaką wartość rezystancji powinien mieć rezystor Rl ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 120,0 kΩ
B. 1 200,0 kΩ
C. 1,2 kΩ
D. 12,0 kΩ
Odpowiedź 1,2 kΩ jest prawidłowa, ponieważ rezystor Rl jest odpowiedzialny za ograniczenie prądu do wartości 0,01 A, co jest kluczowe dla prawidłowego działania diody. Przykładowo, w przypadku diod LED, ich maksymalne natężenie prądu powinno być ściśle kontrolowane, aby uniknąć ich uszkodzenia. W obwodach elektronicznych stosujemy prawo Ohma, które definiuje związek między napięciem (V), natężeniem prądu (I) i rezystancją (R). Wzór V = I * R pozwala obliczyć, że przy napięciu zasilania wynoszącym 12 V, odpowiedni rezystor Rl o wartości 1,2 kΩ jest w stanie ograniczyć prąd do żądanej wartości. Zastosowanie odpowiedniego rezystora jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych, gdzie precyzyjne ograniczenie prądu jest kluczowe dla niezawodności i trwałości komponentów. Dodatkowo, warto znać metody obliczania rezystancji w obwodach szeregowych i równoległych, co może być przydatne w bardziej złożonych projektach.

Pytanie 11

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. efektywności siłownika
B. natężenia przepływu medium roboczego do siłownika
C. powierzchni roboczej tłoka
D. wydajności siłownika
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 12

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. wody destylowanej
B. 1% roztworu kwasu octowego
C. 1% roztworu kwasu cytrynowego
D. 3% roztworu sody oczyszczonej
Zastosowanie 1% kwasu cytrynowego lub 1% kwasu octowego w celu złagodzenia skutków oparzenia kwasem siarkowym jest niewłaściwe i może prowadzić do dalszego poważnego uszkodzenia skóry. Zarówno kwas cytrynowy, jak i kwas octowy są substancjami kwasowymi, które mogą w reakcji chemicznej z kwasem siarkowym prowadzić do powstania dodatkowych produktów reakcji, co zintensyfikuje proces oparzenia. Zamiast neutralizacji, ich użycie może spowodować dalsze uszkodzenia tkanek oraz zaostrzenie objawów. W przypadku chemicznych poparzeń, kluczowe jest szybkie usunięcie czynnika drażniącego, co powinno być realizowane przede wszystkim poprzez płukanie wodą. Woda działa jako rozpuszczalnik, a jej obfite użycie może pomóc w usunięciu resztek kwasu z powierzchni skóry. Ponadto, 3% roztwór sody oczyszczonej jest neutralizatorem, który może pomóc w przywróceniu równowagi pH i zminimalizować szkodliwe skutki oparzeń. Zrozumienie tych zasad jest kluczowe dla skutecznego udzielania pierwszej pomocy w przypadku kontaktu ze szkodliwymi substancjami chemicznymi, co podkreśla znaczenie znajomości właściwych protokołów postępowania oraz dobrych praktyk w dziedzinie ochrony zdrowia i bezpieczeństwa.

Pytanie 13

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. dwukrotnie
B. dziewięciokrotnie
C. sześciokrotnie
D. trzykrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 14

Na schemacie przedstawiono układ sterowania hydraulicznego, który zapewnia

Ilustracja do pytania
A. uzyskanie różnych prędkości tłoczyska w obu kierunkach.
B. podtrzymanie tłoczyska przy zmieniających się siłach.
C. połączenie różnicowe zasilania.
D. szybkie odciążenie tłoczyska.
Wygląda na to, że odpowiedź, którą wybrałeś, nie do końca oddaje sedno sprawy. Chodzi o to, że połączenie różnicowe zasilania to coś innego – to sposób łączenia źródeł ciśnienia, a nie regulacji prędkości tłoczyska. To trochę mylące, bo można pomyśleć, że chodzi o podtrzymywanie siły, ale w rzeczywistości hydraulika służy do dynamicznej kontroli. Odciążenie tłoczyska też nie pasuje do tematu regulacji – to inne zadanie. Warto wiedzieć, że prawidłowy układ, który kontroluje prędkości, to coś bardziej złożonego, co wymaga odpowiednich zaworów i regulacji. Zrozumienie tych różnic jest kluczowe, żeby dobrze wykorzystać hydraulikę w praktyce.

Pytanie 15

Narzędzia przedstawione na rysunku są stosowane do

Ilustracja do pytania
A. honowania.
B. gwintowania.
C. wiercenia.
D. frezowania.
Narzędzia przedstawione na rysunku, czyli gwintownik oraz narzynka, są kluczowymi elementami w procesie gwintowania. Gwintowanie to technika obróbcza, która umożliwia tworzenie gwintów wewnętrznych i zewnętrznych, co jest niezbędne do łączenia elementów mechanicznych, takich jak śruby i nakrętki. Gwintownik to narzędzie skrawające, które umożliwia precyzyjne wykonanie gwintów wewnętrznych w otworach, natomiast narzynka służy do gwintowania zewnętrznego na prętach lub cylindrach. Standardy przemysłowe, takie jak ISO 68, definiują parametry gwintów, co pozwala na zachowanie odpowiednich tolerancji i wymagań jakościowych. Przykładowo, w branży motoryzacyjnej, gwintowanie jest używane do produkcji elementów montażowych, które muszą wytrzymać wysokie obciążenia. Zrozumienie i umiejętność stosowania gwintowników oraz narzynek jest fundamentalne dla inżynierów mechaników oraz techników obróbczych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Interfejs komunikacyjny umożliwia połączenie

A. pompy hydraulicznej z silnikiem
B. modułu rozszerzającego z grupą siłowników
C. siłownika z programatorem
D. sterownika z programatorem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 18

Który materiał o właściwościach podanych w tabeli należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
Materiał 1.2,7040
Materiał 2.2,75320
Materiał 3.7,70320
Materiał 4.8,8535
A. Materiał 1.
B. Materiał 4.
C. Materiał 3.
D. Materiał 2.
Materiał 2 jest najodpowiedniejszym wyborem do konstrukcji lekkiej i odpornej na odkształcenia, co wynika z jego korzystnych właściwości fizycznych. Gęstość materiału wynosząca 2,75 g/cm3 oznacza, że jest on stosunkowo lekki w porównaniu do innych materiałów, co jest kluczowe w projektach wymagających mobilności i łatwego transportu. Wysoka granica plastyczności na poziomie 320 MPa zapewnia, że materiał ten może wytrzymać znaczące obciążenia bez deformacji, co jest niezbędne w kontekście zastosowań mechatronicznych, gdzie precyzja i niezawodność są kluczowe. Przykłady zastosowania Materiału 2 obejmują elementy konstrukcyjne w robotyce, gdzie wymagana jest zarówno lekkość, jak i wytrzymałość, jak również w produkcji różnych komponentów w systemach automatyki. Wybór odpowiednich materiałów jest zgodny z dobrymi praktykami inżynieryjnymi, gdzie zawsze należy dążyć do optymalizacji masy i wytrzymałości, co pozwala na zwiększenie efektywności energetycznej i poprawę wydajności całego systemu.

Pytanie 19

Cyfrowy tachometr jest narzędziem do mierzenia

A. lepkości cieczy
B. natężenia przepływu powietrza
C. naprężeń w metalach
D. prędkości obrotowej wału silnika
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 20

Którym z wymienionych mediów zasilany jest siłownik przedstawiony na rysunku?

Ilustracja do pytania
A. Olejem hydraulicznym.
B. Roztworem poliglikolu.
C. Energią elektryczną.
D. Sprężonym powietrzem.
Sprężone powietrze jest powszechnie stosowanym medium zasilającym siłowniki pneumatyczne. Na zdjęciu widoczny jest siłownik pneumatyczny, co można rozpoznać dzięki obecności niebieskich węży, charakterystycznych dla systemów pneumatycznych. Siłowniki te są wykorzystywane w wielu aplikacjach przemysłowych, takich jak automatyka, robotyka, czy maszyny pakujące. Ich główną zaletą jest szybkość działania oraz łatwość w regulacji siły i prędkości ruchu. Ponadto, stosowanie siłowników pneumatycznych pozwala na osiągnięcie wysokich prędkości cyklu pracy, a także na ich łatwą integrację w systemach zautomatyzowanych. W kontekście standardów, siłowniki pneumatyczne są zgodne z normami ISO, co zapewnia ich wszechstronność i niezawodność w różnych zastosowaniach. Warto również podkreślić, że wykorzystanie sprężonego powietrza jako medium zasilającego jest zgodne z zasadami ochrony środowiska, gdyż w porównaniu do innych mediów, takich jak olej hydrauliczny, sprężone powietrze nie stwarza ryzyka zanieczyszczenia.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Wskaż kod barwny rezystora o rezystancji 26 kΩ.

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. brązowy, zielony, pomarańczowy, żółty.
B. żółty, szary, pomarańczowy, żółty.
C. czerwony, niebieski, pomarańczowy, żółty.
D. pomarańczowy, fioletowy, pomarańczowy, żółty.
Kod barwny dla rezystora 26 kΩ wygląda tak: 'czerwony' dla 2, 'niebieski' dla 6, a 'pomarańczowy' to mnożnik, czyli 10^3. Tak więc mamy 26 x 10^3 Ω. Zrozumienie tych kodów jest naprawdę ważne w elektronice, bo pozwala szybko sprawdzić wartość rezystora bez multimetru. W praktyce, umiejętność szybkiego rozpoznawania wartości komponentów to coś, co się przydaje, szczególnie gdy robimy prototypy czy naprawiamy różne urządzenia. Dobrze jest też pamiętać o tolerancji, czyli tym, jak bardzo realna wartość może różnić się od tej nominalnej. W sytuacjach, kiedy dokładność ma duże znaczenie, odpowiednia tolerancja może decydować o tym, czy wszystko działa, jak powinno. Dlatego znajomość tych kodów to podstawa w nauce elektroniki.

Pytanie 24

Z przedstawionego rysunku złożeniowego (a) oraz schematu montażowego (b) pompy zębatej wynika, że

Ilustracja do pytania
A. do montażu pokrywy potrzebne są 2 wkręty.
B. pokrywa mocowana jest do korpusu przed montażem wału i osi.
C. koło zębate montowane na wale i zablokowane kołkiem.
D. koło pasowe montowane jest przed uszczelnieniem.
W tej analizie pytania widać parę błędów, które mogą prowadzić do błędnych wniosków. Sporo ludzi myśli, że koło pasowe przed uszczelnieniem to kluczowy element, ale w pompie zębatej najważniejsze jest dobrze zamocowane koło zębate. Koło pasowe ma swoje miejsce, ale nie jest najważniejsze w kontekście działania pompy. Co do drugiego błędnego założenia — twierdzenie, że do zamontowania pokrywy trzeba dwa wkręty, to też pomyłka. Ilość wkrętów różni się w zależności od modelu, a skupienie się tylko na liczbie może sprawić, że przegapisz inne istotne wymagania dotyczące dokręcania. Ponadto, twierdzenie, że pokrywa montowana jest do korpusu przed wałem, to błąd. Kolejność montażu jest naprawdę ważna dla prawidłowego działania całego układu. Złe podejście do montażu może niesamowicie obniżyć efektywność działania pompy. W inżynierii istotne jest, aby ściśle trzymać się dokumentacji i standardów branżowych, które określają, jak prawidłowo montować i obsługiwać te urządzenia.

Pytanie 25

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym
A. czarnym i niebieskim.
B. szarym i niebieskim.
C. czerwonym i czarnym.
D. brązowym i niebieskim.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakiego typu złączem powinien być zakończony kabel, który należy zastosować do podłączenia modułu komunikacyjnego widocznego na fotografii?

Ilustracja do pytania
A. USB
B. HDMI
C. DE-9
D. RJ-45
Złącze RJ-45 jest standardowym złączem stosowanym w sieciach komputerowych, szczególnie w kontekście połączeń Ethernet. Na zdjęciu widać moduł komunikacyjny, który posiada porty typowe dla urządzeń sieciowych. RJ-45 składa się z 8 pinów, a jego konstrukcja pozwala na przesył danych z prędkością sięgającą 1 Gbps w przypadku standardu Ethernet 1000BASE-T. Użycie złącza RJ-45 pozwala na łatwe podłączanie urządzeń do sieci LAN, co jest kluczowe w budowaniu infrastruktury sieciowej w firmach czy domach. Przykładem zastosowania RJ-45 jest podłączanie komputerów, routerów czy switchów do lokalnej sieci. Warto również zaznaczyć, że RJ-45 jest zgodne z normami ISO/IEC 11801 oraz TIA/EIA-568, co czyni go standardem w branży. Zrozumienie znaczenia tego złącza w kontekście komunikacji sieciowej jest niezbędne dla każdej osoby zajmującej się technologią informacyjną.

Pytanie 28

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania współosiowości wałów.
B. osadzania koła zębatego na wale.
C. wtłaczania sworznia.
D. demontażu łożysk.
Przedstawiony na rysunku przyrząd to ściągacz do łożysk, który jest kluczowym narzędziem w mechanice maszyn. Jego główną funkcją jest demontaż łożysk, co jest szczególnie istotne podczas konserwacji i naprawy maszyn, gdzie łożyska mogą ulegać zużyciu lub uszkodzeniu. Użycie ściągacza pozwala na bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia samego wału lub innych elementów konstrukcyjnych. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie użycia odpowiednich narzędzi w procesie konserwacji, co zwiększa efektywność i bezpieczeństwo operacji. Dobrą praktyką jest stosowanie ściągaczy o różnych rozmiarach, aby dostosować narzędzie do specyficznych potrzeb danej aplikacji. Przykładem zastosowania ściągacza jest demontaż łożysk w silnikach elektrycznych, gdzie precyzyjne i delikatne podejście jest niezbędne do zachowania integralności pozostałych komponentów. Ponadto, ściągacze mogą być również stosowane w przypadku usuwania kół zębatych, co czyni je wszechstronnym narzędziem w warsztatach mechanicznych.

Pytanie 29

Do sprawdzenia wymiaru ϕ40 należy użyć

Ilustracja do pytania
A. średnicówki mikrometrycznej.
B. mikrometru zewnętrznego.
C. liniału krawędziowego.
D. suwmiarki ślusarskiej.
Odpowiedź suwmiarka ślusarska jako narzędzie do pomiaru wymiaru φ40 jest prawidłowa z kilku powodów. Suwmiarka ślusarska to wszechstronne narzędzie pomiarowe, które umożliwia dokładne mierzenie średnic zewnętrznych, wewnętrznych oraz głębokości elementów. Jej zakres pomiarowy, często obejmujący od 0 do 150 mm lub większy, sprawia, że idealnie nadaje się do pomiaru średnicy 40 mm. Suwmiarki są powszechnie stosowane w warsztatach oraz laboratoriach metrologicznych, co czyni je standardem w branży. Dzięki zastosowaniu suwmiarki, można szybko i precyzyjnie ocenić wymiary detali, co jest kluczowe w procesach produkcji oraz kontroli jakości. Przykładem zastosowania suwmiarki w praktyce może być pomiar komponentów w przemyśle motoryzacyjnym, gdzie precyzja wymiarowa ma kluczowe znaczenie dla bezpieczeństwa i funkcjonalności pojazdów. Dodatkowo, w przypadku elementów cylindrycznych, jak wały czy tuleje, suwmiarka zapewnia łatwość w pomiarach, eliminując błędy, jakie mogą wystąpić przy użyciu mniej precyzyjnych narzędzi. Warto również nadmienić, że w metrologii obowiązują standardy, takie jak ISO 13385, które określają wymagania dotyczące narzędzi pomiarowych, w tym suwmiarki, a ich przestrzeganie jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 30

Na rysunku przedstawiono elementy połączenia

Ilustracja do pytania
A. gwintowego.
B. kołkowego.
C. nitowego.
D. sworzniowego.
Odpowiedź dotycząca połączenia sworzniowego jest poprawna, ponieważ na zdjęciu przedstawione są typowe elementy montażowe, które są charakterystyczne dla tej metody łączenia. Połączenie sworzniowe składa się z otworu w jednym z elementów oraz sworznia, który pasuje do tego otworu. Zastosowanie pierścieni segera, które zapobiegają wysunięciu się sworznia, jest standardem w wielu zastosowaniach mechanicznych, co zwiększa trwałość i stabilność połączenia. Sworznie są często wykorzystywane w konstrukcjach maszyn, w których wymagana jest możliwość ruchu obrotowego lub przesuwnego elementów, takich jak zawiasy drzwi czy elementy ruchome w maszynach. Przykładem zastosowania połączeń sworzniowych jest przemysł motoryzacyjny, gdzie stosuje się je w układach zawieszenia do łączenia różnych komponentów. Zrozumienie zasad działania połączeń sworzniowych oraz ich zastosowań w praktyce jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i budową maszyn.

Pytanie 31

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Obniżanie napięcia sieciowego.
B. Zamiana prądu przemiennego na prąd stały.
C. Filtrowanie zakłóceń napięcia sieciowego.
D. Zamiana prądu stałego na prąd przemienny.
Zrozumienie funkcji elementów elektronicznych jest kluczowe dla poprawnego rozwiązywania zagadnień z zakresu elektroniki. W przypadku błędnych odpowiedzi, warto zwrócić uwagę na różnice między pojęciami prądu zmiennego a prądem stałym oraz na funkcje różnych komponentów. Twierdzenie, że element ten służy do filtrowania zakłóceń napięcia sieciowego, pokazuje nieporozumienie w zakresie zastosowania mostka prostowniczego. Filtrowanie zakłóceń to zadanie, które przypisuje się układom filtrów, a nie prostownikom. Z kolei stwierdzenie, że mostek prostowniczy obniża napięcie, jest mylne, ponieważ jego rola polega na konwersji, a nie na redukcji wartości napięcia. Odpowiedzi sugerujące zamianę prądu stałego na prąd przemienny również są błędne, ponieważ to zadanie jest realizowane przez inwertery, a nie prostowniki. Popularnym błędem myślowym jest mylenie tych funkcji, co często wynika z niepełnego zrozumienia działania urządzeń elektronicznych. W praktyce, aby skutecznie stosować różne elementy w obwodach elektrycznych, konieczne jest głębsze poznanie ich specyfiki oraz standardów, które regulują ich użycie. Dobrą praktyką jest również studiowanie schematów blokowych, które ukazują, jak poszczególne komponenty współdziałają w szerszym kontekście, co może pomóc w uniknięciu pomyłek w przyszłości.

Pytanie 32

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,6 V
B. 0,3 V
C. 0 V
D. 1,4 V
Wartości spadku napięcia na złączu półprzewodnikowym mogą być mylnie interpretowane, co prowadzi do błędnych wniosków w analizie odpowiedzi. Odpowiedzi takie jak 0,6 V i 0,3 V mogą wynikać z niepełnego zrozumienia działania diod oraz ich właściwości. Spadek napięcia 0,6 V odnosi się do pojedynczego złącza p-n, ale w kontekście podwójnego złącza opartego na krzemie, który składa się z dwóch takich złącz, wartość ta powinna być podwojona, co daje około 1,4 V. Inna odpowiedź, 0 V, sugeruje brak przewodzenia, co jest niemożliwe dla diody w odpowiednich warunkach, gdyż złącze p-n przewodzi prąd po osiągnięciu minimalnego napięcia. Ponadto, spadek napięcia 1,4 V jest typowy dla diod, gdyż przy takim napięciu obie diody w złączu są aktywne. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują ignorowanie zasad dotyczących szeregowego i równoległego połączenia złącz oraz niezrozumienie, w jaki sposób diody wpływają na spadek napięcia. Zrozumienie tych aspektów jest kluczowe w zastosowaniach takich jak projektowanie obwodów elektronicznych czy analiza układów półprzewodnikowych. Wiedza ta pomoże w lepszym zrozumieniu zachowań różnych komponentów elektronicznych oraz ich interakcji w obwodach.

Pytanie 33

Którym medium roboczym jest zasilany element o symbolu graficznym przedstawionym na rysunku zastosowany w urządzeniu mechatronicznym?

Ilustracja do pytania
A. Prądem przemiennym.
B. Prądem stałym.
C. Sprężonym powietrzem.
D. Cieczą hydrauliczną.
Odpowiedzi takie jak "Sprężonym powietrzem" czy "Prądem stałym" są niepoprawne z kilku kluczowych powodów. Sprężone powietrze jest medium roboczym stosowanym w pneumatyce i podczas gdy siłowniki pneumatyczne mogą wykorzystywać podobną zasadę działania jak siłowniki hydrauliczne, ich zastosowanie i charakterystyka znacznie się różnią. Pneumatyka jest często używana w aplikacjach, gdzie wymagana jest szybkość działania, ale ma ograniczenia związane z siłą oraz precyzją, które są kluczowe w wielu układach mechatronicznych. Z kolei prąd stały i prąd przemienny odnoszą się do typów energii elektrycznej, a nie do mediów roboczych w sensie hydraulicznym. Siłowniki elektryczne mogą być używane w mechanizmach, ale nie mają wspólnej zasady działania z hydrauliką. Ponadto, stosowanie prądu przemiennego lub stałego w kontekście zasilania siłowników prowadzi do nieporozumień dotyczących ich funkcji. Kluczowe jest, aby zrozumieć specyfikę i zastosowanie różnych typów siłowników oraz ich odpowiednie medium robocze, co jest fundamentalne w projektowaniu nowoczesnych urządzeń mechatronicznych.

Pytanie 34

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Silikon
B. Lateks
C. Poliuretan
D. Poliamid
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-48
B. MDR-40-12
C. MDR-40-5
D. MDR-40-24
Wybór niewłaściwego zasilacza, takiego jak MDR-40-12, MDR-40-48 czy MDR-40-5, może prowadzić do poważnych problemów z funkcjonowaniem układu elektropneumatycznego. Na przykład, model MDR-40-12 dostarcza napięcie wyjściowe 12 V, co jest niewystarczające dla cewki zaprojektowanej do pracy przy 24 V. Użycie zasilacza o niższym napięciu może skutkować niepełnym otwarciem elektrozaworu, co w konsekwencji prowadzi do nieprawidłowego działania całego układu. Analogicznie, model MDR-40-48, oferujący 48 V, może uszkodzić cewki elektrozaworów, co nie tylko zwiększa ryzyko awarii, ale także może prowadzić do kosztownych napraw i przestojów w produkcji. Zasilacz MDR-40-5, z napięciem wyjściowym 5 V, jest całkowicie niedostosowany do wymagań układu, co skutkuje brakiem jakiejkolwiek reakcji ze strony elektrozaworu. Częstym błędem jest zakładanie, że zasilacze o różnych napięciach mogą być używane zamiennie, co jest niezgodne z zasadami projektowania systemów elektrycznych. W praktyce, takie wybory powinny być opierane na starannej analizie specyfikacji technicznych, które jasno określają wymagania dla każdego komponentu. Brak uwagi na to może prowadzić do sytuacji, w których komponenty są niekompatybilne, co obniża niezawodność całego układu.

Pytanie 37

Manipulator, którego schemat kinematyczny przedstawiono na rysunku, ma

Ilustracja do pytania
A. 3 stopnie swobody.
B. 5 stopni swobody.
C. 6 stopni swobody.
D. 4 stopnie swobody.
Odpowiedź "5 stopni swobody" jest poprawna, ponieważ manipulator z przedstawionym schematem kinematycznym posiada pięć przegubów. Każdy przegub umożliwia ruch w różnych płaszczyznach, co jest kluczowe w kontekście automatyzacji procesów przemysłowych i robotyki. W praktyce, manipulatory o pięciu stopniach swobody są często wykorzystywane w zadaniach wymagających precyzyjnego chwytania i manipulacji przedmiotami, na przykład w montażu komponentów elektronicznych czy w przemyśle motoryzacyjnym. Zgodnie z normami ISO 9283, stopnie swobody manipulatora powinny być projektowane z myślą o maksymalnej efektywności operacyjnej oraz elastyczności w wykonywaniu różnych zadań. Zrozumienie liczby stopni swobody jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i programowaniem systemów robotycznych, co wpływa na wydajność i jakość zastosowań w branży. Dodatkowo, manipulatory o większej liczbie stopni swobody mogą wykonywać bardziej złożone operacje, co podkreśla znaczenie tej wiedzy w nowoczesnej automatyzacji.

Pytanie 38

Który rodzaj obróbki metalu przedstawiono na ilustracji?

Ilustracja do pytania
A. Toczenie.
B. Nawęglanie.
C. Walcowanie.
D. Szlifowanie.
Walcowanie jest zaawansowaną metodą obróbki plastycznej, w której materiał metalowy przechodzi pomiędzy dwoma lub więcej obracającymi się walcami. Ta technika jest szeroko stosowana w przemyśle, szczególnie w produkcji blach, prętów oraz innych elementów o określonym kształcie i wymiarach. Proces ten pozwala na uzyskanie pożądanej grubości materiału, a także na poprawę jego właściwości mechanicznych. Walcowanie może być wykonywane na gorąco lub na zimno, co wpływa na finalne właściwości materiału. Walcowanie na gorąco, w przeciwieństwie do walcowania na zimno, umożliwia uzyskanie większych odkształceń bez ryzyka pęknięć. Dodatkowo, podczas walcowania, materiał ulega zjawisku zwanym strain hardening, co zwiększa jego wytrzymałość. W praktyce, walcowanie wykonuje się zgodnie z normami ISO i innymi standardami branżowymi, co zapewnia powtarzalność i jakość produkcji. Ta metoda jest niezbędna w wielu gałęziach przemysłu, w tym w budownictwie, motoryzacji oraz lotnictwie.

Pytanie 39

Do czego służy przedstawione na rysunku narzędzie?

Ilustracja do pytania
A. Wytaczania otworów.
B. Wiercenia otworów.
C. Gwintowania otworów.
D. Szlifowania otworów.
Narzędzie przedstawione na zdjęciu to stopniowe wiertło stożkowe, które jest powszechnie stosowane do wiercenia otworów o różnych średnicach w materiałach takich jak metal, tworzywa sztuczne czy drewno. Jego stożkowa konstrukcja umożliwia precyzyjne stopniowe zwiększanie średnicy otworu, co pozwala na uzyskanie wymaganej tolerancji i gładkości powierzchni bez potrzeby zmiany narzędzia. Dzięki zastosowaniu wierteł stożkowych, można zaoszczędzić czas i zwiększyć efektywność pracy, eliminując konieczność ręcznego przygotowywania otworów o różnych rozmiarach. W praktyce, wiertła te są często wykorzystywane w warsztatach mechanicznych oraz w procesach produkcyjnych, w których precyzja i szybkość są kluczowe. Rekomendowane standardy w branży zalecają stosowanie wierteł odpowiednio dobranych do rodzaju materiału oraz parametrów obróbczych, aby uzyskać optymalne wyniki.

Pytanie 40

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. FBD (Function Block Diagram) - schemat bloków funkcyjnych
B. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
C. ST (Structured Text) - tekst strukturalny
D. IL (Instruction List) - lista instrukcji - lista instrukcji
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.