Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 19:43
  • Data zakończenia: 17 grudnia 2025 20:13

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu Z
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu B
D. Bezpiecznik typu aM
Zastosowanie wyłącznika nadprądowego typu Z, bezpiecznika typu aR czy wyłącznika nadprądowego typu B nie jest odpowiednie do zabezpieczenia silnika trójfazowego o podanych parametrach. Wyłącznik nadprądowy typu Z, mimo że jest skuteczny w ochronie przed przeciążeniem, nie oferuje optymalnej ochrony dla silników, ponieważ jego charakterystyka czasowo-prądowa jest dostosowana głównie do obwodów oświetleniowych i urządzeń elektronicznych. W przypadku silników, istotna jest możliwość tolerowania krótkotrwałych prądów startowych, a wyłącznik typu Z może wyzwolić zbyt szybko. Bezpiecznik typu aR również nie nadaje się do tego celu, gdyż jest przeznaczony do ochrony obwodów oporowych, a nie silników. Jego reakcja na przeciążenie jest zbyt szybka, co może prowadzić do niepotrzebnych wyłączeń podczas normalnej pracy silnika. Z kolei wyłącznik nadprądowy typu B, podobnie jak wyżej wymienione rozwiązania, ma ograniczoną zdolność do radzenia sobie z prądami rozruchowymi, co sprawia, że nie jest najlepszym rozwiązaniem w przypadku silników z dużymi prądami rozruchowymi. W praktyce, wybór niewłaściwego zabezpieczenia może prowadzić do uszkodzenia silnika, a także zwiększenia kosztów eksploatacji i przestojów. Dlatego ważne jest, aby przy wyborze zabezpieczeń kierować się standardami branżowymi i analizować specyfikę aplikacji, aby zapewnić odpowiednią ochronę urządzeń elektrycznych.

Pytanie 2

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest prawidłowa, ponieważ wskazuje na instalację elektryczną, której rezystancja izolacji wynosi 0,9 MΩ, co jest poniżej minimalnej dopuszczalnej wartości 1 MΩ, określonej przez normy IEC 60364 dotyczące instalacji elektrycznych. Wartość ta jest kluczowa dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Niska rezystancja izolacji może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy zwarcia, co czyni eksploatację tej instalacji niebezpieczną. Praktycznie, docelowe standardy w przemyśle elektrycznym zalecają regularne pomiary rezystancji izolacji, aby wczesne wykrycie problemów mogło zapobiec poważnym awariom. Wymagania dotyczące rezystancji izolacji różnią się w zależności od rodzaju instalacji, jednak zasada pozostaje ta sama – wartości poniżej 1 MΩ są uznawane za niedopuszczalne w kontekście bezpieczeństwa. Dlatego instalacja oznaczona jako B nie powinna być eksploatowana, co podkreśla znaczenie regularnych inspekcji technicznych i przestrzegania norm branżowych.

Pytanie 3

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Zmniejszy się odporność na wilgoć.
B. Poprawi się klasa izolacji.
C. Poprawi się klasa ochrony.
D. Zmniejszy się odporność na pył.
Dobra robota, że zwróciłeś uwagę na wybór puszek rozgałęźnych z IP 43. Wiesz, że to gorsza opcja w porównaniu do IP 44? IP oznacza, jak dobrze urządzenie radzi sobie z wodą i innymi nieprzyjemnościami. W przypadku IP 43, ochrona przed wilgocią nie jest zbyt silna, więc urządzenia mogą być narażone na wodne mgły, ale nie na krople wody spadające pod kątem. W przeciwieństwie do tego, IP 44 to lepsza opcja, jeśli chodzi o odporność na wilgoć, co jest super ważne w miejscach jak łazienki czy piwnice. Tak naprawdę, dobierając odpowiednie puszki, nie tylko dbamy o bezpieczeństwo, ale też o długość życia całej instalacji elektrycznej. Wybór elementów z właściwą klasą ochrony ma ogromny wpływ na to, jak system będzie działał i zmniejsza ryzyko różnych awarii związanych z wilgocią.

Pytanie 4

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Zwarcie w obwodzie twornika
B. Zwarcie w uzwojeniu komutacyjnym
C. Przerwa w uzwojeniu wzbudzenia
D. Przerwa w obwodzie twornika
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 5

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 70 V
B. 50 V
C. 220 V
D. 110 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 6

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 7

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Wahania napięcia
B. Przepięcia
C. Obecność harmonicznych
D. Czystość powietrza
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 8

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
B. wzrost prędkości obrotowej silnika
C. spadek prędkości obrotowej silnika
D. unieruchomienie silnika
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 9

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 10 ?
B. 21 ?
C. 22 ?
D. 11 ?
Analizując błędne odpowiedzi, warto zauważyć, że niektóre z nich opierają się na niewłaściwym zrozumieniu relacji między prądem, napięciem a rezystancją. Na przykład, odpowiedzi sugerujące 21 ?, 11 ? czy 22 ? mogą wynikać z mylnych założeń dotyczących sposobu obliczania rezystancji rozrusznika. W przypadku obliczeń związanych z prądem rozruchowym, kluczowe jest prawidłowe zrozumienie, że prąd ten jest dwukrotnością prądu znamionowego, co powinno prowadzić do obliczeń w oparciu o prawo Ohma. Wiele osób może błędnie zakładać, że rezystancja powinna być wyższa niż obliczona wartość, nie biorąc pod uwagę całkowitych rezystancji w obwodzie i sumując je niepoprawnie. Dodatkowo, pomijanie wpływu rezystancji twornika i wzbudzenia na ogólną rezystancję układu prowadzi do poważnych błędów w obliczeniach. Ważne jest, aby przy projektowaniu obwodów rozruchowych brać pod uwagę wszystkie elementy, które wpływają na przepływ prądu, co jest kluczowe dla zapewnienia prawidłowego działania silnika. Praktyczne zastosowanie tej wiedzy w inżynierii elektrycznej polega na zapewnieniu odpowiednich warunków pracy urządzeń, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 10

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 11

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 10 kΩ
B. 50 kΩ
C. 75 kΩ
D. 25 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 12

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby poprawić przeciążalność
C. Aby zwiększyć moment rozruchowy
D. Aby zredukować prąd rozruchowy
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 13

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Wzrost spadku napięcia na przewodach
B. Zwiększenie temperatury przewodu
C. Obniżenie rezystancji pętli zwarciowej
D. Obniżenie obciążalności prądowej
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 14

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-C
B. TT
C. IT
D. TN-S
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 15

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. w piwnicach w otwartych skrzynkach
B. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
C. na strychu w otwartych skrzynkach
D. w lokalach mieszkalnych tylko w zamkniętych szafkach
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 16

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. aM 16A
B. gR 20A
C. aM 20A
D. gF 35A
Odpowiedź aM 20A jest poprawna, ponieważ bezpiecznik typu aM charakteryzuje się dużą zdolnością do wytrzymywania krótkotrwałych prądów rozruchowych, co jest istotne w przypadku silnika klatkowego. W obliczeniach ustalamy prąd rozruchowy I<sub>r</sub> jako pięciokrotność prądu znamionowego: I<sub>r</sub> = 5 × I<sub>n</sub> = 5 × 12 A = 60 A. Przy współczynniku rozruchu α równym 3, maksymalny prąd, który może wystąpić podczas rozruchu wynosi: I<sub>max</sub> = I<sub>r</sub> × α = 60 A × 3 = 180 A. Zastosowanie bezpiecznika aM 20A zapewnia odpowiednią ochronę, ponieważ jego charakterystyka pozwala na wytrzymanie krótkotrwałych prądów rozruchowych bez przepalania, a jednocześnie skutecznie zabezpiecza przed długotrwałym przeciążeniem. Takie rozwiązanie jest zgodne z normami IEC 60269 oraz NEC, które określają zasady wyboru zabezpieczeń dla silników elektrycznych. W praktyce, stosowanie bezpieczników typu aM jest powszechne w instalacjach przemysłowych, gdzie silniki są narażone na duże prądy rozruchowe.

Pytanie 17

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
B. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
C. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 18

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
B. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
C. Przebicie izolacji uzwojenia bocznikowego do obudowy.
D. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
Analizowane odpowiedzi sugerują różne problemy, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie odnosi się właściwie do zidentyfikowanego stanu technicznego silnika. Pogorszenie stanu połączeń uzwojenia twornika w tabliczce zaciskowej mogłoby mieć wpływ na wydajność silnika, ale nie jest to głównym czynnikiem, który prowadzi do podwyższonej rezystancji E1-E2. Z kolei przebicie izolacji uzwojenia bocznikowego do obudowy jest poważnym problemem, który można zidentyfikować poprzez niskie wartości rezystancji między uzwojeniem a masą, co w tym przypadku nie miało miejsca, ponieważ pomiary wykazały wysokie wartości w tych punktach. Z kolei pogorszenie stanu izolacji między uzwojeniem szeregowym a obudową również nie znajduje potwierdzenia w analizowanych wynikach, które pokazują brak przebicia. Pojęcie zwarcia międzyzwojowego jest kluczowe, ponieważ jego skutki mogą prowadzić do znacznych strat mocy i przegrzewania się silnika. Często mylone są objawy zwarć z innymi rodzajami uszkodzeń, co może prowadzić do właściwego zdiagnozowania problemu. Ważne jest, aby w praktyce prowadzić regularne kontrole rezystancji uzwojeń oraz stosować się do wytycznych zawartych w normach branżowych, aby uniknąć nieprawidłowej diagnozy i niepotrzebnych kosztów napraw.

Pytanie 19

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm². W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm²?

A. Zmniejszą się o 100%
B. Zwiększą się o 100%
C. Zmniejszą się o 40%
D. Zwiększą się o 40%
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 20

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C6
B. B10
C. B16
D. C10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 21

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. rok
B. dwa lata
C. cztery lata
D. pięć lat
Odpowiedzi wskazujące na cztery lata, rok lub pięć lat jako okres pomiędzy przeglądami urządzeń napędowych wykazują brak zrozumienia zasadności i potrzeby regularnych inspekcji. Zbyt długi okres przeglądów, na przykład cztery czy pięć lat, może prowadzić do nieodkrycia istotnych usterek, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować poważne straty finansowe w wyniku awarii. Często mylone jest również pojęcie regularności przeglądów z intensywnością eksploatacji urządzeń; niezależnie od tego, jak intensywnie urządzenie jest używane, powinno być regularnie sprawdzane. Z kolei odpowiedź 'rok' jest niewystarczająca, ponieważ w przypadku wielu urządzeń napędowych, taki okres może być zbyt krótki, a niewłaściwe przeglądy mogą prowadzić do nadmiernych kosztów operacyjnych. Każdy system napędowy ma swoje specyficzne wymagania i normy, które powinny być brane pod uwagę przy ustalaniu harmonogramu przeglądów, a ogólne zasady wskazują na dwa lata jako maksymalny okres, który zapewnia bezpieczeństwo i efektywność działania urządzeń. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w obszarze zarządzania urządzeniami oraz ich konserwacją.

Pytanie 22

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
B. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
C. Wyniki testów technicznych urządzenia są zadowalające
D. Urządzenie spełnia kryteria efektywnego zużycia energii
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 23

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. uszkodzona jest dioda, a kondensator jest sprawny.
B. uszkodzona jest dioda i kondensator.
C. układ pracuje prawidłowo.
D. dioda jest sprawna, a uszkodzony jest kondensator.
W analizowanym przypadku, błędne odpowiedzi sugerują nieprawidłowe interpretacje działania układu zasilacza. W pierwszym przypadku stwierdzono uszkodzenie diody i sprawność kondensatora, co jest niezgodne z obserwowanym przebiegiem napięcia, który pokazuje, że dioda działa poprawnie, a kondensator jest odpowiedzialny za pulsacje. Kolejna koncepcja zakłada, że zarówno dioda, jak i kondensator są uszkodzone. Taki wniosek prowadzi do błędnych założeń, ponieważ jeśli dioda byłaby uszkodzona, prąd nie przepływałby w ogóle, a przebieg napięcia byłby znacznie bardziej chaotyczny. W przypadku trzeciej opcji, twierdzenie, że układ pracuje prawidłowo, jest mylące, gdyż pulsujące napięcie wskazuje na problemy z kondensatorem. Uszkodzenie kondensatora skutkuje wzrostem tętnień, co nie jest akceptowalne w standardach dotyczących stabilności zasilania w urządzeniach elektronicznych. Typowe błędy myślowe obejmują ignorowanie kluczowej roli kondensatora w procesie filtrowania oraz niewłaściwe przypisanie funkcji diody. Zrozumienie tych podstawowych zasad działania układów zasilających jest niezbędne do poprawnej diagnostyki i konserwacji sprzętu elektronicznego.

Pytanie 24

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,5 IN do 1,2 IN
B. Od 0,5 IN do 1,0 IN
C. Od 0,3 IN do 1,0 IN
D. Od 0,3 IN do 0,8 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 25

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Brak w uzwojeniu pierwotnym
B. Niesymetryczne obciążenie transformatora
C. Zwarcie między uzwojeniem pierwotnym a wtórnym
D. Brak uziemienia punktu neutralnego
Zwarcie między uzwojeniem pierwotnym i wtórnym to jedna z najpoważniejszych awarii, które mogą wystąpić w transformatorze. Przekaźnik Buchholza jest specjalnie zaprojektowany do detekcji i reagowania na tego typu problemy. W momencie, gdy dochodzi do zwarcia, prąd płynący przez uzwojenia gwałtownie wzrasta, co powoduje nagłe zmiany w przepływie oleju w transformatorze. Czujniki w przekaźniku Buchholza wykrywają te zmiany, co skutkuje jego aktywacją i wyłączeniem transformatora. Takie działanie ma na celu ochronę urządzenia przed dalszymi uszkodzeniami oraz minimalizację ryzyka wystąpienia poważnych awarii. W praktyce, stosowanie przekaźnika Buchholza jest normą w przemyśle energetycznym, działając zgodnie z wytycznymi Międzynarodowej Komisji Elektrotechnicznej (IEC) oraz krajowymi standardami ochrony urządzeń elektroenergetycznych. Regularne inspekcje i testy przekaźników Buchholza są kluczowe dla zapewnienia ich niezawodności i skuteczności w diagnostyce awarii, co jest istotne dla ciągłości dostaw energii.

Pytanie 26

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. musi mieć żyły ekranowane.
B. powinien mieć żyłę PE.
C. musi mieć wtyczkę ze stykiem ochronnym.
D. nie musi mieć żyły PE.
Odpowiedź "nie musi mieć żyły PE" jest poprawna, ponieważ urządzenia elektryczne oznaczone symbolem klasy ochronności II są zaprojektowane tak, aby nie wymagały połączenia z przewodem ochronnym PE (Protective Earth). Urządzenia te posiadają podwójną izolację lub izolację wzmocnioną, co eliminuje potrzebę stosowania uziemienia. Zastosowanie takich urządzeń jest powszechne w przypadku sprzętu, który może być narażony na kontakt z użytkownikiem, jak na przykład sprzęt AGD, narzędzia elektryczne czy lampy. W praktyce oznacza to, że nie musimy martwić się o dodatkowe podłączenia uziemiające, co zwiększa wygodę w użytkowaniu. Warto zatem zwrócić uwagę na oznaczenia na urządzeniach oraz stosować zalecenia w zakresie instalacji elektrycznych, aby zapewnić bezpieczeństwo ich eksploatacji. Przykładowo, w instalacjach domowych urządzenia klasy II mogą być stosowane bez obaw o pojawienie się niepożądanych efektów związanych z brakiem uziemienia.

Pytanie 27

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 2 lata
B. 3 lata
C. 5 lat
D. 4 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 28

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B16
B. B20
C. B25
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 29

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 110 V DC
B. 50 V AC
C. 230 V AC
D. 12 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 30

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Renowacja rozdzielnicy po likwidacji pożaru
B. Zlokalizowanie uszkodzeń w linii kablowej nn
C. Gaszenie pożaru urządzenia elektrycznego
D. Zamiana izolatora na linii napowietrznej nn
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 31

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. jedynie obudowy
B. wyłącznie specjalne ogrodzenia
C. separację elektryczną
D. umiejscowienie poza zasięgiem ręki
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 32

W jakim przedziale powinno być nastawione zabezpieczenie przeciążeniowe silnika, którego tabliczkę znamionową przedstawiono na zdjęciu, jeśli wiadomo, że jego uzwojenia są zasilane z sieci 230/400 V, 50 Hz i połączone w gwiazdę?

Ilustracja do pytania
A. (2,21 - 2,31) A
B. (3,40 - 3,80) A
C. (1,95 - 2,20) A
D. (3,82 - 4,00) A
Podane odpowiedzi, które nie mieszczą się w zakresie (2,21 - 2,31) A, są wynikiem nieprawidłowego rozumienia zasad obliczania prądów znamionowych oraz ustawiania zabezpieczeń przeciążeniowych. Kluczowym błędem jest brak uwzględnienia, że prąd znamionowy silnika przy zasilaniu 400 V wynosi 1,46 A, a zabezpieczenia przeciążeniowe powinny być ustawiane na poziomie 110-125% tego prądu. Z tego wynika, że dolna granica zabezpieczenia wynosi 1,606 A, a górna granica 1,825 A. Odpowiedzi, które sugerują wyższe wartości, mogą wynikać z nieprawidłowych założeń co do specyfiki silnika lub nieznajomości zasad doboru zabezpieczeń zgodnie z normami branżowymi. Typowym błędem jest przyjmowanie, że wartości prądów przy zasilaniu 230 V bądź nieprawidłowe zaokrąglenia lub interpretacje danych z tabliczki znamionowej są wystarczające do określenia odpowiednich ustawień. Istotne jest zrozumienie, że zabezpieczenia przeciążeniowe mają na celu ochronę urządzenia przed uszkodzeniem w wyniku przeciążenia, a nie mogą być ustawiane losowo bez uwzględnienia specyfiki silnika oraz warunków jego pracy. Z tego powodu przy doborze zabezpieczeń należy kierować się zarówno obliczeniami, jak i standardami branżowymi, takimi jak IEC 60947-4-1, które precyzują zasady doboru zabezpieczeń dla silników elektrycznych.

Pytanie 33

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wykręcić żarówki
B. zamknąć łączniki instalacyjne i wkręcić żarówki
C. otworzyć łączniki instalacyjne i wykręcić żarówki
D. otworzyć łączniki instalacyjne i wkręcić żarówki
Zamknięcie łączników i wykręcenie żarówek to naprawdę kluczowy krok przy przygotowywaniu instalacji elektrycznej do pomiarów rezystancji izolacji. Robiąc to, unikasz ryzyka przypadkowego załączenia prądu, co mogłoby narobić sporych szkód w sprzęcie pomiarowym oraz stwarzać niebezpieczeństwo dla osoby przeprowadzającej pomiary. Normy, jak PN-IEC 60364, mówią, że izolację trzeba sprawdzać przy wyłączonym zasilaniu, żeby wszystko było bezpieczne i wyniki były wiarygodne. Wykręcenie źródeł światła zmniejsza ryzyko przewodzenia prądu lub nieprzyjemnych napięć, co jest szczególnie ważne w mocnych instalacjach. Takie praktyki stosuje się np. w obiektach komercyjnych, gdzie bezpieczeństwo ludzi jest na pierwszym miejscu. Dobre przygotowanie instalacji do badań to nie tylko spełnienie przepisów, ale też sposób na to, żeby system elektryczny działał długo i bezawaryjnie.

Pytanie 34

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C32
B. S303 C20
C. S303 C25
D. S303 C40
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 35

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Przeciążenie transformatora
C. Uszkodzenie rdzenia
D. Zwarcie międzyzwojowe
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 36

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. II
B. 0
C. III
D. I
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 37

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zwiększy się czterokrotnie
D. Zmniejszy się czterokrotnie
Wybierając odpowiedzi, które sugerują, że zmiana długości spiral grzejnych skutkuje znacznym zmniejszeniem ilości wydzielanego ciepła, można popaść w pułapkę błędnych założeń dotyczących zasad działania grzejników elektrycznych. Odpowiedzi takie jak "Zmniejszy się czterokrotnie" lub "Zmniejszy się dwukrotnie" opierają się na mylnym założeniu, że skrócenie elementu grzewczego automatycznie prowadzi do proporcjonalnego spadku wydajności cieplnej, co jest sprzeczne z prawem Ohma oraz zasadą zachowania energii. Kluczowym aspektem jest zrozumienie, że moc wydobywana z grzejnika elektrycznego nie tylko zależy od długości spirali, ale również od napięcia i oporu. Przy stałym napięciu zasilania, zmniejszenie oporu (wynikające ze skrócenia spirali) prowadzi do wzrostu prądu, a tym samym do wzrostu mocy.Odpowiedzi sugerujące, że moc spadnie, mogą wynikać z nieporozumień dotyczących tego, jak opór i prąd elektryczny współdziałają w obwodach. W rzeczywistości, przy krótszej spirali, opór maleje, a prąd rośnie, co skutkuje wyższą mocą. W praktyce, projektując urządzenia grzewcze, należy brać pod uwagę te fundamentalne zasady, aby uniknąć nieefektywności oraz potencjalnych uszkodzeń sprzętu. Zatem wszelkie wnioski opierające się na intuicji a nie na solidnych podstawach teoretycznych mogą prowadzić do nieprawidłowych wyników i decyzji w inżynierii grzewczej.

Pytanie 38

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
B. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
C. Nadzór nad jakością realizacji prac eksploatacyjnych
D. Okresowa legalizacja, naprawa lub wymiana licznika energii
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 39

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
B. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
C. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
D. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 40

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 5 lat
B. 3 lata
C. 1 rok
D. 2 lata
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.