Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 01:12
  • Data zakończenia: 8 grudnia 2025 01:17

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (40 ÷ 60) %
B. (90 ÷ 100) %
C. (0 ÷ 10) %
D. (60 ÷ 90) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 2

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 1,5 mm2
B. 6,0 mm2
C. 4,0 mm2
D. 2,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 3

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. przeprowadzenie pomiarów impedancji pętli zwarcia
B. wykonanie pomiaru rezystancji uziemienia
C. zweryfikowanie ciągłości połączeń w instalacji
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 4

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź B jest poprawna, ponieważ szczypce do zdejmowania izolacji, które zobrazowane są w tym rysunku, są kluczowym narzędziem w procesie formowania oczek na przewodach instalacyjnych. Ich główną funkcją jest precyzyjne usunięcie izolacji z końców przewodów bez uszkodzenia rdzenia, co jest niezbędne do uzyskania solidnych połączeń elektrycznych. W praktyce, zastosowanie takich szczypiec minimalizuje ryzyko zwarcia oraz poprawia jakość połączeń, co jest istotne w kontekście bezpieczeństwa instalacji. Przykładowo, w trakcie prac instalacyjnych, stosowanie szczypiec ułatwia nie tylko przygotowanie przewodów do połączenia, ale także pozwala na szybkie i efektywne wykonanie napraw, co jest zgodne z zasadami dobrej praktyki elektrycznej. Warto również zaznaczyć, że zgodnie z normami branżowymi, właściwe formowanie oczek na przewodach znacząco wpływa na trwałość oraz niezawodność instalacji elektrycznych.

Pytanie 5

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 5 żył, Y – 4 żyły.
B. X – 4 żyły, Y – 4 żyły.
C. X – 5 żył, Y – 5 żył.
D. X – 4 żyły, Y – 5 żył.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 6

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
B. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Analiza pozostałych odpowiedzi ujawnia pewne nieporozumienia dotyczące klasyfikacji i zastosowania różnych typów kabli. W odpowiedzi, która wskazuje na kabel sygnalizacyjny z żyłami jednodrutowymi, istotnym błędem jest założenie, że kabel kontrolny nie może mieć wielodrutowych żył. W praktyce, żyły wielodrutowe są często stosowane w kablach kontrolnych, ponieważ oferują większą elastyczność i odporność na uszkodzenia. W kontekście napięcia, klasyfikacja na 0,6/1 kV jest typowa dla kabli elektroenergetycznych, a nie kontrolnych, które są z reguły projektowane z myślą o niższych napięciach, takich jak 300/500 V. Odpowiedź mówiąca o kablu sygnalizacyjnym z żyłami wielodrutowymi o wiązkach parowych także nie bierze pod uwagę ekranowania, które jest kluczowe dla kabli kontrolnych. Ekranowanie zapobiega zakłóceniom i zapewnia integralność sygnału, co jest niezbędne w aplikacjach, gdzie precyzyjne przesyłanie danych jest kluczowe. Niezrozumienie różnicy między zastosowaniem kabli sygnalizacyjnych a kontrolnych prowadzi do błędnych wniosków, co może skutkować niewłaściwym doborem materiałów w projektach instalacyjnych, obniżając ich efektywność i bezpieczeństwo.

Pytanie 7

Którym symbolem graficznym oznacza się na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór niewłaściwego symbolu może wynikać z nieporozumienia dotyczącego reprezentacji przewodów na planach elektrycznych. Odpowiedzi, które nie są zgodne z symbolem B, mogą sugerować inne metody prowadzenia przewodów, takie jak ich prowadzenie w kanalikach, wzdłuż ścian lub w inny sposób, co jest mylące. W branży elektrycznej istotne jest, aby wiedzieć, że różne symbole graficzne reprezentują różne techniki instalacyjne, a ich zrozumienie jest kluczowe dla bezpieczeństwa i zgodności z przepisami. Może się zdarzyć, że symbol A przedstawia przewody prowadzone w sposób otwarty, co nie odpowiada sytuacji przedstawionej na zdjęciu. Z kolei symbole C i D mogą odnosić się do innych systemów łączenia przewodów, co prowadzi do błędnych wniosków w kontekście konkretnej instalacji elektrycznej. Kluczowe jest, aby zwracać uwagę na szczegóły w przedstawionych schematach, aby uniknąć typowych błędów związanych z interpretacją symboli. Niezrozumienie tych różnic może prowadzić do niewłaściwego zaprojektowania instalacji, co może skutkować poważnymi problemami, takimi jak przeciążenie przewodów czy uszkodzenia instalacji. Dlatego istotne jest, aby każdy specjalista miał solidne podstawy w zakresie symboliki elektrycznej oraz praktycznych aspektów instalacji elektrycznych.

Pytanie 8

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. B.
B. A.
C. D.
D. C.
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 9

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd obciążeniowy
B. Obciążenie prądowe i czas reakcji
C. Prąd różnicowy oraz czas reakcji
D. Napięcie w sieci oraz prąd różnicowy
Wybór parametrów, takich jak prąd obciążenia oraz czas zadziałania, nie jest odpowiedni dla oceny działania wyłącznika różnicowoprądowego. Prąd obciążenia odnosi się do natężenia prądu, które przepływa przez obwód w normalnych warunkach pracy, ale nie dostarcza informacji na temat ewentualnych upływów prądu. Zrozumienie różnicy między prądem obciążenia a prądem różnicowym jest kluczowe, ponieważ to prąd różnicowy jest wskaźnikiem zagrożenia dla bezpieczeństwa. Czas zadziałania w połączeniu z prądem obciążenia nie dostarczy pełnego obrazu skuteczności wyłącznika w sytuacjach awaryjnych. Podobnie, pomiar napięcia sieciowego oraz prądu różnicowego w aspekcie bezpieczeństwa jest niewłaściwy, ponieważ napięcie nie jest bezpośrednio związane z funkcjonowaniem wyłącznika różnicowoprądowego. W kontekście bezpieczeństwa elektrycznego, kluczowe jest, aby wyłącznik reagował na upływ prądu do ziemi, co wskazuje prąd różnicowy, a nie tylko na obciążenie czy napięcie. Ignorowanie tych fundamentalnych różnic prowadzi do błędnego rozumienia działania wyłączników różnicowoprądowych, co może mieć poważne konsekwencje w kwestii bezpieczeństwa użytkowników.

Pytanie 10

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,4 s
B. 0,2 s
C. 0,8 s
D. 0,1 s
Wielu specjalistów może mieć trudności z ustaleniem prawidłowego maksymalnego czasu wyłączenia w układach sieci typu TN, co prowadzi do wyboru nieodpowiednich odpowiedzi. Na przykład, wybór 0,1 s jako maksymalnego czasu wyłączenia może wynikać z nieporozumienia dotyczącego typowych wartości stosowanych w różnych instalacjach elektrycznych. W rzeczywistości, czas ten jest zbyt krótki, by mógł być stosowany w standardowych warunkach użytkowych. Zbyt szybkie wyłączenie może nie pozwolić na prawidłowe działanie urządzeń zabezpieczających, co z kolei naraża na ryzyko zarówno użytkowników, jak i same instalacje. Z kolei 0,2 s oraz 0,8 s również są błędnymi wartościami, ponieważ nie odpowiadają wymaganiom normy, która została opracowana na podstawie analiz ryzyka i doświadczeń w zakresie ochrony przed porażeniem prądem elektrycznym. Czas 0,2 s może prowadzić do sytuacji, w których niebezpieczne napięcie utrzymuje się zbyt długo, a 0,8 s nie zapewnia wystarczającej ochrony. W praktyce, wartością 0,4 s uznano kompromis pomiędzy efektywnością działania zabezpieczeń a bezpieczeństwem użytkowników, co czyni tę wiedzę kluczową dla osób zajmujących się projektowaniem i nadzorem nad instalacjami elektrycznymi.

Pytanie 11

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zaciskania złączek Wago.
B. zdejmowania pierścieni Segera.
C. profilowania przewodów.
D. wciskania łożysk.
Analiza pozostałych odpowiedzi ujawnia powszechne nieporozumienia dotyczące zastosowań narzędzi mechanicznych. Na przykład, wykorzystanie narzędzia do profilowania przewodów sugeruje, że szczypce te mogą służyć do kształtowania lub przystosowywania przewodów elektrycznych. W rzeczywistości, profilowanie przewodów wymaga narzędzi bardziej precyzyjnych, jak np. szczypce do zaciskania, które są dostosowane do pracy z izolacją i przewodami, a nie z pierścieniami. Z kolei wciskanie łożysk to proces, który wymaga zastosowania narzędzi takich jak ściągacze lub prasy, które są zaprojektowane do wywierania odpowiedniego nacisku na elementy, a nie do manipulacji pierścieniami zabezpieczającymi. Ponadto, zaciskanie złączek Wago wymaga narzędzi do zaciskania, które zapewniają odpowiednią siłę i precyzję, a ich zastosowanie nie ma żadnego związku z narzędziem używanym do pierścieni Segera. Błędem jest również przyjmowanie, iż jedno narzędzie może spełniać wiele funkcji, co w praktyce prowadzi do nieefektywności i ryzyka uszkodzenia elementów. Dlatego kluczowe jest dobranie odpowiednich narzędzi do specyficznych zadań, co jest zgodne z zasadami ergonomii i efektywności w pracy z mechaniką.

Pytanie 12

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
D. niskonapięciowych liniach elektroenergetycznych.
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 13

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Montażu zacisków zakleszczających.
B. Zaprasowywania przewodów w połączeniach wsuwanych.
C. Formowania oczek na końcach żył.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 14

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 12,4 V
B. 11,3 V
C. 11,0 V
D. 12,0 V
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 15

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Docinania przewodu.
B. Zaciskania końcówek oczkowych.
C. Zaciskania końcówek tulejkowych.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 16

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 32W
B. L 22W
C. L 18W
D. L 36W
Dobrze wybrałeś dławik L 36W, bo idealnie pasuje do zasilania dwóch świetlówek T8, każda po 18W, więc wszystko gra. Ten dławik zapewnia odpowiednią moc i parametry, które są niezbędne, żeby świetlówki działały jak należy. Warto zwrócić uwagę, że przy wyborze dławika trzeba myśleć o łącznej mocy świetlówek oraz ich typie, bo źle dobrany dławik może sprawić, że lampy będą migotać albo w ogóle nie będą działać. Dławik L 36W ma parametry zgodne z normami, co gwarantuje, że będzie działać długo i oszczędnie. Użycie go w oprawach z dwoma świetlówkami T8 to naprawdę dobra praktyka - zyskujesz nie tylko efektywność, ale też bezpieczeństwo. Pamiętaj, że dobór dławika powinien być zgodny z parametrami producenta, co tylko potwierdza, że to właściwy wybór.

Pytanie 17

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. rozmieszczenia tablic informacyjnych i ostrzegawczych
B. wyboru zabezpieczeń oraz urządzeń
C. wartości natężenia oświetlenia na stanowiskach pracy
D. wyboru i oznakowania przewodów
Podczas inspekcji nowo wykonanej instalacji elektrycznej, sprawdzenie rozmieszczenia tablic ostrzegawczych i informacyjnych, doboru zabezpieczeń i aparatury oraz doboru i oznaczenia przewodów jest kluczowe. Te elementy są fundamentalne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Tablice ostrzegawcze i informacyjne stanowią istotny element systemu bezpieczeństwa, informując pracowników o potencjalnych zagrożeniach. Odpowiedni dobór zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe, ma na celu ochronę przed skutkami zwarć oraz przeciążeń, co jest wymagane przez normy elektryczne, jak PN-IEC 60364. Oznaczenie przewodów pozwala uniknąć pomyłek w podłączeniach, co może prowadzić do poważnych awarii lub zagrożeń. Istotne jest zrozumienie, że każde z tych działań jest ściśle związane z bezpieczeństwem i funkcjonalnością instalacji. Wiele osób może nie doceniać roli tych detali, skupiając się jedynie na wydajności energetycznej czy estetyce, co może prowadzić do krytycznych błędów w ocenie gotowości instalacji do eksploatacji. W rzeczywistości, zaniedbanie któregokolwiek z wymienionych aspektów może skutkować poważnymi konsekwencjami zarówno w kontekście bezpieczeństwa, jak i przepisów prawa budowlanego oraz norm branżowych.

Pytanie 18

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Wkrętaka.
B. Praski hydraulicznej.
C. Lutownicy.
D. Szczypiec uniwersalnych.
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 19

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 20

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. złącze
B. instalacje odbiorcze
C. rozdzielnicę główną
D. przyłącze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 21

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Trzonek typu B, znany również jako trzonek baionetowy, jest istotnym elementem w branży oświetleniowej, szczególnie w kontekście lamp i żarówek. Wybór źródła światła z trzonkiem baionetowym, tak jak żarówka przedstawiona na zdjęciu oznaczonym literą A, jest uzasadniony jego zastosowaniem w różnych systemach oświetleniowych, które wymagają stabilnego i pewnego połączenia. Dwa równoległe styki na trzonku B są kluczowe dla efektywnego i bezpiecznego działania żarówki w oprawach oświetleniowych. Trzonek typu B jest często stosowany w zastosowaniach profesjonalnych, takich jak oświetlenie sceniczne, gdzie niezawodność i łatwość wymiany źródła światła są kluczowe. Dodatkowo, zgodność z międzynarodowymi standardami, takimi jak IEC (Międzynarodowa Komisja Elektrotechniczna), zapewnia, że użytkownicy mogą korzystać z tych produktów w sposób bezpieczny i efektywny. Zrozumienie różnic między różnymi typami trzonków pomaga nie tylko w wyborze odpowiednich źródeł światła, ale również w zapewnieniu ich prawidłowego działania i bezpieczeństwa w codziennym użytkowaniu.

Pytanie 22

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 1,5 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2
Wybór niewłaściwego przekroju przewodu może przynieść poważne problemy, zarówno pod względem bezpieczeństwa jak i wydajności. Odpowiedzi 1,5 mm2 i 6 mm2 są zupełnie nietrafione przy zasilaniu pieca rezystancyjnego o mocy 5000 W. Przewód 1,5 mm2 po prostu nie jest w stanie przeprowadzić prądu 21,74 A, co stwarza ryzyko przegrzania i różnych uszkodzeń. Przewody o zbyt małym przekroju mogą powodować spadki napięcia, co negatywnie wpłynie na działanie pieca. Z kolei przewód 6 mm2 jest za duży na to obciążenie, co zwiększa koszty materiałów i może sprawić problemy z montażem oraz wyglądem całej instalacji. Często ludzie przy wyborze przekroju skupiają się tylko na maksymalnej mocy, a zapominają o innych ważnych rzeczach, takich jak długość przewodu, temperatura otoczenia czy rodzaj izolacji. Takie błędne podejście do doboru przewodu to prosta droga do kłopotów i zagraża bezpieczeństwu użytkowników oraz poprawnemu działaniu systemu elektrycznego. Dlatego warto kierować się normami i wytycznymi branżowymi, by nie popełniać takich błędów.

Pytanie 23

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór odpowiedzi A, B lub D wskazuje na nieporozumienie dotyczące symboliki stosowanej w dokumentacji instalacji elektrycznych. Odpowiedzi te nie reprezentują wyłącznika różnicowoprądowego, a ich analiza ujawnia częste błędy myślenia związane z interpretacją schematów. Na przykład, odpowiedź A może być mylnie zinterpretowana jako symbol innego urządzenia zabezpieczającego, takiego jak bezpiecznik, podczas gdy jego funkcje są zupełnie inne. Bezpieczniki działają na zasadzie przerywania obwodu w przypadku nadmiernego prądu, co jest innym mechanizmem ochrony niż działanie RCD. Wybór odpowiedzi B może sugerować pomyłkę w rozpoznaniu symboli stosowanych na schematach, co może prowadzić do poważnych konsekwencji w praktyce. Różnice w oznaczeniach mogą na przykład skutkować niewłaściwą instalacją urządzeń, co zagraża bezpieczeństwu użytkowników. Warto zwrócić uwagę, że poprawne rozumienie schematów elektrycznych opiera się na znajomości standardów branżowych, takich jak PN-EN 50010, które regulują sposób oznaczania i stosowania wyłączników RCD. Dlatego ważne jest, aby przed podjęciem decyzji w zakresie oznaczeń instalacyjnych dokładnie przestudiować właściwe dokumenty oraz szkolenia, które pozwolą na właściwe interpretowanie symboliki i unikanie niebezpiecznych błędów w instalacjach elektrycznych.

Pytanie 24

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd zadziałania.
B. Napięcie znamionowe i prąd znamionowy.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie probiercze i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 25

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 206,9 lm/W
B. 1 180,0 lm/W
C. 81,4 lm/W
D. 14,5 lm/W
Skuteczność świetlna, określana jako stosunek strumienia świetlnego (lm) do mocy elektrycznej (W), jest kluczowym parametrem oceny efektywności źródeł światła. W opisanym przypadku źródło światła wykazuje strumień świetlny wynoszący 1180 lumenów oraz moc równą 14,5 W. Obliczając skuteczność świetlną, dzielimy strumień świetlny przez moc: 1180 lm / 14,5 W, co daje 81,4 lm/W. W praktyce, wysoka skuteczność świetlna oznacza, że źródło światła dostarcza więcej światła przy mniejszym zużyciu energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Tego typu obliczenia są istotne przy projektowaniu systemów oświetleniowych, gdzie należy brać pod uwagę zarówno efektywność energetyczną jak i komfort użytkowania. Przykładem zastosowania jest wybór oświetlenia LED, które zazwyczaj charakteryzuje się wyższą skutecznością świetlną w porównaniu do tradycyjnych żarówek, co jest zgodne z normami efektywności energetycznej obowiązującymi w wielu krajach.

Pytanie 26

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 25 mm2
B. 4,0 mm2
C. 16 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 27

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Wiertarka z zestawem wierteł, młotek, piła
B. Wiertarka z zestawem wierteł, szczypce płaskie, piła
C. Osadzak gazowy, młotek, obcinaczki
D. Osadzak gazowy, wkrętak, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 28

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
C. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
D. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 29

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. umiejscowienie poza zasięgiem dłoni
B. separację elektryczną
C. urządzenia różnicowoprądowe ochronne
D. ogrodzenia oraz obudowy
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 30

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Wzbudzenia
B. Twornika
C. Kompensacyjnego
D. Komutacyjnego
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 31

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Dwubiegunowy.
B. Schodowy.
C. Świecznikowy.
D. Żaluzjowy.
Odpowiedź 'Żaluzjowy' jest poprawna, ponieważ na schemacie widoczny jest łącznik, który kontroluje ruch silnika, co jest charakterystyczne dla systemów sterowania żaluzjami. W przypadku łączników żaluzjowych, zazwyczaj mamy do czynienia z dwoma przyciskami: jeden służy do podnoszenia żaluzji, a drugi do ich opuszczania. Tego rodzaju łączniki są powszechnie stosowane w domach, biurach oraz budynkach użyteczności publicznej, gdzie automatyzacja zasłon i żaluzji może znacząco poprawić komfort użytkowania oraz efektywność energetyczną. Dobrą praktyką w instalacjach elektrycznych jest stosowanie łączników dostosowanych do konkretnego zastosowania, w tym przypadku łączników żaluzjowych, aby zapewnić bezpieczeństwo oraz wygodę. Znajomość tych systemów pozwala również na prawidłowe projektowanie i wdrażanie rozwiązań automatyki budynkowej, co jest coraz bardziej popularne w nowoczesnym budownictwie.

Pytanie 32

Na rysunku przedstawiono graficzne oznaczenie przewodu

Ilustracja do pytania
A. uziemiającego.
B. czynnego pod napięciem.
C. ochronno-neutralnego.
D. ochronnego.
Poprawna odpowiedź to przewód ochronno-neutralny (PEN), który pełni kluczową rolę w systemach elektrycznych, szczególnie w układach TN-C. Przewód ten łączy funkcje przewodu neutralnego (N) oraz ochronnego (PE), co umożliwia zarówno bezpieczne odprowadzanie prądu w przypadku awarii, jak i zapewnienie powrotu prądu do źródła zasilania. W praktyce oznacza to, że w przypadku uszkodzenia przewodu, prąd może zostać odprowadzony do ziemi, co zapobiega porażeniom elektrycznym. Stosowanie przewodu PEN jest zgodne z normami PN-IEC 60364 oraz PN-EN 50174, które określają zasady budowy instalacji elektrycznych, zapewniając bezpieczeństwo użytkowników. Właściwe zrozumienie funkcji przewodu PEN jest niezbędne dla projektantów i wykonawców instalacji elektrycznych, aby zapewnić ich zgodność z obowiązującymi przepisami oraz skuteczną ochronę przed zagrożeniami elektrycznymi.

Pytanie 33

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 014-6
B. 025-6
C. 024-6
D. 015-6
Wybór wtyczki 025-6 jest poprawny, ponieważ zapewnia ona odpowiednią wydajność prądową dla betoniarki o mocy 12 kVA przy zasilaniu 400V. Przy tej mocy, wartość prądu oblicza się ze wzoru: I = P / (√3 * U), co daje około 17,32 A. Wtyczka 025-6 jest przystosowana do obciążeń do 32 A, co oznacza, że bezproblemowo obsłuży podłączone urządzenie. Dodatkowo, istotne jest, aby wtyczki i gniazda były zgodne z obowiązującymi normami, takimi jak IEC 60309, które określają wymagania dla wtyczek do urządzeń o dużym poborze mocy. W praktyce, wybór odpowiedniej wtyczki ma kluczowe znaczenie dla bezpieczeństwa i efektywności zasilania sprzętu elektrycznego, zwłaszcza w warunkach budowlanych, gdzie obciążenia mogą się zmieniać. Użycie wtyczki o niewłaściwej wydajności prądowej może prowadzić do przegrzewania, uszkodzeń sprzętu, a w najgorszym przypadku do zagrożeń pożarowych.

Pytanie 34

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 35

W jaki sposób zwarcie międzyzwojowe w uzwojeniu D1 – D2 wpłynie na pracę silnika, którego schemat przedstawiono na ilustracji?

Ilustracja do pytania
A. Zwiększy się wartość prędkości obrotowej wirnika.
B. Zmniejszy się wartość prędkości obrotowej wirnika.
C. Zwiększy się wartość strumienia magnetycznego wzbudzenia.
D. Zmniejszy się wartość prądu pobieranego przez silnik.
Wybór odpowiedzi dotyczących zmniejszenia wartości prądu pobieranego przez silnik lub zwiększenia wartości strumienia magnetycznego wzbudzenia jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników elektrycznych. W przypadku zwarcia międzyzwojowego, rezystancja uzwojenia D1 – D2 maleje, co nie tylko prowadzi do wzrostu prądu, ale także do zmniejszenia strumienia magnetycznego Φ. Wzrost wartości prądu jest spowodowany zmniejszeniem rezystancji, co z kolei może skutkować zwiększeniem prędkości obrotowej wirnika, a nie jej zmniejszeniem. Ponadto, nieprawidłowe jest myślenie, że wzrost strumienia magnetycznego wzbudzenia poprawi wydajność silnika w przypadku zwarcia. W rzeczywistości, zwarcie prowadzi do destabilizacji pracy silnika, a nie do jego poprawy. Wiele osób myli zjawisko zwarcia z poprawną regulacją parametrów silnika, co prowadzi do błędnych wniosków, że zmniejszenie prędkości obrotowej jest korzystne. W praktyce, zbyt niski strumień magnetyczny prowadzi do wzrostu prędkości, co może skutkować uszkodzeniami mechanicznymi i przegrzewaniem się silnika. Zrozumienie tych zależności jest kluczowe dla prawidłowego projektowania i eksploatacji silników elektrycznych.

Pytanie 36

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. urządzeń półprzewodnikowych przed zwarciami
B. silników przed przeciążeniami oraz zwarciami
C. przewodów przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 37

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. B.
B. A.
C. C.
D. D.
Wybór odpowiedzi A, czyli BPC 425/030 4P AC, jest zgodny z wymogami dotyczącymi zabezpieczeń elektrycznych w instalacjach trójfazowych. Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony przed porażeniem elektrycznym, który wykrywa różnice w prądzie między przewodami fazowymi a neutralnym. Wymagana charakterystyka AC oznacza, że wyłącznik jest przystosowany do ochrony przed prądami przemiennymi, co jest typowe w instalacjach domowych i przemysłowych. Prąd znamionowy 25A oraz wartość różnicowoprądowa 30mA (oznaczona jako 030) są standardowymi wartościami stosowanymi w takich instalacjach. Wartość 30mA jest powszechnie uznawana za bezpieczną dla ochrony ludzi przed porażeniem. W praktyce, zastosowanie takiego wyłącznika w instalacji trójfazowej nie tylko zwiększa bezpieczeństwo, ale również spełnia wymagania norm IEC 61008, które definiują wymagania dotyczące wyłączników różnicowoprądowych. Dzięki odpowiedniemu doborowi wyłącznika różnicowoprądowego zapewniasz bezpieczeństwo użytkowników oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć i zwarć doziemnych.

Pytanie 38

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 4,0 Ω
C. 2,3 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 39

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,0 m
B. 2,0 m
C. 2,5 m
D. 1,5 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 40

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Żółty
C. Czerwony
D. Niebieski
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.