Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 listopada 2025 20:13
  • Data zakończenia: 16 listopada 2025 20:25

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. A.
B. B.
C. C.
D. D.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia odnośnie do wymagań dotyczących instalacji elektrycznych, szczególnie w kontekście podtynkowego ułożenia w rurkach stalowych. Wiele osób może myśleć, że do wykonania takiej instalacji wystarczy jedynie wiertarka i poziomica, co jest dużym uproszczeniem. Chociaż te narzędzia są cenne, kluczowe są również inne elementy, takie jak bruzdownica, która pozwala na precyzyjne wykonanie bruzd w ścianie. Bez tego narzędzia, ułożenie rurek stalowych staje się wysoce problematyczne, ponieważ brak odpowiednich bruzd może prowadzić do nieestetycznego wykończenia oraz nieprawidłowego mocowania rurek. Ponadto, wybór niewłaściwych materiałów do mocowania rurek, jak np. brak drutu wiązałkowego lub gwoździ, może skutkować nieodpowiednią stabilnością instalacji, co z kolei zagraża bezpieczeństwu użytkowników. Błędem jest również pomijanie znaczenia otwornicy koronowej, która jest niezbędna do wykonania otworów pod puszki instalacyjne, co jest kluczowe dla prawidłowego umiejscowienia elementów instalacji. Zrozumienie tych aspektów jest niezbędne, aby uniknąć typowych błędów myślowych i zapewnić, że instalacja elektryczna będzie nie tylko funkcjonalna, ale także zgodna z obowiązującymi normami bezpieczeństwa.

Pytanie 2

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Wkładkę topikową bezpiecznika mocy.
C. Bezpiecznik aparatowy.
D. Izolator wsporczy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 3

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 4.
B. Wstawkę 2.
C. Wstawkę 3.
D. Wstawkę 1.
Wybór nieodpowiedniej wstawki kalibracyjnej do podstawy bezpiecznikowej może prowadzić do wielu poważnych problemów. Często błędne odpowiedzi wynikają z niezrozumienia różnicy między parametrami znamionowymi wkładek a możliwościami wstawek. Wstawką 1, 2 i 4 nie spełniają wymagań w zakresie napięcia i prądu, co należy wiedzieć przed podjęciem decyzji. Na przykład, niektóre wstawki mogą być dostosowane do niższego napięcia, co skutkuje ryzykiem przeciążenia, a w skrajnych przypadkach, pożaru. Kolejnym typowym błędem jest wybór wstawki o zbyt małym prądzie znamionowym. W przypadku wkładek topikowych typu D, istotne jest, aby dobierać elementy, które mogą radzić sobie z maksymalnym prądem roboczym, a nie tylko minimalnym. W praktyce oznacza to, że wstawka 3, która akceptuje prąd do 63 A, zapewnia bezpieczeństwo i zgodność z normami. Należy również pamiętać, że standardy branżowe, takie jak IEC 60269, jasno określają wymagania dotyczące stosowania wkładek i wstawek w instalacjach elektrycznych, co powinno być podstawą każdej decyzji dotyczącej ochrony obwodów elektrycznych. Dlatego kluczowe jest, aby zrozumieć zasady dotyczące doboru elementów oraz ich parametry, aby uniknąć sytuacji, w których niewłaściwy wybór może prowadzić do awarii systemu.

Pytanie 4

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Aluminium
C. Stal
D. Brąz
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 5

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. poprawności działania wyłącznika różnicowoprądowego
B. nastaw urządzeń zabezpieczających w instalacji
C. wartości rezystancji izolacji przewodów
D. stanu obudów wszystkich elementów instalacji
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 6

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Przerwa na zaciskach odbiornika Z2 lub Z3.
D. Przerwa w przewodzie neutralnym.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 7

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. dwie mufy kablowe i odcinek kabla
B. mufa rozgałęźna oraz odcinek kabla
C. odcinek kabla zakończony głowicami
D. odcinek kabla oraz zgrzewarka
Wybór mufy rozgałęźnej i odcinka kabla nie jest adekwatny, ponieważ mufy rozgałęźne służą do rozdzielania sygnałów i energii elektrycznej na różne obwody, a nie do naprawy uszkodzonego kabla. Użycie mufy rozgałęźnej w kontekście naprawy kabla, który nie ma zapasu, prowadzi do ryzyka niewłaściwych połączeń, co może skutkować awarią całego systemu. Ponadto, sugerowanie użycia odcinka kabla i zgrzewarki jest również błędne, ponieważ zgrzewanie nie jest standardową metodą naprawy kabli przyłączeniowych, a realizacja takich operacji wiąże się z dodatkowymi ryzykami, jak na przykład niewłaściwe połączenia, które mogą prowadzić do wzrostu oporu lub przegrzewania się złącza. Ostatnia propozycja polegająca na użyciu odcinka kabla zakończonego głowicami jest niewłaściwa, gdyż głowice kablowe stosowane są głównie w kontekście kończenia kabli do urządzeń elektrycznych, a nie w sytuacji, gdy konieczne jest połączenie uszkodzonego kabla z nowym odcinkiem. Typowe błędy myślowe prowadzące do takich nieprawidłowych decyzji obejmują nieznajomość zasadności użycia konkretnych typów muf oraz ich zastosowania w kontekście naprawy kabli, co może prowadzić do zagrożeń dla bezpieczeństwa i niezawodności całej instalacji elektrycznej.

Pytanie 8

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Krzyżowego
B. Dzwonkowego
C. Schodowego
D. Hotelowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 9

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 500 V
B. 250 V
C. 120 V
D. 1000 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 10

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. który współdziała z przekaźnikiem sygnalizacyjnym
B. posiadający aparat różnicowoprądowy
C. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
D. który działa z przekaźnikiem czasowym
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 11

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Awaria wyłącznika nadprądowego w rozdzielnicy
B. Zwarcie rezystancyjne do obudowy odbiornika
C. Przeciążenie obwodu
D. Uszkodzenie lub przepalenie przewodu neutralnego
Przeciążenie obwodu, które sugeruje pierwsza odpowiedź, nie jest bezpośrednią przyczyną zadziałania wyłącznika różnicowoprądowego, ponieważ jego działanie opiera się na detekcji różnic prądów, a nie na ich natężeniu. Przeciążenie może skutkować zadziałaniem wyłącznika nadprądowego, który ma na celu ochronę przewodów przed przegrzewaniem, ale nie wpływa na wyłącznik różnicowoprądowy w tym kontekście. Uszkodzenie przewodu neutralnego, wspomniane w drugiej opcji, również nie musi prowadzić do zadziałania wyłącznika różnicowoprądowego, jeśli obwód nadal może funkcjonować z poprawnym przepływem prądu. Uszkodzenie wyłącznika nadprądowego w rozdzielnicy, opisane w trzeciej odpowiedzi, w rzeczywistości nie ma związku z działaniem wyłącznika różnicowoprądowego, który funkcjonuje niezależnie. Na koniec, zwarcie rezystancyjne do obudowy odbiornika, które nie zostało wybrane, stanowi rzeczywistą przyczynę zadziałania, ale wszystkie pozostałe odpowiedzi nie uwzględniają tej kluczowej kwestii. W praktyce, zrozumienie zasad działania wyłączników różnicowoprądowych oraz odpowiednich zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa i uniknięcia nieprawidłowych wniosków w diagnostyce usterek w instalacjach elektrycznych.

Pytanie 12

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 11,0 V
C. 12,0 V
D. 12,4 V
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 13

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 14

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 4.
D. Schemat 1.
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 15

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 3,83 Ω
B. 1,15 Ω
C. 2,30 Ω
D. 0,56 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 16

Do których zacisków przekaźnika zmierzchowego przedstawionego na schemacie należy podłączyć czujnik światła?

Ilustracja do pytania
A. 7 i 9
B. N i 12
C. L i 10
D. 10 i 12
Czujnik światła powinien być podłączony do zacisków 7 i 9 przekaźnika zmierzchowego, ponieważ te zaciski są przeznaczone do podłączenia zewnętrznych czujników. W praktyce, gdy zmierzchowy przekaźnik wykryje spadek natężenia światła, czujnik ten aktywuje przekaźnik, co pozwala na automatyczne włączanie lub wyłączanie oświetlenia w zależności od warunków oświetleniowych. Zgodnie z normami branżowymi, podłączanie czujników do właściwych zacisków jest kluczowe dla zapewnienia prawidłowego działania systemu. W przypadku zastosowań w inteligentnych domach, poprawne podłączenie czujnika światła do właściwych zacisków pozwala na efektywne zarządzanie energią, co jest zgodne z ideą zrównoważonego rozwoju. W praktyce, użytkownik może ustawić czujnik w odpowiedniej lokalizacji, aby optymalizować jego działanie, co z kolei wpływa na komfort i oszczędności energii.

Pytanie 17

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Sprawdzanie wyłączników różnicowoprądowych.
C. Badanie kolejności faz.
D. Pomiar rezystancji uziemienia.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 18

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 A oraz napięcie znamionowe 63 V
B. 0,03 A i znamionowy prąd ciągły 63 A
C. 0,03 mA oraz znamionowy prąd ciągły 63 mA
D. 0,03 mA oraz napięcie znamionowe 63 V
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 19

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Dodatkowe miejscowe wyrównawcze połączenia ochronne
B. Bardzo niskie napięcie ze źródła bezpiecznego
C. Samoczynne wyłączenie zasilania
D. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 20

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TT
B. IT
C. TN-S
D. TN-C
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 21

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Mostka prądu zmiennego
B. Megaomomierza induktorowego
C. Amperomierza cęgowego
D. Omomierza szeregowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 22

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchronicznego z obcym wzbudzeniem.
B. Indukcyjnego klatkowego.
C. Obcowzbudnego prądu stałego.
D. Indukcyjnego pierścieniowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat przedstawia silnik indukcyjny pierścieniowy, co jest łatwe do zauważenia dzięki obecności pierścieni ślizgowych, które są integralną częścią konstrukcji wirnika. Silniki te są szczególnie cenione w aplikacjach wymagających regulacji prędkości obrotowej oraz momentu obrotowego, ponieważ umożliwiają stosunkowo łatwą kontrolę tych parametrów poprzez dobór odpowiednich rezystorów w obwodzie pierścieni ślizgowych. W praktyce, silniki indukcyjne pierścieniowe są często wykorzystywane w przemysłowych aplikacjach, takich jak napędy w ciężkich maszynach, gdzie wymagana jest duża moc oraz elastyczność w regulacji prędkości. W odróżnieniu od silników klatkowych, które mają prostszą konstrukcję wirnika, silniki pierścieniowe pozwalają na lepsze dostosowanie charakterystyki pracy do specyficznych wymagań aplikacji. Warto również zauważyć, że w standardach IEC dotyczących silników elektrycznych, silniki indukcyjne pierścieniowe są klasyfikowane jako bardziej zaawansowane technologicznie, co podkreśla ich znaczenie w nowoczesnych rozwiązaniach inżynieryjnych.

Pytanie 23

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. prowadzonej w tynku.
B. podtynkowej.
C. prefabrykowanej.
D. natynkowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'podtynkowej' jest poprawna, ponieważ elektronarzędzie przedstawione na rysunku to frezarka do rowków, która jest kluczowym narzędziem w instalacjach elektrycznych podtynkowych. Umożliwia ono precyzyjne wykonywanie bruzd w murach, gdzie następnie kable elektryczne są układane pod tynkiem. Taki sposób instalacji jest zgodny z najlepszymi praktykami budowlanymi, które zalecają ukrywanie przewodów dla zapewnienia estetyki i bezpieczeństwa. Instalacje podtynkowe chronią kable przed uszkodzeniami mechanicznymi oraz eliminują ryzyko zwarcia spowodowanego wystawieniem przewodów na działanie czynników zewnętrznych. W przypadku zastosowań w obiektach mieszkalnych, standardy budowlane, takie jak PN-IEC 60364, podkreślają znaczenie odpowiedniej izolacji oraz układania instalacji w sposób, który minimalizuje ryzyko uszkodzeń i ułatwia przyszłe prace konserwacyjne.

Pytanie 24

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Trójfazowego ze stykiem ochronnym.
B. Jednofazowego ze stykiem ochronnym.
C. Trójfazowego bez styku ochronnego.
D. Jednofazowego bez styku ochronnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "Jednofazowego ze stykiem ochronnym". Symbol graficzny przedstawiony na ilustracji rzeczywiście odpowiada gniazdu jednofazowemu, co można zidentyfikować dzięki obecności trzech kluczowych elementów. Linia pionowa oznacza fazę, pozioma reprezentuje przewód neutralny, a półokrąg wskazuje na styk ochronny. Stosowanie gniazd jednofazowych ze stykiem ochronnym jest istotne w kontekście bezpieczeństwa elektrycznego, gdyż zapewniają one dodatkową ochronę przed porażeniem prądem elektrycznym. W praktyce, takie gniazda są powszechnie stosowane w gospodarstwach domowych oraz biurach, gdzie istnieje ryzyko kontaktu użytkownika z elementami przewodzącymi prąd. Standardy krajowe, takie jak PN-EN 60309, podkreślają znaczenie stosowania gniazd z zabezpieczeniem, zwłaszcza w środowiskach o dużym ryzyku, takich jak warsztaty czy miejsca pracy z zastosowaniem maszyn elektrycznych. Wiedza o tych standardach jest kluczowa dla odpowiedniego doboru sprzętu elektrycznego oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 25

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Przerwa w przewodzie ochronnym
C. Przerwa w przewodzie neutralnym
D. Zwarcie doziemne przewodu neutralnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 26

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Zdalne sterowanie obwodami elektrycznymi
B. Kontrola temperatury przewodów
C. Zmniejszenie zużycia energii
D. Ochrona przed przeciążeniami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 27

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 4 żyły, Y – 4 żyły.
B. X – 5 żył, Y – 5 żył.
C. X – 4 żyły, Y – 5 żył.
D. X – 5 żył, Y – 4 żyły.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 28

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Transformator.
B. Wzbudnik indukcyjny.
C. Elektromagnes.
D. Dławik magnetyczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 29

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. G9
B. E14
C. GU10
D. MR16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 30

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,69
C. 0,82
D. 0,57

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 31

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Uchwytem izolacyjnym pod obciążeniem
B. Przy użyciu kombinerek, pod napięciem
C. Za pomocą kombinerek w braku napięcia
D. Uchwytem izolacyjnym bez obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 32

Co oznacza symbol literowy YKY?

A. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. kabel z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 33

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 302 25-30-AC
C. P 304 25-30-AC
D. P 344 C-16-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 34

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Komutatorowej prądu przemiennego.
B. Indukcyjnej pierścieniowej.
C. Indukcyjnej klatkowej.
D. Synchronicznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 35

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Miedź
B. Aluminium
C. Stal
D. Brąz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 36

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
B. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 37

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. ≥ 0,25 MΩ
B. < 0,5 MΩ
C. ≥ 0,5 MΩ
D. < 0,25 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 38

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolowanie miejsca pracy
B. Podwójna lub wzmocniona izolacja
C. Izolacja odbiornika
D. Ochronne obniżenie napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Separacja odbiornika to jedna z podstawowych metod ochrony przed dotykiem pośrednim, szczególnie w układach zasilania, gdzie izolacja galwaniczna jest kluczowa. W przypadku analizy transformatora o przekładni 230 V/230 V, zastosowanie tej metody oznacza, że urządzenie zasilane jest z transformatora, który nie jest połączony elektrycznie z innymi obwodami. Dzięki temu, jeśli dojdzie do awarii w jednym z obwodów, prąd nie popłynie do innych części instalacji, co znacząco zwiększa bezpieczeństwo użytkowania. W praktyce oznacza to, że w różnych obszarach zastosowań, takich jak instalacje w laboratoriach czy w obiektach służby zdrowia, separacja odbiornika jest stosowana do zapewnienia minimalnego ryzyka porażenia prądem. Dodatkowo, zgodnie z normami IEC 61140, separacja odbiornika jest uznawana za istotny element projektowania instalacji elektrycznych, co podkreśla jej znaczenie w zapewnieniu bezpieczeństwa użytkowników.

Pytanie 39

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
B. rozłożyć dywanik izolacyjny w rejonie pracy
C. poinformować dostawcę energii
D. oznaczyć obszar roboczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 40

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Wyłącznik nadmiarowoprądowy.
C. Wyłącznik przepięciowy.
D. Odłącznik bezpiecznikowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.