Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:27
  • Data zakończenia: 19 grudnia 2025 12:43

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który opis siłowników hydraulicznych przedstawionych na rysunkach jest poprawny?

Siłownik hydraulicznyA.B.C.D.
TeleskopowyRys. 1Rys. 4Rys. 3Rys. 4
Jednostronnego działaniaRys. 2Rys. 1Rys. 4Rys. 1
Dwustronnego działania z dwustronnym tłoczyskiemRys. 3Rys. 2Rys. 1Rys. 3
Dwustronnego działania z jednostronnym tłoczyskiemRys. 4Rys. 3Rys. 2Rys. 2
Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór odpowiedzi A, B lub C wskazuje na nieporozumienie dotyczące klasyfikacji siłowników hydraulicznych. Siłownik jednostronnego działania, który można by przypisać do opisu rysunku 1, wykorzystuje ciśnienie medium tylko z jednej strony tłoczyska, co ogranicza jego funkcjonalność i zastosowanie, przede wszystkim do aplikacji, gdzie wymagana jest jedynie jedna strona ruchu. Z kolei siłownik dwustronnego działania z dwustronnym tłoczyskiem, który opisany jest na rysunku 2, może działać w obu kierunkach, co czyni go bardziej wszechstronnym, jednak wymaga on dwóch źródeł medium, co wprowadza dodatkowe złożoności w projektowaniu układów hydraulicznych. Rysunek 3 przedstawia siłownik dwustronnego działania z jednostronnym tłoczyskiem, co również prowadzi do ograniczenia jego funkcjonalności. Tego rodzaju siłowniki mają zastosowanie w mniej wymagających aplikacjach. Typowe błędy myślowe prowadzące do wyboru niepoprawnej odpowiedzi wynikają z braku zrozumienia różnic w konstrukcji i zastosowaniu poszczególnych typów siłowników. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnego projektowania systemów hydraulicznych, aby zapewnić ich optymalne działanie oraz spełnienie norm dotyczących bezpieczeństwa i wydajności.

Pytanie 2

Na rysunku przedstawiono pneumatyczne elementy

Ilustracja do pytania
A. wytwarzające.
B. wejściowe.
C. sterujące.
D. wykonawcze.
Właściwa odpowiedź to "wykonawcze". Pneumatyczne elementy wykonawcze, takie jak siłowniki, pełnią kluczową rolę w systemach automatyki i przemysłu. Ich zadaniem jest przekształcanie energii sprężonego powietrza na energię mechaniczną, co umożliwia wykonanie różnych rodzajów pracy, takich jak ruch liniowy, obrotowy czy podnoszenie ciężarów. Siłowniki pneumatyczne są szeroko stosowane w wielu aplikacjach, od prostych mechanizmów w maszynach po zaawansowane systemy automatyki przemysłowej. Przy projektowaniu układów pneumatycznych istotne jest przestrzeganie norm, takich jak ISO 1219, które definiują symbole i oznaczenia dla elementów pneumatycznych. Dobrze zaprojektowany system pneumatyczny zapewnia nie tylko efektywność operacyjną, ale również bezpieczeństwo, co jest niezbędne w aplikacjach przemysłowych. Właściwe zrozumienie oraz umiejętność identyfikacji elementów wykonawczych to kluczowe umiejętności w dziedzinie automatyki, które mają wpływ na wydajność i niezawodność całego systemu.

Pytanie 3

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 2.
B. Symbol 4.
C. Symbol 3.
D. Symbol 1.
Symbol 3 rzeczywiście przedstawia tranzystor MOSFET ze wzbogaconym kanałem typu n. Tego rodzaju tranzystory są niezwykle istotne w nowoczesnych układach elektronicznych, ponieważ charakteryzują się niskim poziomem szumów oraz wysoką szybkością przełączania. W zastosowaniach praktycznych, tranzystory MOSFET typu n są często wykorzystywane w układach zasilania, takich jak przetwornice DC-DC, a także w obwodach wzmacniaczy. W kontekście standardów, projektanci układów elektronicznych powinni zwracać uwagę na normy IEEE dotyczące symboli schematycznych, aby zapewnić zgodność i zrozumiałość w dokumentacji technicznej. Dzięki zastosowaniu tranzystorów MOSFET ze wzbogaconym kanałem, możliwe jest osiągnięcie wyższej efektywności energetycznej w systemach, co jest kluczowe w kontekście rosnących wymagań dotyczących oszczędności energii i redukcji emisji. Znajomość takich symboli graficznych jest niezbędna w pracy inżyniera elektronika, aby prawidłowo interpretować schematy oraz projektować złożone układy elektroniczne z uwzględnieniem nowoczesnych technologii.

Pytanie 4

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Sprężynę zaworu zwrotnego
B. Filtr oleju
C. Tłokowy pierścień uszczelniający
D. Zawór bezpieczeństwa
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 5

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Klejenia
B. Zgrzewania
C. Zaginania
D. Spawania
Spawanie to technika, która polega na łączeniu dwóch elementów poprzez ich lokalne stopienie, co umożliwia uzyskanie trwałego połączenia. W kontekście tworzyw sztucznych, spawanie często wykorzystuje się w procesach produkcyjnych, gdzie materiał jest podgrzewany do temperatury topnienia, a następnie łączony z innym elementem. Ta metoda jest szczególnie ceniona w przypadku dużych konstrukcji, gdzie wymagana jest wysoka wytrzymałość połączeń. Klejenie, z drugiej strony, polega na zastosowaniu specjalnych substancji, które penetrują powierzchnie materiałów i tworzą silne wiązania chemiczne. Kleje stosowane do tworzyw sztucznych są projektowane tak, aby zapewnić optymalne wiązanie, co czyni je odpowiednimi do użycia w różnych warunkach. Zgrzewanie, podobnie jak spawanie, jest procesem, który wykorzystuje ciepło do połączenia elementów, co sprawia, że jest efektywną techniką w przemyśle, szczególnie przy produkcji komponentów z tworzyw sztucznych. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie zginania z technikami łączenia. Zginanie, mimo że może być użyteczne w formowaniu materiałów, nie wprowadza trwałych połączeń, co jest kluczowe w kontekście postawionego pytania. W związku z tym, niezrozumienie różnicy pomiędzy modyfikacją kształtu a łączeniem elementów może prowadzić do błędnych wyborów w procesie projektowania i produkcji.

Pytanie 6

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 7

Przedstawiony na rysunku schemat podłączenia dwóch niezależnych źródeł napięcia stałego jest stosowany do zasilania silnika prądu stałego

Ilustracja do pytania
A. obcowzbudnego.
B. bocznikowego.
C. szeregowego.
D. szeregowo-bocznikowego.
Silnik obcowzbudny jest szczególnym przypadkiem silnika prądu stałego, który wykorzystuje niezależne źródło napięcia do zasilania uzwojenia wzbudzenia. W przedstawionym schemacie widać, że uzwojenie wzbudzenia jest zasilane z drugiego źródła, co pozwala na precyzyjne kontrolowanie pola magnetycznego w silniku. Taka konfiguracja jest szczególnie korzystna w zastosowaniach, gdzie wymagana jest wysoka dynamika oraz zmienność momentu obrotowego, jak w przypadku napędów w urządzeniach przemysłowych czy elektrycznych pojazdach. W praktyce, dzięki niezależnemu zasilaniu uzwojenia wzbudzenia, można uzyskać lepszą charakterystykę pracy silnika oraz zwiększyć jego efektywność energetyczną. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie odpowiedniego doboru typów silników do specyficznych aplikacji, a silnik obcowzbudny często znajduje się w wykazie zaleceń do zastosowań wymagających dużych zmian prędkości obrotowej oraz precyzyjnego sterowania.

Pytanie 8

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.
B. oba przyciski są uszkodzone.
C. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
D. oba przyciski są sprawne.
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 9

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. przystąpić do pośredniego masażu serca
C. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
D. ustawić go w pozycji bocznej ustalonej
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 10

Żarówka świeci w układzie przedstawionym na schemacie

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Podczas analizy odpowiedzi, które nie prowadzą do świecenia żarówki w układzie, można zauważyć kilka powszechnych błędów myślowych. W przypadku układów elektrycznych, szczególnie tych, które zawierają diody, fundamentalne znaczenie ma zrozumienie kierunku przepływu prądu. Jeśli dioda jest podłączona w kierunku zaporowym, co ma miejsce w odpowiedziach A, C i D, to nie pozwoli na przepływ prądu, a tym samym żarówka pozostanie zgaszona. W takim przypadku użytkownik może mylnie sądzić, że dioda w ogóle nie wpływa na działanie żarówki, nie biorąc pod uwagę, że jej rola w układzie jest kluczowa. W praktyce, diody są często wykorzystywane w obwodach zabezpieczających, ale ich niewłaściwe podłączenie może prowadzić do całkowitego braku działania urządzenia. Innym typowym błędem jest ignorowanie zasadności stosowania diod w układach szeregowych. W sytuacji, gdy dioda i żarówka są połączone w szereg, ale dioda jest w kierunku zaporowym, prąd nie będzie mógł przepływać przez żarówkę, co uniemożliwi jej świecenie. Zrozumienie tych zasad jest krytyczne dla osób pracujących w dziedzinie elektroniki, ponieważ niewłaściwe podłączenie komponentów może prowadzić nie tylko do awarii sprzętu, ale również do zagrożeń bezpieczeństwa. Użytkownicy powinni zatem podchodzić do analizy schematów elektrycznych z uwagą i wiedzą teoretyczną, aby prawidłowo ocenić, jak każdy element wpływa na funkcjonowanie całego układu.

Pytanie 11

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Praska do zaciskania końcówek tulejkowych to narzędzie kluczowe w procesie montażu połączeń przewodów elektrycznych. Odpowiedź C jest poprawna, ponieważ przedstawiona na rysunku końcówka jest tulejką z izolacją, co czyni ją idealną do użycia z prasą. Tulejki kablowe z izolacją stosuje się, aby zapewnić bezpieczne i trwałe połączenie, a ich zaciskanie przy użyciu pras zapewnia odpowiednią siłę i kontrolę, co jest zgodne z najlepszymi praktykami w elektrotechnice. Dzięki zastosowaniu tego narzędzia, użytkownik minimalizuje ryzyko uszkodzeń przewodów oraz zwiększa jakość połączenia. Ważne jest również, aby stosować odpowiednie tulejki do konkretnego przekroju przewodu, co zapewnia optymalne działanie instalacji. Dodanie smaru izolacyjnego lub zastosowanie komponentów zgodnych z normami IEC 60947-1 i IEC 60364 może dodatkowo poprawić bezpieczeństwo i efektywność elektrycznego połączenia.

Pytanie 12

Ile cyfrowych wejść i cyfrowych wyjść posiada sterownik przedstawiony na rysunku?

Ilustracja do pytania
A. 12 wejść i 6 wyjść.
B. 15 wejść i 12 wyjść.
C. 12 wejść i 15 wyjść.
D. 6 wejść i 12 wyjść.
Sterownik na zdjęciu, posiadający 12 wejść cyfrowych i 6 wyjść cyfrowych, jest zgodny z typowymi zdefiniowanymi normami w automatyce przemysłowej, gdzie liczba wejść i wyjść jest kluczowa dla prawidłowego działania systemu. Wejścia cyfrowe służą do przyjmowania sygnałów z różnych czujników, natomiast wyjścia cyfrowe kontrolują urządzenia wykonawcze, takie jak przekaźniki czy silniki. Przykładowo, w zastosowaniach związanych z automatyzacją procesów produkcyjnych, odpowiednia liczba wejść umożliwia monitorowanie stanu maszyn, a wyjścia pozwalają na ich sterowanie w odpowiedzi na zachodzące zmiany. Kluczowe jest, aby użytkownik potrafił poprawnie zidentyfikować parametry sprzętu, co jest niezbędne w kontekście integracji z systemami SCADA czy PLC. Zgodnie z dobrą praktyką inżynierską, przed rozpoczęciem pracy z danym sterownikiem, należy dokładnie zapoznać się z jego dokumentacją techniczną i specyfikacją, aby w pełni wykorzystać jego możliwości w systemie automatyki.

Pytanie 13

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HFA, HFC, HFD
B. HLP, HFA, HTG
C. HPG, HTG, HT
D. HV, HLP, HLPD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 14

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
B. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
C. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
D. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 15

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √2
B. maksymalna napięcia podzielona przez √3
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 16

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. analizy zużycia styków
B. usuwania kurzu
C. wprowadzania regulacji
D. sprawdzania dokręcenia śrub zacisków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 17

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. mikrometr
B. liniał
C. suwmiarka
D. szczelinomierz
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 18

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Sprężarka
B. Zawór redukcyjny
C. Smarownica
D. Filtr
Wydaje mi się, że wybranie sprężarki jako części zespołu przygotowania powietrza to trochę nieporozumienie. Sprężarka jest tym, co generuje sprężone powietrze, a zespół przygotowania to trochę inna sprawa, bo chodzi o obróbkę tego powietrza przed jego użyciem w przemyśle. Zawór redukcyjny to kluczowa sprawa, bo reguluje ciśnienie powietrza, co jest niezbędne do prawidłowego działania maszyn. Filtry mają za zadanie usunąć niechciane cząstki i wodę, co jest istotne, żeby nie uszkodzić urządzeń. Smarownice też są ważne, bo nawilżają powietrze, a to potrzebne w systemach, gdzie smarowanie musi być precyzyjne. Wszystkie te elementy są naprawdę częścią przygotowania powietrza, a ich funkcje mają ogromne znaczenie dla efektywności i bezpieczeństwa operacji. Nie można tego bagatelizować, bo złe zarządzanie może prowadzić do awarii.

Pytanie 19

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Polistyren
B. Żeliwo białe
C. Teflon
D. Epoksyt
Teflon, znany również jako politetrafluoroetylen (PTFE), jest materiałem, który ze względu na swoje unikalne właściwości, jest powszechnie stosowany w produkcji łożysk ślizgowych. Jego niska współczynnik tarcia, wysoka odporność na chemikalia oraz doskonałe właściwości dielektryczne czynią go idealnym wyborem w aplikacjach, gdzie minimalizacja tarcia jest kluczowa. Teflon jest często wykorzystywany w łożyskach w przemyśle motoryzacyjnym oraz w różnych maszynach przemysłowych, gdzie wymagana jest wysoka wydajność i długotrwała niezawodność. W produkcji łożysk ślizgowych Teflon może być stosowany samodzielnie lub w połączeniu z innymi materiałami, co pozwala na osiągnięcie jeszcze lepszych parametrów. Jako materiał o wysokiej wytrzymałości na ściskanie, Teflon może pracować w trudnych warunkach, co jest istotne w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie trwałości i niezawodności komponentów przemysłowych. Dodatkowo, ze względu na swoje właściwości samosmarujące, łożyska wykonane z Teflonu wymagają mniejszej konserwacji, co przekłada się na obniżenie kosztów operacyjnych.

Pytanie 20

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Pojemności
B. Indukcyjności
C. Rezystancji
D. Indukcji
Indukcja, pojemność i indukcyjność to wielkości fizyczne, które nie są bezpośrednio związane z działaniem tensometrów foliowych. Indukcja odnosi się do zjawisk elektromagnetycznych, takich jak wytwarzanie siły elektromotorycznej w przewodnikach, co ma zastosowanie w czujnikach indukcyjnych, ale nie w tensometrach. Pojemność opisuje zdolność do przechowywania ładunku elektrycznego w kondensatorach, co nie ma związku z mechanicznymi właściwościami materiałów używanych w tensometrach. Indukcyjność dotyczy zjawisk związanych z przepływem prądu w obwodach, ale również nie ma zastosowania w kontekście pomiaru deformacji. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędów w doborze czujników do konkretnych zastosowań. Wybierając odpowiednie technologie pomiarowe, należy opierać się na zrozumieniu, jak różne właściwości fizyczne materiałów wpływają na ich zastosowanie. Pomocne jest również zapoznanie się z normami branżowymi oraz standardowymi metodami pomiaru, aby zapewnić dokładność i niezawodność wyników, co jest istotne w wielu dziedzinach inżynieryjnych.

Pytanie 21

Do pracy związanej z lutowaniem elementów dyskretnych na płytce drukowanej powinno się założyć

A. rękawice odporne na wysoką temperaturę
B. fartuch ochronny
C. okulary ochronne
D. obuwie ochronne z gumową podeszwą
Zakładanie rękawic żaroodpornych, butów ochronnych na podeszwie gumowej lub okularów ochronnych, choć w niektórych sytuacjach ma swoje uzasadnienie, nie zapewnia kompleksowej ochrony, jaką oferuje fartuch ochronny. Rękawice żaroodporne są przeznaczone do ochrony rąk przed wysoką temperaturą, co w kontekście lutowania nie jest kluczowe, ponieważ lutowanie wiąże się z precyzyjną pracą narzędziami. Rękawice mogą ograniczać czucie i precyzję, co w przypadku lutowania elementów dyskretnych jest niezwykle istotne. Buty ochronne na podeszwie gumowej mogą chronić stopy przed upadkiem ciężkich przedmiotów, ale nie oferują ochrony odzieży, co czyni je niewystarczającymi w tej konkretnej sytuacji. Okulary ochronne są istotne w kontekście ochrony oczu, lecz nie chronią reszty ciała, co jest kluczowe w przypadku pracy z gorącymi materiałami. Kluczowym błędem w myśleniu jest pomijanie znaczenia kompleksowej ochrony odzieżowej, która powinna obejmować nie tylko konkretne części ciała, ale także całe ubranie, które minimalizuje ryzyko kontaktu z niebezpiecznymi substancjami. W kontekście standardów bezpieczeństwa, takie podejście do ochrony nie spełnia wymagań dotyczących odzieży roboczej określonych w normach BHP.

Pytanie 22

Który proces technologiczny przedstawiono na rysunku?

Ilustracja do pytania
A. Frezowanie.
B. Dłutowanie.
C. Toczenie.
D. Struganie.
Struganie to proces technologiczny, który polega na usuwaniu materiału z obrabianego przedmiotu za pomocą narzędzia, które wykonuje ruch posuwisto-zwrotny. W przeciwieństwie do toczenia, gdzie przedmiot obrabiany obraca się, a narzędzie pozostaje statyczne, w struganiu to narzędzie porusza się w prostoliniowym ruchu. Proces ten jest szeroko stosowany w obróbce drewna, metalu oraz tworzyw sztucznych, gdzie uzyskuje się wysoką jakość powierzchni oraz precyzyjne wymiary. W praktyce struganie jest wykorzystywane w produkcji elementów meblowych, form i matryc, a także w precyzyjnych operacjach obróbczych, gdzie wymagana jest dokładność. Zgodnie z normami branżowymi, w procesie strugania kluczowe jest właściwe dobranie narzędzi oraz parametrów obróbczych, co zapewnia efektywność i jakość procesu. Dobre praktyki w struganiu obejmują także regularne kontrolowanie stanu narzędzi oraz optymalizację ściegów w celu minimalizacji zużycia materiałów.

Pytanie 23

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na załączanie i wyłączanie pracy prasy
B. na odczyt wartości zmierzonych parametrów
C. na pomiar parametrów procesowych prasy
D. na wizualizację przebiegu pracy prasy
Urządzenia HMI w mechatronice, jak na przykład w prasie hydraulicznej, to naprawdę ważny element do komunikacji między operatorem a maszyną. W kontekście tego pytania, HMI umożliwia odczyt wartości zmierzonych parametrów, co jest kluczowe, aby wiedzieć, w jakim stanie pracuje prasa. Dzięki temu operator może lepiej zrozumieć, co się dzieje w trakcie pracy maszyny, bo wizualizacja przebiegu pracy jest bardzo pomocna. Poza tym, HMI pozwala na włączanie i wyłączanie prasy, co jest istotne w automatyzacji. Trzeba jednak pamiętać, że pomiar samych parametrów procesowych przy pomocy HMI nie jest możliwy, bo jego główną rolą jest pokazywanie danych z innych czujników. W praktyce, standardy jak ISO 10218 dla robotów mówią, że HMI powinno być używane do komunikacji, a nie do pomiarów. Zrozumienie tego, jak działa HMI, jest naprawdę kluczowe przy projektowaniu i obsłudze automatyzacji, a także w dbaniu o ergonomię i bezpieczeństwo w pracy.

Pytanie 24

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP
A. IL
B. FBD
C. ST
D. LAD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to IL, czyli Instruction List. Język ten jest jednym z pięciu standardowych języków programowania PLC określonych w normie IEC 61131-3. IL jest językiem tekstowym, który charakteryzuje się dużą wydajnością i zwięzłością, co czyni go idealnym do programowania zadań wymagających efektywnego wykorzystania zasobów. W programowaniu w języku IL, instrukcje są zapisywane w formie linii kodu, co przypomina składnię asemblera. Przykłady instrukcji, takie jak „L” (Load) czy „O” (Or), wskazują na operacje wykonywane na danych, co pozwala na precyzyjne manipulowanie sygnałami wejściowymi i wyjściowymi. W praktyce, język IL jest często wykorzystywany w aplikacjach wymagających szybkich reakcji, takich jak systemy automatyki przemysłowej, gdzie czas reakcji jest kluczowy. Zrozumienie zasad programowania w IL jest istotne dla inżynierów automatyki, którzy pracują nad optymalizacją procesów produkcyjnych, co potwierdzają liczne wdrożenia w przemyśle. W kontekście dobrych praktyk, znajomość IL umożliwia również łatwiejsze przechodzenie do innych języków programowania PLC, co jest korzystne w złożonych projektach automatyzacyjnych.

Pytanie 25

Na którym rysunku przedstawiono proces gięcia stali przez przeciąganie?

Ilustracja do pytania
A. Na rysunku 2.
B. Na rysunku 1.
C. Na rysunku 4.
D. Na rysunku 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gięcie stali przez przeciąganie, przedstawione na rysunku 4, jest kluczowym procesem w obróbce metali, który polega na formowaniu materiału poprzez jego przeciąganie przez narzędzie. W tym przypadku narzędzie ma kształt litery 'V', co pozwala na uzyskanie precyzyjnego zakrzywienia. Tego rodzaju proces jest szeroko stosowany w przemyśle, zwłaszcza w produkcji elementów konstrukcyjnych, takich jak belki czy ramy. Gięcie przez przeciąganie jest efektywne, ponieważ pozwala na zachowanie integralności materiału oraz osiągnięcie wysokiej jakości powierzchni. Warto również wspomnieć, że zgodnie z normami ISO dla obróbki blach, techniki gięcia muszą uwzględniać nie tylko geometrię, ale również właściwości mechaniczne materiału, co ma bezpośredni wpływ na trwałość i funkcjonalność finalnego produktu. Przykładem zastosowania tej metody może być produkcja części dla branży motoryzacyjnej, gdzie precyzyjne gięcie stali jest niezbędne do zapewnienia odpowiedniego dopasowania i wytrzymałości elementów.

Pytanie 26

Zawór dławiąco-zwrotny 1V2 układu pneumatycznego przedstawionego na schemacie umożliwia powolne

Ilustracja do pytania
A. wsunięcie tłoczyska siłownika metodą dławienia na wypływie.
B. wsunięcie tłoczyska siłownika metodą dławienia na dopływie.
C. wysunięcie tłoczyska siłownika metodą dławienia na dopływie.
D. wysunięcie tłoczyska siłownika metodą dławienia na wypływie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ zawór dławiąco-zwrotny 1V2 rzeczywiście umożliwia powolne wsunięcie tłoczyska siłownika poprzez dławienie przepływu medium na wypływie. W praktyce oznacza to, że powietrze opuszczające siłownik jest ograniczane, co pozwala na kontrolowanie prędkości, z jaką tłoczysko się wsuwa. To zjawisko jest istotne w wielu zastosowaniach przemysłowych, gdzie precyzyjna regulacja ruchu jest kluczowa, na przykład w automatyzacji procesów produkcyjnych. W zastosowaniach takich jak montaż, pakowanie czy manipulacja materiałami, kontrola prędkości ruchu siłowników pneumatycznych jest niezbędna do zapewnienia bezpieczeństwa i precyzji. Zgodnie z dobrymi praktykami, użycie zaworów dławiąco-zwrotnych pozwala na zminimalizowanie ryzyka uszkodzenia elementów układu oraz poprawia efektywność energetyczną systemów pneumatycznych. W związku z tym, zrozumienie funkcji zaworu 1V2 oraz jego zastosowania jest kluczowe dla każdego specjalisty zajmującego się techniką pneumatyczną.

Pytanie 27

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej temperatury oleju
B. niskiej ściśliwości oleju
C. wysokiego ciśnienia oleju
D. wysokiej temperatury oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysoka temperatura oleju hydraulicznego prowadzi do zmniejszenia jego lepkości. Wzrost temperatury powoduje, że cząsteczki oleju zaczynają się poruszać szybciej, co skutkuje łatwiejszym przepływem i zmniejszeniem oporu. Zjawisko to jest szczególnie istotne w systemach hydraulicznych, gdzie odpowiednia lepkość oleju jest kluczowa dla efektywności działania układów. Na przykład, w maszynach budowlanych lub przemysłowych, gdzie olej hydrauliczny pełni rolę siły napędowej, jego właściwa lepkość zapewnia skuteczne przekazywanie mocy i minimalizuje ryzyko awarii elementów układu. W wielu standardach, takich jak ISO 6743-4, określają się wymagania dotyczące lepkości olejów hydraulicznych w zależności od temperatury pracy, co pozwala na dobór odpowiednich produktów do konkretnych zastosowań. W praktyce, monitorowanie temperatury oleju oraz jego lepkości jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania układów hydraulicznych.

Pytanie 28

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Brązowym
B. Czarnym
C. Niebieskim
D. Żółtym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 29

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. częstotliwości sygnału
B. amplitudy impulsu
C. szerokości impulsu
D. fazy sygnału

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szerokość impulsu (PWM) odnosi się do metody modulacji, w której czas, przez jaki sygnał jest w stanie wysokim, jest zmieniany w stosunku do czasu, przez jaki jest w stanie niskim. To pozwala na kontrolowanie mocy dostarczanej do obciążenia, co ma kluczowe znaczenie w aplikacjach takich jak regulacja prędkości silników elektrycznych, sterowanie jasnością diod LED czy zarządzanie temperaturą w układach grzewczych. W praktyce, zmiana szerokości impulsu w sygnale PWM pozwala na uzyskanie różnych poziomów mocy bez konieczności zmiany napięcia. Przykładowo, w przypadku silnika DC, poprzez zwiększenie szerokości impulsu można znacząco podnieść jego prędkość obrotową. Stosując PWM, można również osiągnąć większą wydajność energetyczną, co jest istotne w kontekście standardów ochrony środowiska i efektywności energetycznej. Z tego powodu techniki PWM znalazły zastosowanie w wielu nowoczesnych układach automatyki przemysłowej, co podkreśla ich znaczenie w dzisiejszej technologii.

Pytanie 30

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.

Pytanie 31

Na schemacie symbolem 1A oznaczono

Ilustracja do pytania
A. element wykonawczy.
B. stację zasilania olejem.
C. zawór rozdzielający.
D. czujniki położenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol 1A na schemacie oznacza element wykonawczy, którym jest siłownik pneumatyczny. Siłowniki odgrywają kluczową rolę w automatyzacji procesów przemysłowych, zamieniając energię sprężonego powietrza na ruch mechaniczny. Dzięki temu, siłowniki są szeroko stosowane w różnych aplikacjach, takich jak transport materiałów, montaż, czy pakowanie. Przykładem zastosowania siłownika może być linia montażowa, gdzie siłownik wykonawczy przemieszcza elementy w odpowiednich sekwencjach, co zwiększa efektywność produkcji. W kontekście standardów branżowych, siłowniki pneumatyczne często zgodne są z normami ISO, co zapewnia ich niezawodność i kompatybilność w różnorodnych systemach. Warto również zwrócić uwagę na wybór odpowiednich siłowników w zależności od aplikacji, co może obejmować ich rozmiar, siłę oraz rodzaj napędu, co w praktyce przekłada się na optymalizację procesu i redukcję kosztów operacyjnych.

Pytanie 32

Który miernik należy zastosować w układzie, którego schemat przedstawiono na ilustracji, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Woltomierz.
B. Watomierz.
C. Omomierz.
D. Amperomierz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz jest kluczowym narzędziem w pomiarach elektrycznych, które umożliwia bezpośrednie określenie napięcia w obwodzie. Jego zastosowanie polega na podłączeniu do układu równolegle do elementu, którego napięcie chcemy zmierzyć. Dzięki temu woltomierz nie zakłóca pracy obwodu, co jest zgodne z zasadami pomiarów elektrycznych. Przykładowo, w praktyce inżynierskiej, woltomierz jest używany do sprawdzania napięcia w obwodach zasilających urządzenia, co pozwala na ocenę ich stanu funkcjonalności. Zgodnie z normami IEC, pomiar napięcia powinien być przeprowadzany z użyciem sprzętu odpowiedniego do wartości mierzonych oraz warunków pracy - woltomierze cyfrowe są w tym przypadku preferowane ze względu na ich dokładność i łatwość odczytu. Dodatkowo, woltomierze mogą mieć różne tryby pracy, co pozwala na pomiar zarówno napięcia stałego, jak i zmiennego, co czyni je wszechstronnym narzędziem inżynierskim.

Pytanie 33

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Narzynka
B. Skrobak
C. Gwintownik
D. Tłocznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 34

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. filtr powietrza, zawór redukcyjny z manometrem, smarownica
B. manometr, filtr powietrza, smarownica
C. smarownica, filtr powietrza, manometr
D. smarownica, filtr powietrza, zawór redukcyjny, manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 35

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. nieprawidłowo zamocowanym przewodem pneumatycznym
B. siłownikiem
C. tłoczyskiem siłownika
D. przerwanym przewodem pneumatycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 36

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystor o wartości 1 kΩ i tolerancji 5% jest oznaczony paskami w kolorach: brązowy, czarny, czerwony i złoty. Brązowy reprezentuje cyfrę 1, czarny cyfrę 0, czerwony mnożnik 100, a złoty określa tolerancję na poziomie 5%. Odpowiedź A zawiera te kolory, co oznacza, że jest to prawidłowy wybór. W praktyce, umiejętność odczytywania wartości rezystorów z kodów paskowych jest kluczowa w elektronice, ponieważ właściwy dobór rezystorów wpływa na działanie obwodów elektronicznych. W przypadku projektowania układów elektronicznych, tolerancja rezystora ma znaczenie dla stabilności i niezawodności działania urządzenia; 5% tolerancji oznacza, że rzeczywista rezystancja może różnić się od nominalnej o 5% w górę lub w dół. Warto zatem pamiętać, że dobór właściwych komponentów zgodnie z ich specyfikacją jest jednym z podstawowych aspektów inżynierii elektroniki i elektrotechniki.

Pytanie 37

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
B. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
C. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 38

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika dwustronnego działania
B. Do zbiornika oleju hydraulicznego
C. Do zbiornika sprężonego powietrza
D. Do siłownika jednostronnego działania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 39

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po wezwaniu pomocy medycznej
B. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
C. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
D. po poinformowaniu osoby przełożonej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 40

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór redukcyjny, manometr, smarownica
B. sprężarka, filtr, manometr, smarownica
C. filtr, zawór dławiący, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.