Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 4 lutego 2026 17:05
  • Data zakończenia: 4 lutego 2026 17:17

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych adresów IPv4 stanowi adres publiczny?

A. 10.0.3.42
B. 172.16.32.7
C. 192.168.0.4
D. 194.204.152.34
Adresy 10.0.3.42, 172.16.32.7 oraz 192.168.0.4 to przykłady adresów prywatnych, które są stosowane w sieciach lokalnych. Adresy prywatne są definiowane przez standardy RFC 1918 i RFC 4193 i nie mogą być routowane w Internecie. Z tego powodu nie mogą być używane do komunikacji z zewnętrznymi sieciami. W przypadku 10.0.3.42, to adres z zakresu 10.0.0.0/8, który jest przeznaczony dla dużych sieci lokalnych. Adres 172.16.32.7 znajduje się w zakresie 172.16.0.0/12, również dedykowany dla prywatnych sieci. Z kolei 192.168.0.4, który jest jednym z najbardziej popularnych adresów w użyciu domowym, należy do zakresu 192.168.0.0/16. Typowym błędem jest mylenie adresów prywatnych z publicznymi, co prowadzi do nieprawidłowego planowania infrastruktury sieciowej. Osoby projektujące sieci lokalne często nie zdają sobie sprawy, że adresy prywatne są widoczne tylko wewnątrz danej sieci i nie można ich używać do komunikacji z innymi sieciami w Internecie. Dlatego ważne jest, aby przy projektowaniu sieci lokalnych zrozumieć różnicę między adresami prywatnymi a publicznymi oraz zastosować odpowiednie praktyki, takie jak używanie NAT (Network Address Translation) w celu umożliwienia komunikacji z Internetem przy użyciu adresu publicznego.

Pytanie 2

W systemie Linux narzędzie, które umożliwia śledzenie trasy pakietów od źródła do celu, pokazując procentowe straty oraz opóźnienia, to

A. tracert
B. route
C. mtr
D. ping
Wybór polecenia ping, mimo że jest to powszechnie używane narzędzie do testowania dostępności hostów w sieci, nie jest odpowiedni dla opisanego pytania. Ping jedynie wysyła pakiety ICMP Echo Request do docelowego hosta i oczekuje na odpowiedź, co pozwala na sprawdzenie, czy dany adres IP jest osiągalny. Nie dostarcza jednak informacji o trasie, jaką pokonują pakiety, ani nie monitoruje strat pakietów w czasie rzeczywistym. Kolejne polecenie, route, jest narzędziem służącym do zarządzania tablicą routingu w systemie operacyjnym. Umożliwia przeglądanie i modyfikację ścieżek routingu, jednak nie jest używane do analizy opóźnień czy strat pakietów. Natomiast tracert (w systemie Windows) jest odpowiednikiem traceroute, ale jest to narzędzie, które działa na innej zasadzie i może nie dostarczać tak szczegółowych danych o czasie odpowiedzi w sposób, w jaki robi to mtr. Typowym błędem w rozumieniu tych narzędzi jest przypuszczenie, że każde z nich pełni tę samą funkcję, podczas gdy każde z nich ma swoje specyficzne zastosowania w diagnostyce i zarządzaniu sieciami. Kluczowe jest zrozumienie, jakie konkretne informacje są potrzebne do analizy problemów z łącznością, aby wybrać odpowiednie narzędzie do rozwiązania danego problemu.

Pytanie 3

Który z interfejsów umożliwia transfer danych zarówno w formacie cyfrowym, jak i analogowym pomiędzy komputerem a wyświetlaczem?

A. DVI-I
B. HDMI
C. DFP
D. DISPLAY PORT
Wybór innych interfejsów, takich jak DisplayPort, DFP czy HDMI, może wydawać się logiczny, jednak każdy z nich ma swoje ograniczenia, które uniemożliwiają przesyłanie sygnałów zarówno w formacie cyfrowym, jak i analogowym. DisplayPort jest nowoczesnym standardem, który obsługuje wyłącznie sygnały cyfrowe, a jego zastosowanie skierowane jest głównie do nowoczesnych monitorów, które nie wymagają analogowej transmisji. DFP (Digital Flat Panel) to interfejs przestarzały, używany głównie w monitorach LCD, który z kolei nie obsługuje sygnałów analogowych, co czyni go mniej wszechstronnym. HDMI (High-Definition Multimedia Interface) to interfejs stworzony głównie do przesyłania sygnałów audio-wideo w jakości HD, ale również nie obsługuje sygnałów analogowych w sposób, w jaki robi to DVI-I. Typowym błędem myślowym jest założenie, że nowocześniejsze interfejsy są zawsze lepsze; nie uwzględnia to jednak faktu, że w wielu przypadkach starsze technologie, takie jak DVI-I, mogą być bardziej użyteczne w specyficznych scenariuszach, gdzie konieczne jest zastosowanie zarówno sygnałów analogowych, jak i cyfrowych. Dlatego też, w sytuacjach wymagających interoperacyjności między różnorodnymi systemami wyświetlania, DVI-I stanowi lepszy wybór.

Pytanie 4

Aplikacja służąca jako dodatek do systemu Windows, mająca na celu ochronę przed oprogramowaniem szpiegującym oraz innymi niepożądanymi elementami, to

A. Windows Azure
B. Windows Embedded
C. Windows Defender
D. Windows Home Server
Windows Defender to takie wbudowane narzędzie w Windowsie, które ma na celu walkę z złośliwym oprogramowaniem, jak wirusy czy oprogramowanie szpiegujące. Działa to tak, że cały czas monitoruje, co się dzieje w systemie, a także skanuje pliki i programy, które pobierasz. Dodatkowo, to oprogramowanie korzysta z różnych nowoczesnych metod wykrywania, jak np. heurystyka, co pozwala mu rozpoznać nowe zagrożenia, które nie są jeszcze znane. Co więcej, regularne aktualizacje pomagają mu dostosować się do pojawiających się zagrożeń. Takim przykładem jego działania może być automatyczne skanowanie po ściągnięciu nowego oprogramowania, co znacząco zmniejsza szanse na infekcję. Warto dodać, że Windows Defender jest zgodny z najlepszymi praktykami w branży zabezpieczeń, więc naprawdę jest ważnym elementem ochrony w Windowsie.

Pytanie 5

Na ilustracji zaprezentowane jest urządzenie, które to

Ilustracja do pytania
A. router.
B. wtórnik.
C. koncentrator.
D. bramka VoIP.
Koncentrator, znany również jako hub, to urządzenie sieciowe wykorzystywane do łączenia wielu urządzeń w sieci lokalnej LAN. Działa na warstwie fizycznej modelu OSI co oznacza że przekazuje dane bez analizy ich zawartości. Głównym zadaniem koncentratora jest odbieranie sygnałów z jednego urządzenia i rozsyłanie ich do wszystkich pozostałych portów. To proste działanie sprawia że koncentrator jest mniej skomplikowany niż bardziej zaawansowane urządzenia sieciowe jak przełączniki czy routery które operują na wyższych warstwach modelu OSI. Koncentratory były popularne w początkowej fazie rozwoju sieci Ethernet jednak z czasem zostały zastąpione przez przełączniki które efektywniej zarządzają ruchem sieciowym dzięki możliwości kierowania pakietów tylko do docelowego portu co minimalizuje kolizje w sieci. Współcześnie koncentratory są rzadziej używane i mogą być spotykane głównie w prostych sieciach domowych lub jako narzędzia do testowania sygnałów. Standardowe praktyki branżowe sugerują ich unikanie w bardziej złożonych środowiskach ze względu na ograniczoną przepustowość i potencjał do wywoływania przeciążeń sieciowych.

Pytanie 6

Urządzenie sieciowe, które łączy pięć komputerów w tej samej sieci, minimalizując ryzyko kolizji pakietów, to

A. ruter
B. koncentrator
C. most
D. przełącznik
Przełącznik (switch) jest urządzeniem sieciowym, które działa na warstwie drugiej modelu OSI (warstwie łącza danych). Jego podstawową funkcją jest inteligentne kierowanie danych w sieci lokalnej (LAN) poprzez analizę adresów MAC. W przeciwieństwie do koncentratora, który przesyła sygnał do wszystkich portów, przełącznik przesyła dane tylko do konkretnego urządzenia, co znacząco zmniejsza liczbę kolizji pakietów. Dzięki tej funkcjonalności przełączniki są kluczowym elementem nowoczesnych architektur sieciowych. Na przykład, w biurach, gdzie wiele komputerów wymienia dane, przełączniki zapewniają szybką i wydajną komunikację, co jest niezbędne dla działań wymagających dużej przepustowości, takich jak wideokonferencje czy przesyłanie dużych plików. W kontekście standardów, przełączniki pracują zgodnie z protokołami Ethernet, a zaawansowane modele wspierają techniki takie jak VLAN (Virtual Local Area Network), co pozwala na dalsze segmentowanie sieci i zwiększenie bezpieczeństwa. W praktyce, przełącznik jest niezastąpiony w każdej sieci lokalnej, gdzie operacje muszą być szybkie i niezawodne.

Pytanie 7

Komputer wyposażony w BIOS firmy Award wygenerował komunikat o treści Primary/Secondary master/slave hard disk fail. Komunikat ten może oznaczać konieczność wymiany

A. karty graficznej.
B. pamięci operacyjnej.
C. dysku twardego.
D. klawiatury.
Komunikat generowany przez BIOS Award o treści „Primary/Secondary master/slave hard disk fail” bezpośrednio wskazuje na problem z dyskiem twardym podłączonym do płyty głównej – dokładniej chodzi tu o urządzenie wykrywane jako główny lub pomocniczy napęd na konkretnej taśmie IDE lub SATA. Takie ostrzeżenie BIOS-u zwykle oznacza, że dysk twardy nie odpowiada na sygnały inicjalizacyjne podczas POST, czyli procedury testowania sprzętu przy starcie komputera. Z mojego doświadczenia wynika, że najczęściej przyczyną bywa fizyczna awaria dysku, jego zużycie, a czasem uszkodzenie elektroniki. Dobrą praktyką w takiej sytuacji jest najpierw sprawdzenie okablowania, zasilania oraz podłączenia dysku, ale jeśli to nie pomaga, wymiana dysku twardego jest sensownym i często nieuniknionym krokiem. Standardy branżowe – zwłaszcza te dotyczące diagnostyki sprzętowej – jasno mówią, że komunikaty BIOS-u są pierwszą, najbardziej wiarygodną informacją na temat awarii urządzeń bazowych. Warto dodać, że podobne komunikaty mogą się pojawić również w przypadku uszkodzenia kontrolera na płycie głównej, ale statystycznie winny jest sam dysk. W praktyce serwisowej zawsze trzeba też pamiętać o backupie danych, bo awarie dysków rzadko pojawiają się bez ostrzeżenia. Moim zdaniem umiejętność interpretacji takich komunikatów to podstawa pracy technika informatyk – pozwala od razu zawęzić pole poszukiwań i nie tracić czasu na sprawdzanie sprzętu niezwiązanego z problemem.

Pytanie 8

Symbol umieszczony na obudowie komputera stacjonarnego wskazuje na ostrzeżenie dotyczące

Ilustracja do pytania
A. możliwości zagrożenia radiacyjnego
B. porażenia prądem elektrycznym
C. możliwego urazu mechanicznego
D. promieniowania niejonizującego
Symbol przedstawiony na obudowie komputera stacjonarnego to powszechnie znany znak ostrzegawczy przed porażeniem prądem elektrycznym. Jest to żółty trójkąt z czarną obwódką i czarnym symbolem błyskawicy wewnątrz, zgodnie z normami międzynarodowymi, takimi jak ISO 7010 oraz IEC 60417. Tego rodzaju oznaczenie ma na celu zwrócenie uwagi użytkownika na potencjalne zagrożenie wynikające z obecności napięcia elektrycznego, które może być niebezpieczne dla zdrowia lub nawet życia ludzkiego. W kontekście sprzętu komputerowego, porażenie prądem może wystąpić w wyniku usterki wewnętrznych komponentów zasilania, niepoprawnego uziemienia lub kontaktu z przewodami pod napięciem. Stosowanie tego typu oznaczeń jest kluczową praktyką w branży elektronicznej i elektrycznej, mającą na celu zwiększenie bezpieczeństwa pracy oraz ochronę użytkowników przed niebezpiecznymi sytuacjami. Jest to również ważny element edukacyjny, przypominający o konieczności przestrzegania zasad bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, a także o znaczeniu regularnych przeglądów technicznych sprzętu.

Pytanie 9

Jakie są wartości zakresu częstotliwości oraz maksymalnej prędkości przesyłu danych w standardzie 802.11g WiFi?

A. 2,4 GHz 54 Mbps
B. 5 GHz 300 Mbps
C. 2,4 GHz 300 Mbps
D. 5 GHz 54 Mbps

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Standard 802.11g jest częścią rodziny standardów IEEE 802.11, który definiuje zasady komunikacji w sieciach bezprzewodowych. Działa w paśmie 2,4 GHz, co jest korzystne, ponieważ to pasmo jest powszechnie dostępne i może być używane przez wiele urządzeń bez potrzeby uzyskiwania zezwoleń. Maksymalna szybkość transmisji danych w standardzie 802.11g wynosi 54 Mbps, co czyni go znacznym ulepszeniem w porównaniu do starszego standardu 802.11b, który oferował maksymalnie 11 Mbps. Użycie standardu 802.11g jest szczególnie praktyczne w środowiskach domowych i biurowych, gdzie wiele urządzeń, takich jak laptopy, smartfony i tablety, korzysta z sieci Wi-Fi. Standard ten jest również zgodny wstecz z 802.11b, co pozwala na współpracę starszych urządzeń z nowymi. W praktyce, mimo że teoretyczna prędkość wynosi 54 Mbps, rzeczywiste prędkości mogą być niższe z powodu interferencji, przeszkód fizycznych oraz liczby urządzeń podłączonych do sieci. Zrozumienie tych parametrów pozwala administratorom sieci i użytkownikom lepiej planować oraz optymalizować ich konfiguracje sieciowe.

Pytanie 10

Na przedstawionym schemacie blokowym fragmentu systemu mikroprocesorowego, co oznacza symbol X?

Ilustracja do pytania
A. pamięć stałą ROM
B. kontroler DMA
C. kontroler przerwań
D. pamięć Cache
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu mikroprocesorowego. Pamięć stała ROM jest używana do przechowywania oprogramowania lub danych, które nie mogą być zmieniane podczas normalnej pracy systemu, często zawiera BIOS w komputerach klasy PC. Nie jest jednak związana z obsługą przerwań, które wymagają dynamicznej interakcji i priorytetyzacji sygnałów od różnych urządzeń. Pamięć Cache, z kolei, służy do tymczasowego przechowywania najczęściej używanych danych w celu przyspieszenia dostępu do nich przez procesor. Jest to mechanizm optymalizacyjny mający na celu zwiększenie wydajności przetwarzania danych, a nie zarządzanie sygnałami przerwań. Kontroler DMA odpowiada za bezpośredni dostęp do pamięci przez urządzenia peryferyjne bez udziału procesora, co odciąża procesor przy dużych transferach danych. Choć jest to zaawansowane rozwiązanie do zarządzania przepustowością danych, jego funkcja różni się od zarządzania przerwaniami. Błędne rozumienie tych funkcji może prowadzić do niepoprawnego przypisania komponentów w schematach blokowych. Kluczowe jest zrozumienie specyficznych ról tych urządzeń oraz tego, jak wpływają one na pracę całego systemu mikroprocesorowego. Właściwa klasyfikacja zapewnia poprawne projektowanie i implementację systemów wbudowanych i komputerowych.

Pytanie 11

Aby uruchomić przedstawione narzędzie systemu Windows, należy użyć polecenia

Ilustracja do pytania
A. nmon
B. taskmgr
C. dxdiag
D. msconfig

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polecenie dxdiag uruchamia w systemie Windows narzędzie diagnostyczne DirectX, które według mnie należy do najważniejszych narzędzi systemowych, jeśli chodzi o sprawdzanie komponentów multimedialnych i graficznych. Dzięki dxdiag można bardzo szybko uzyskać szczegółowe dane na temat wersji DirectX, zainstalowanych sterowników audio i wideo, a także stanu sprzętu. W praktyce jest to nieocenione narzędzie podczas rozwiązywania problemów z grami, aplikacjami graficznymi czy nawet przy zwyczajnym sprawdzaniu zgodności sprzętu z nowym oprogramowaniem. Moim zdaniem każdy technik czy informatyk pracujący z Windows powinien znać dxdiag na pamięć, bo pozwala on w kilka sekund zidentyfikować problemy ze sterownikami lub nieprawidłową konfiguracją systemu. W branży IT to wręcz standard i podstawa pracy w dziale wsparcia technicznego; praktycznie każda poważniejsza diagnostyka sprzętu graficznego zaczyna się właśnie od uruchomienia dxdiag. Szczerze, narzędzie jest dużo bardziej przyjazne niż niektóre zamienniki, bo za jednym razem podaje zestaw kluczowych informacji w czytelnej formie. Dobra praktyka to wygenerować raport z dxdiag przed aktualizacją sterowników – można wtedy szybko porównać zmiany. Trochę szkoda, że tak wielu użytkowników go nie zna, bo czasem rozwiązałoby to mnóstwo problemów bez szukania ich po omacku.

Pytanie 12

Jakie urządzenie w sieci lokalnej nie wydziela segmentów sieci komputerowej na kolizyjne domeny?

A. Router
B. Przełącznik
C. Koncentrator
D. Most

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koncentrator to urządzenie, które działa na warstwie fizycznej modelu OSI, co oznacza, że jego głównym zadaniem jest transmitowanie sygnałów elektrycznych lub optycznych pomiędzy podłączonymi urządzeniami w sieci lokalnej. W przeciwieństwie do innych urządzeń, takich jak mosty, przełączniki czy routery, koncentrator nie filtruje ani nie przechowuje danych, a jedynie przekazuje je do wszystkich portów. To oznacza, że nie dzieli obszaru sieci na domeny kolizyjne, co skutkuje tym, że wszystkie urządzenia podłączone do koncentratora dzielą tę samą domenę kolizyjną. Przykładem zastosowania koncentratora może być niewielka sieć lokalna, w której nie ma dużego ruchu danych, co sprawia, że prostota oraz niski koszt jego wdrożenia są atutami. W nowoczesnych sieciach lokalnych rzadko spotyka się koncentratory, ponieważ zastępują je przełączniki, które są bardziej efektywne i pozwalają na lepsze zarządzanie ruchem danych. Zaleca się korzystanie z przełączników w większych i bardziej złożonych infrastrukturach sieciowych, aby zminimalizować kolizje i poprawić wydajność sieci.

Pytanie 13

Jakie urządzenie sieciowe umożliwia połączenie sieci LAN z WAN?

A. Router
B. Repeater
C. Hub
D. Switch
Router to takie ważne urządzenie w sieciach. Jego główną rolą jest łączenie różnych sieci, znaczy to, że podłącza na przykład naszą domową sieć lokalną do internetu. Jak to działa? Router patrzy na adresy IP w pakietach danych i decyduje, gdzie je wysłać. Przykładowo, kiedy korzystasz z laptopa lub telefonu, router łączy to wszystko z siecią globalną, co pozwala ci na dostęp do różnych stron czy zasobów online. Oprócz tego, router może też działać jak zapora (firewall), co jest super ważne dla bezpieczeństwa. A jeśli chodzi o NAT, to dzięki temu wiele urządzeń w twoim domu może korzystać z jednego adresu IP. No i pamiętaj, żeby regularnie aktualizować oprogramowanie routera. To pomaga, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 14

Jaką rolę pełni usługa NAT działająca na ruterze?

A. Przesył danych korekcyjnych RTCM z wykorzystaniem protokołu NTRIP
B. Przekształcanie adresów stosowanych w sieci LAN na jeden lub więcej publicznych adresów
C. Synchronizacja czasu z serwerem NTP w internecie
D. Autoryzacja użytkownika z wykorzystaniem protokołu NTLM oraz jego danych logowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usługa NAT (Network Address Translation) realizuje tłumaczenie adresów IP używanych w sieci lokalnej (LAN) na adresy publiczne, co jest kluczowe w kontekście współczesnych sieci komputerowych. Główną funkcją NAT jest umożliwienie wielu urządzeniom w sieci lokalnej korzystania z jednego lub kilku adresów IP w Internecie. Jest to niezwykle istotne, zwłaszcza w obliczu ograniczonej puli adresów IPv4. NAT pozwala na ukrycie struktury wewnętrznej sieci, co zwiększa bezpieczeństwo, ponieważ zewnętrzni użytkownicy nie mają dostępu do prywatnych adresów IP. Przykładem zastosowania NAT jest sytuacja, gdy domowy router łączy różne urządzenia, takie jak smartfony, laptopy i tablety, z Internetem, używając jednego publicznego adresu IP. Dodatkowo NAT ułatwia zarządzanie ruchami sieciowymi, a także pozwala na łatwiejsze wdrażanie polityk bezpieczeństwa i priorytetów ruchu. Zgodnie z dobrymi praktykami, NAT powinien być skonfigurowany w sposób minimalizujący opóźnienia oraz maksymalizujący przepustowość, co jest kluczowe dla wydajności sieci.

Pytanie 15

Koprocesor arytmetyczny, który pełni funkcję wykonywania obliczeń na liczbach zmiennoprzecinkowych w mikroprocesorze, został na schemacie oznaczony cyfrą

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koprocesor arytmetyczny, czyli FPU (Floating Point Unit), to jeden z ważniejszych elementów nowoczesnych mikroprocesorów. Dzięki niemu można bez problemu wykonywać operacje na liczbach zmiennoprzecinkowych. Jak wiadomo, w architekturze komputerowej FPU zajmuje się bardziej precyzyjnymi obliczeniami, które ALU (Arithmetic Logic Unit) może zrobić, ale nie tak dokładnie. W schemacie znajdziesz go jako cyfrę 4. Przykłady zastosowań? W grach czy programach do analizy danych trzeba mieć dużą dokładność, więc FPU bardzo sobie radzi z takimi rzeczami jak mnożenie czy dzielenie. W inżynierii, na przykład w programach CAD, kluczowe jest modelowanie złożonych struktur, a bez precyzyjnych obliczeń byłoby ciężko. Warto również pamiętać, że koprocesory arytmetyczne muszą spełniać pewne standardy, jak te od IEEE 754, żeby wszystko działało płynnie i niezawodnie. Dzięki nim programiści mogą pisać lepsze i bardziej zaawansowane aplikacje, które w pełni wykorzystują moc dzisiejszych procesorów.

Pytanie 16

Jakie polecenie diagnostyczne powinno się użyć, aby uzyskać informacje na temat tego, czy miejsce docelowe odpowiada oraz po jakim czasie nastąpiła odpowiedź?

A. ipcconfig
B. nbtstat
C. ping
D. route
Odpowiedzią, która prawidłowo odpowiada na pytanie o diagnostykę połączeń sieciowych, jest polecenie 'ping'. Jest to narzędzie, które służy do testowania dostępności hostów w sieci poprzez wysyłanie pakietów ICMP Echo Request i oczekiwanie na ICMP Echo Reply. Dzięki temu administratorzy sieci mogą ocenić, czy dane miejsce docelowe jest osiągalne, oraz zmierzyć czas, jaki zajmuje przesłanie pakietów i otrzymanie odpowiedzi, co jest istotnym wskaźnikiem opóźnienia w transmisji (latency). Przykładowo, wykonując polecenie 'ping www.example.com', uzyskujemy informacje o czasie odpowiedzi i ewentualnych utraconych pakietach, co pozwala na wstępną ocenę jakości połączenia. Jest to standardowa praktyka w diagnostyce sieci, stosowana przez specjalistów IT do szybkiej identyfikacji problemów z połączeniem i monitorowania stanu sieci. Warto także dodać, że narzędzie 'ping' jest dostępne w praktycznie wszystkich systemach operacyjnych, co czyni je uniwersalnym i niezbędnym narzędziem w codziennej pracy administratorów sieci.

Pytanie 17

Który z parametrów okablowania strukturalnego definiuje stosunek mocy sygnału tekstowego w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu kabla?

A. Przenik zdalny
B. Suma przeników zdalnych
C. Przenik zbliżny
D. Suma przeników zbliżnych i zdalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenik zbliżny, znany również jako crosstalk bliski, to kluczowy parametr okablowania strukturalnego, który definiuje stosunek mocy sygnału tekstowego w jednej parze przewodów do mocy sygnału wyindukowanego w sąsiedniej parze, na tym samym końcu kabla. W praktyce oznacza to, że przenik zbliżny jest miarą wpływu zakłóceń elektromagnetycznych między parami w tym samym kablu, co jest istotne dla zapewnienia wysokiej jakości transmisji danych. W standardach EIA/TIA 568 oraz ISO/IEC 11801 określone są maksymalne dopuszczalne wartości przeniku zbliżnego, które mają kluczowe znaczenie dla projektowania, instalacji i testowania systemów okablowania strukturalnego. Na przykład, w aplikacjach Ethernet 10GBase-T, przenik zbliżny powinien być utrzymany na niskim poziomie, aby zminimalizować błędy w transmisji. Praktyczne zastosowania tej wiedzy obejmują zarówno projektowanie kabli, jak i dobór odpowiednich komponentów, takich jak złącza i gniazda, które są zgodne z normami branżowymi, umożliwiając efektywną komunikację w sieciach komputerowych.

Pytanie 18

Dodatkowe właściwości wyniku operacji przeprowadzanej przez jednostkę arytmetyczno-logiczna ALU zawiera

A. akumulator
B. wskaźnik stosu
C. licznik rozkazów
D. rejestr flagowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rejestr flagowy jest kluczowym elementem jednostki arytmetyczno-logicznej (ALU), który przechowuje informacje o wynikach ostatnich operacji arytmetycznych i logicznych. Flagi w rejestrze flagowym informują o stanach takich jak: przeniesienie, zero, parzystość czy znak. Na przykład, jeśli operacja doda dwie liczby i wynik przekroczy maksymalną wartość, flaga przeniesienia zostanie ustawiona. Praktycznie, rejestr flagowy umożliwia procesorowi podejmowanie decyzji na podstawie wyników operacji, co jest kluczowe w kontrolowaniu przepływu programów. W standardach architektury komputerowej, takich jak x86, rejestr flagowy jest niezbędny do realizacji instrukcji skoków warunkowych, co pozwala na implementację złożonych algorytmów. Zrozumienie działania rejestru flagowego pozwala programistom optymalizować kod i skutecznie zarządzać logiką operacyjną w aplikacjach o wysokiej wydajności.

Pytanie 19

ping 192.168.11.3 Jaką komendę należy wpisać w miejsce kropek, aby w systemie Linux wydłużyć domyślny odstęp czasowy między pakietami podczas używania polecenia ping?

A. -c 9
B. -s 75
C. -i 3
D. -a 81

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -i 3 jest prawidłowa, ponieważ parametr -i w poleceniu ping w systemie Linux określa odstęp czasowy między kolejnymi wysyłanymi pakietami. Domyślnie ten odstęp wynosi 1 sekundę, a użycie -i 3 zwiększa ten czas do 3 sekund. Jest to przydatne w sytuacjach, gdy chcemy zmniejszyć obciążenie sieci, na przykład podczas testowania połączenia z urządzeniem, które nie wymaga zbyt częstego pingowania. Przykładowo, w przypadku monitorowania stanu serwera, gdzie nie jest konieczne ciągłe sprawdzanie, zwiększenie odstępu czasowego jest zalecane, aby uniknąć nadmiernego generowania ruchu sieciowego. Warto również pamiętać, że korzystanie z zbyt krótkich odstępów może prowadzić do przeciążenia sieci i zafałszowania wyników testów. Standardy branżowe sugerują, aby dostosowywać parametry ping do specyficznych potrzeb użytkownika i konfiguracji sieci.

Pytanie 20

Ile minimalnie pamięci RAM powinien mieć komputer, aby możliwe było uruchomienie 32-bitowego systemu operacyjnego Windows 7 w trybie graficznym?

A. 512 MB
B. 2 GB
C. 256 MB
D. 1 GB
Wybór odpowiedzi innej niż 1 GB, w kontekście minimalnych wymagań dla 32-bitowego systemu operacyjnego Windows 7, oparty jest na nieporozumieniach dotyczących zarządzania pamięcią oraz wydajności systemu. Odpowiedzi takie jak 512 MB czy 256 MB są zdecydowanie niewystarczające. System operacyjny Windows 7, nawet w wersji 32-bitowej, wymaga co najmniej 1 GB pamięci RAM, aby móc uruchomić graficzny interfejs użytkownika, co wiąże się z potrzebą obsługi wielu procesów jednocześnie, co jest typowe w nowoczesnych systemach operacyjnych. W przypadku 512 MB RAM, użytkownik napotka poważne ograniczenia w wydajności, a system może nie być w stanie uruchomić wymaganych komponentów graficznych oraz aplikacji. Ponadto, korzystanie z 256 MB RAM w dzisiejszych czasach jest skrajnie niezalecane i praktycznie niemożliwe, ponieważ wiele współczesnych aplikacji i przeglądarek internetowych wymaga znacznie więcej pamięci. Wybór niewłaściwej odpowiedzi najczęściej wynika z błędnej interpretacji wymagań systemowych oraz niewłaściwego postrzegania minimalnych standardów, co jest typową pułapką w edukacji związanej z technologiami informacyjnymi. Warto zwrócić uwagę na wytyczne producenta sprzętu oraz dokumentację techniczną, aby lepiej zrozumieć wymagania dotyczące pamięci RAM, co jest kluczowe dla zrozumienia architektury systemu operacyjnego.

Pytanie 21

Które z poniższych poleceń w systemie Linux służy do zmiany uprawnień pliku?

A. pwd
B. chown
C. ls
D. chmod
Polecenie <code>chmod</code> jest używane w systemach operacyjnych Unix i Linux do zmiany uprawnień plików i katalogów. Uprawnienia te określają, kto i w jaki sposób może czytać, zapisywać lub wykonywać dany plik. Polecenie to jest niezwykle przydatne w kontekście zarządzania bezpieczeństwem i dostępem do zasobów na serwerach i komputerach osobistych. Przykładowo, aby nadać pełne uprawnienia właścicielowi pliku, ale ograniczyć je dla innych użytkowników, można użyć polecenia <code>chmod 700 nazwa_pliku</code>. Ten sposób nadawania uprawnień jest bardzo elastyczny i pozwala na dokładne skonfigurowanie dostępu zgodnie z potrzebami użytkownika lub politykami firmy. Warto także wspomnieć, że <code>chmod</code> wspiera zarówno notację symboliczną (np. <code>chmod u+x</code>) jak i ósemkową (np. <code>chmod 755</code>), co ułatwia jego stosowanie w różnych scenariuszach. Dzięki temu narzędziu administratorzy systemów mogą skutecznie zarządzać dostępem do plików, co jest kluczowe dla utrzymania bezpieczeństwa danych.

Pytanie 22

Który z protokołów w systemach operacyjnych Linux jest używany w sieciach lokalnych?

A. NetBEUI
B. IP
C. IPX
D. AppleTalk
Protokół IP (Internet Protocol) jest podstawowym protokołem komunikacyjnym w sieciach komputerowych, w tym w systemach operacyjnych Linux, który jest wykorzystywany głównie w sieciach LAN (Local Area Network). IP umożliwia przesyłanie danych między różnymi urządzeniami w sieci poprzez nadawanie im unikalnych adresów IP, co pozwala na ich identyfikację i lokalizację w sieci. Protokół IP działa na warstwie sieciowej modelu OSI, co oznacza, że jest odpowiedzialny za trasowanie pakietów danych z jednego miejsca do innego. W praktyce, implementacja protokołu IP w systemach Linux obejmuje zarówno IPv4, jak i nowszy IPv6, co jest zgodne z obecnymi standardami branżowymi i dobrymi praktykami w zakresie zarządzania adresacją sieciową. Użytkownicy Linuxa mogą konfigurować ustawienia IP poprzez różne narzędzia, takie jak 'ip' lub 'ifconfig', co daje im możliwość dostosowania parametrów sieciowych do swoich potrzeb. Protokół IP jest również fundamentem dla wielu innych protokołów, takich jak TCP (Transmission Control Protocol), co czyni go kluczowym elementem w kontekście komunikacji sieciowej.

Pytanie 23

Który z poniższych protokołów jest wykorzystywany do uzyskiwania dynamicznych adresów IP?

A. FTP
B. DHCP
C. DNS
D. HTTP
Dynamic Host Configuration Protocol (DHCP) jest kluczowym elementem w zarządzaniu adresami IP w sieciach komputerowych. Jego głównym zadaniem jest automatyczne przypisywanie dynamicznych adresów IP urządzeniom w sieci. Dzięki temu administratorzy sieci nie muszą ręcznie konfigurować każdego urządzenia, co minimalizuje ryzyko błędów i upraszcza zarządzanie dużymi sieciami. DHCP działa w modelu klient-serwer, gdzie serwer DHCP przydziela adresy IP na podstawie zapytań od klientów. Proces ten obejmuje kilka kroków, takich jak DISCOVER, OFFER, REQUEST i ACKNOWLEDGE, co zapewnia, że każde urządzenie otrzymuje unikalny adres IP. W praktyce oznacza to, że nowe urządzenia mogą być szybko i bezproblemowo włączane do sieci, co jest niezwykle istotne w dynamicznych środowiskach biznesowych. Co więcej, DHCP pozwala na centralne zarządzanie konfiguracją sieci, co ułatwia wprowadzanie zmian i aktualizacji w całej organizacji. Dzięki temu protokołowi, sieci mogą być elastyczne i skalowalne, co jest kluczowe w dzisiejszym świecie technologii.

Pytanie 24

Jaką liczbę bitów posiada adres logiczny IPv6?

A. 64
B. 128
C. 32
D. 16
Adres logiczny IPv6 składa się z 128 bitów, co jest istotnym usprawnieniem w porównaniu do wcześniejszej wersji protokołu IP, IPv4, gdzie długość adresu wynosiła tylko 32 bity. Większa długość adresu w IPv6 umożliwia znacznie większą liczbę unikalnych adresów, co jest kluczowe w kontekście rosnącej liczby urządzeń podłączanych do Internetu. Dzięki zastosowaniu 128-bitowych adresów, IPv6 pozwala na adresowanie 340 undecylionów (10^36) unikalnych adresów, co jest wystarczające, aby zaspokoić potrzebę globalną w kontekście Internetu rzeczy (IoT) oraz globalnej sieci. W praktyce, organizacje i dostawcy usług internetowych już wykorzystują IPv6, aby zapewnić przyszłość swoich sieci. Standardy te są również zgodne z zaleceniami IETF (Internet Engineering Task Force), które promują przejście z IPv4 na IPv6, aby sprostać rosnącym wymaganiom adresowania w sieciach komputerowych. Użycie IPv6 staje się niezbędne w wielu nowoczesnych aplikacjach, takich jak chmurowe usługi, rozproszone systemy oraz różnorodne IoT, co czyni tę wiedzę niezwykle istotną dla każdego specjalisty IT.

Pytanie 25

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
B. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
C. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
D. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
Niepoprawne odpowiedzi dotyczą różnic w interpretacji i odczycie wartości pamięci fizycznej oraz pliku wymiany. Napotykane błędy wynikają często z błędnego rozumienia jednostek miary oraz mechanizmów zarządzania pamięcią przez systemy operacyjne. Pamięć fizyczna odnosi się do zainstalowanego RAM, podczas gdy plik wymiany to logiczna przestrzeń na dysku twardym, której system operacyjny używa jako wirtualnego rozszerzenia pamięci RAM. Niepoprawne odczytanie tych wartości może wynikać z pomylenia jednostek miary takich jak MB i GB, co jest powszechnym problemem w interpretacji danych systemowych. Niezrozumienie tego, jak system wykorzystuje pamięć fizyczną i wirtualną, prowadzi do błędnych wniosków dotyczących wydajności komputera. Użytkownicy często nie uwzględniają różnic między pamięcią używaną a dostępną, co jest kluczowe, by odpowiednio zarządzać zasobami systemowymi. W kontekście zawodowym takie nieporozumienia mogą prowadzić do niewłaściwych decyzji związanych z zakupem czy konfiguracją sprzętu komputerowego. Dlatego tak ważne jest, aby regularnie poszerzać swoją wiedzę na temat zarządzania pamięcią w systemach komputerowych oraz umiejętnie interpretować dane związane z jej użyciem i alokacją w celu optymalizacji wydajności systemu.

Pytanie 26

Jakie polecenie systemu Windows przedstawione jest na ilustracji?

    Adres fizyczny           Nazwa transportu
===========================================================
    00-23-AE-09-47-CF        Nośnik rozłączony
    00-23-4D-CB-B4-BB        Brak
    00-23-4D-CB-B4-BB        Nośnik rozłączony
A. net view
B. netsatat
C. getmac
D. route
Polecenie netstat w systemie Windows służy do wyświetlania aktywnych połączeń sieciowych, tablic routingu oraz statystyk protokołów. Narzędzie to jest niezwykle użyteczne w analizie bieżących połączeń TCP/IP oraz diagnozowaniu problemów z siecią, takich jak nieautoryzowane połączenia czy problemy z konfiguracją sieci. Jednakże nie dostarcza ono informacji o adresach fizycznych MAC, które są kluczowe w identyfikacji urządzeń w sieci lokalnej. Polecenie route pozwala na wyświetlanie i modyfikację tablicy routingu, co jest istotne w zarządzaniu ruchem sieciowym i kierowaniem pakietów do odpowiednich interfejsów sieciowych. Mimo że jest to ważne narzędzie w kontekście zarządzania siecią, nie dostarcza ono informacji o nazwach transportu ani adresach fizycznych, co odróżnia je od funkcji polecenia getmac. Natomiast polecenie net view umożliwia wyświetlanie komputerów i urządzeń w danej grupie roboczej lub domenie, co jest użyteczne przy zarządzaniu zasobami sieciowymi i identyfikacji udostępnianych zasobów. Jednak jego zastosowanie jest zupełnie odmienne od analizy interfejsów sieciowych poprzez ich adresy fizyczne. Typowym błędnym podejściem jest mylenie funkcji tych narzędzi ze względu na kontekst sieciowy, w jakim operują. Każde z tych poleceń pełni specyficzną rolę w zarządzaniu i diagnostyce sieci, a zrozumienie ich różnic funkcjonalnych jest kluczowe dla efektywnego rozwiązywania problemów w środowisku IT.

Pytanie 27

Zestaw narzędzi do instalacji okablowania miedzianego typu "skrętka" w sieci komputerowej powinien obejmować:

A. zaciskarkę złączy modularnych, ściągacz izolacji, narzędzie uderzeniowe, tester okablowania
B. narzędzie uderzeniowe, nóż monterski, spawarkę światłowodową, tester okablowania
C. komplet wkrętaków, narzędzie uderzeniowe, tester okablowania, lutownicę
D. ściągacz izolacji, zaciskarkę złączy modularnych, nóż monterski, miernik uniwersalny
Zestaw narzędzi do montażu okablowania miedzianego typu "skrętka" w sieci lokalnej powinien obowiązkowo zawierać zaciskarkę złączy modularnych, ściągacz izolacji, narzędzie uderzeniowe oraz tester okablowania. Zaciskarka służy do precyzyjnego zakładania złączy RJ-45 na końcach przewodów, co jest kluczowe dla prawidłowego działania sieci. Użycie ściągacza izolacji pozwala na bezpieczne usunięcie izolacji z przewodów bez ich uszkodzenia, co jest niezbędne przed ich zaciśnięciem. Narzędzie uderzeniowe jest używane do zakończenia przewodów w panelach krosowych lub gniazdkach, co jest częścią standardowego procesu instalacji. Tester okablowania umożliwia sprawdzenie poprawności połączeń, co zapewnia, że sieć działa zgodnie z wymaganiami technicznymi. Stosowanie tych narzędzi jest zgodne z najlepszymi praktykami branżowymi, co podkreśla ich znaczenie w każdym projekcie związanym z montażem sieci lokalnych. Na przykład, w przypadku sieci biurowej, prawidłowe zakończenie przewodów może zapobiec problemom z transmisją danych i zakłóceniami sygnału.

Pytanie 28

Płyta główna wyposażona w gniazdo G2 będzie współpracowała z procesorem

A. Intel Core i7
B. Intel Pentium 4 EE
C. AMD Opteron
D. AMD Trinity

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazdo G2, znane też jako Socket rPGA988B, jest stosowane głównie w mobilnych procesorach Intela, szczególnie tych z rodziny Core i3, i5 oraz i7 drugiej generacji, czyli tzw. Sandy Bridge i trochę też Ivy Bridge. To gniazdo pojawiało się głównie w laptopach i stacjach roboczych mobilnych, więc jak ktoś składał laptopa na części lub wymieniał CPU w notebooku, to kwestia kompatybilności z G2 była kluczowa. Moim zdaniem warto pamiętać, że chociaż Intel czasami mieszał w oznaczeniach, to G2 nigdy nie był stosowany ani przy procesorach AMD, ani przy starszych desktopowych Pentiumach. Zresztą, jak popatrzymy na dokumentację Intela czy serwisy jak CPU-World, to wyraźnie widać, że G2 łączy się głównie z mobilnymi i7 oraz ich odpowiednikami. Praktycznym przykładem jest laptop Dell Precision M4600 – tam właśnie siedzi i7 na gnieździe G2. Z mojego doświadczenia, jeśli ktoś chce ulepszać laptopa biznesowego z 2011 czy 2012 roku, często właśnie szuka i7 pod G2, żeby zyskać więcej mocy do pracy z aplikacjami CAD czy Photoshopem. Warto dodać, że dobór właściwego gniazda to podstawa przy planowaniu modernizacji sprzętu – błędny wybór skutkuje brakiem kompatybilności i niepotrzebnym wydatkiem. To także dobry przykład, czemu dobrze znać podstawowe standardy i oznaczenia w świecie hardware’u.

Pytanie 29

Użytkownicy w sieciach bezprzewodowych mogą być uwierzytelniani zdalnie przy pomocy usługi

A. HTTPS
B. NNTP
C. RADIUS
D. IMAP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
RADIUS, czyli Remote Authentication Dial-In User Service, to fajny protokół, który naprawdę ułatwia życie, jeśli chodzi o zabezpieczanie dostępu użytkowników w różnych sieciach, zarówno bezprzewodowych, jak i tradycyjnych. Dzięki RADIUS można centralnie zarządzać tym, kto ma dostęp do sieci, co jest mega ważne, gdy mamy do czynienia z wieloma użytkownikami. Co ciekawe, RADIUS obsługuje różne metody uwierzytelniania, jak PEAP czy EAP-TLS, co daje dużą elastyczność w dostosowywaniu zabezpieczeń do potrzeb organizacji. Przykład zastosowania RADIUS to kontrolery dostępu w punktach Wi-Fi, gdzie użytkownicy są sprawdzani na bieżąco przed przyznaniem im dostępu do sieci. W praktyce, wdrożenie tego protokołu sprawia, że można lepiej zarządzać dostępem, monitorować aktywność i być na bieżąco z regulacjami. A jak wiadomo, są standardy, jak RFC 2865, które określają, jak RADIUS powinien działać, co czyni go sprawdzonym rozwiązaniem w świecie IT.

Pytanie 30

Do konserwacji elementów optycznych w komputerach zaleca się zastosowanie

A. oleju wazelinowego
B. smaru
C. izopropanolu
D. żywicy
Użycie smaru do czyszczenia układów optycznych jest całkowicie niewłaściwe, ponieważ smar ma na celu redukcję tarcia w mechanizmach, a nie czyszczenie powierzchni optycznych. Wprowadzenie smaru w obszar, gdzie znajdują się soczewki, może prowadzić do nieodwracalnych uszkodzeń, takich jak zmatowienie czy trwałe plamy, które obniżą jakość obrazu. Żywica, jako substancja, charakteryzuje się lepką konsystencją i również nie nadaje się do czyszczenia układów optycznych, ponieważ może pozostawić trudne do usunięcia resztki, które z czasem mogą przyciągać kurz i zanieczyszczenia, co pogorszy widoczność. Olej wazelinowy, podobnie jak smar, jest substancją tłuszczową, która nie tylko nie czyści, ale wręcz może powodować powstawanie zabrudzeń na soczewkach. Warto pamiętać, że czyszczenie układów optycznych wymaga precyzyjnego podejścia oraz stosowania dedykowanych środków, które nie wpłyną negatywnie na ich funkcjonowanie. W związku z tym, używanie niewłaściwych substancji czyszczących jest powszechnym błędem, który wynika z braku wiedzy o odpowiednich produktach i ich właściwościach. Zrozumienie, że czyszczenie układów optycznych wymaga specjalistycznych rozwiązań, jest kluczowe dla zachowania sprzętu komputerowego w dobrym stanie i osiągnięcia optymalnej jakości obrazu.

Pytanie 31

W adresie IP z klasy A, wartość pierwszego bajtu mieści się w zakresie

A. 192 - 223
B. 128 - 191
C. 0 - 127
D. 224 - 240
Adresy IP klasy A charakteryzują się pierwszym bajtem, który mieści się w przedziale od 0 do 127. Umożliwia to przypisanie dużej liczby adresów dla pojedynczych organizacji, co jest istotne w kontekście rozwoju internetu i dużych sieci. Przykładem może być adres 10.0.0.1, który znajduje się w tym przedziale i jest często wykorzystywany w sieciach lokalnych. Ponadto, adresy klasy A są często używane w dużych przedsiębiorstwach, które potrzebują dużej liczby unikalnych adresów IP. Zgodnie z RFC 791, klasyfikacja adresów IP jest kluczowa dla struktury i routingu w sieci. Wiedza o klasach adresów IP jest niezbędna dla administratorów sieci oraz specjalistów IT, aby móc efektywnie planować i zarządzać adresowaniem w organizacji.

Pytanie 32

Jakie polecenie w systemie Linux pozwala na wyświetlenie informacji o bieżącej godzinie, czasie pracy systemu oraz liczbie użytkowników zalogowanych do systemu?

A. history
B. chmod
C. uptime
D. echo
Polecenie 'chmod' jest używane do zmiany uprawnień plików i katalogów w systemie Linux. Jego funkcjonalność jest kluczowa w kontekście bezpieczeństwa systemu, ponieważ pozwala administratorom na precyzyjne zarządzanie, kto może odczytać, zapisać lub wykonywać dany plik. Jednakże, nie ma to nic wspólnego z wyświetlaniem informacji o czasie działania systemu czy liczbie zalogowanych użytkowników. Zrozumienie roli 'chmod' jest istotne, ale w kontekście tego pytania, nie jest odpowiednie. Z kolei polecenie 'history' służy do wyświetlania historii wcześniej wykonanych poleceń w terminalu. Chociaż to narzędzie jest przydatne do śledzenia działań użytkownika, nie dostarcza informacji o czasie działania systemu czy liczbie zalogowanych osób. Warto zauważyć, że błędne wskazanie 'history' może wynikać z nieporozumienia co do funkcji, jakie pełnią różne polecenia w Linuxie. Ostatnią z wymienionych opcji jest 'echo', które po prostu wyświetla tekst w terminalu, ale również nie ma związku z monitorowaniem czasu czy użytkowników systemu. Rozumienie tych narzędzi i ich właściwych zastosowań jest kluczowe dla efektywnego zarządzania systemami Linux, a ich mieszanie prowadzi do błędnych wniosków i może powodować problemy w codziennym użytkowaniu.

Pytanie 33

W systemach Windows, aby określić, w którym miejscu w sieci zatrzymał się pakiet, stosuje się komendę

A. nslookup
B. tracert
C. ping
D. ipconfig
Użycie komendy 'ping' do ustalenia, gdzie w sieci zatrzymał się pakiet, jest często mylnie interpretowane jako wystarczające rozwiązanie. 'Ping' jest narzędziem, które testuje dostępność hosta w sieci poprzez wysyłanie pakietów ICMP Echo Request i oczekiwanie na odpowiedzi. Choć pozwala to na sprawdzenie, czy dany adres IP jest osiągalny, nie dostarcza informacji o trasie, którą pakiety pokonują ani o ewentualnych punktach, w których mogą występować opóźnienia. Użycie 'ipconfig' również nie ma związku z monitorowaniem trasy pakietów. 'Ipconfig' jest narzędziem do wyświetlania informacji o konfiguracji interfejsów sieciowych na lokalnym komputerze, co może być przydatne w innych kontekstach, ale nie w śledzeniu ruchu sieciowego. Z kolei 'nslookup' służy do sprawdzania informacji o systemie nazw domen (DNS), co również nie jest odpowiednie do analizy trasy połączenia. Typowym błędem jest mylenie celów narzędzi – 'ping' czy 'ipconfig' są użyteczne w innych aspektach diagnostyki, ale nie w kontekście identyfikacji problemów z trasą pakietów. Właściwe zrozumienie funkcji każdego z tych narzędzi jest kluczowe dla efektywnego diagnozowania i rozwiązywania problemów w sieciach komputerowych.

Pytanie 34

W celu zrealizowania instalacji sieciowej na stacjach roboczych z systemem operacyjnym Windows, należy na serwerze zainstalować usługi

A. plików
B. pulpitu zdalnego
C. terminalowe
D. wdrażania systemu Windows
Wdrażanie systemu Windows to usługa, która umożliwia instalację systemu operacyjnego Windows na stacjach roboczych w sieci. Aby zrealizować ten proces, serwer musi dysponować odpowiednimi narzędziami, które automatyzują i centralizują zarządzanie instalacjami. Przykładem takiego narzędzia jest Windows Deployment Services (WDS), które pozwala na rozsyłanie obrazów systemów operacyjnych przez sieć. Dzięki WDS możliwe jest zarówno wdrażanie systemu z obrazu, jak i przeprowadzanie instalacji w trybie Preboot Execution Environment (PXE), co znacznie ułatwia proces w dużych środowiskach, gdzie wiele stacji roboczych wymaga identycznej konfiguracji. Umożliwia to również oszczędność czasu oraz redukcję błędów związanych z ręcznym wprowadzaniem danych. Zgodnie z najlepszymi praktykami branżowymi, WDS jest rekomendowane do zarządzania dużymi flotami komputerów, ponieważ zapewnia jednorodność i kontrolę nad wdrażanymi systemami.

Pytanie 35

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. wybraniem pliku z obrazem dysku.
B. dodaniem drugiego dysku twardego.
C. konfigurowaniem adresu karty sieciowej.
D. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
W konfiguracji maszyny wirtualnej bardzo łatwo pomylić różne opcje, bo wszystko jest w jednym oknie i wygląda na pierwszy rzut oka dość podobnie. Ustawienia pamięci wideo, dodawanie dysków, obrazy ISO, karty sieciowe – to wszystko siedzi zwykle w kilku zakładkach i początkujący użytkownicy mieszają te pojęcia. Ustawienie rozmiaru pamięci wirtualnej karty graficznej dotyczy tylko tego, ile pamięci RAM zostanie przydzielone emulatorowi GPU. Ta opcja znajduje się zazwyczaj w sekcji „Display” lub „Ekran” i pozwala poprawić płynność pracy środowiska graficznego, ale nie ma nic wspólnego z wybieraniem pliku obrazu dysku czy instalacją systemu operacyjnego. To jest po prostu parametr wydajnościowy. Z kolei dodanie drugiego dysku twardego polega na utworzeniu nowego wirtualnego dysku (np. nowy plik VDI, VHDX) lub podpięciu już istniejącego i przypisaniu go do kontrolera dyskowego w maszynie. Ta operacja rozszerza przestrzeń magazynową VM, ale nie wskazuje konkretnego obrazu instalacyjnego – zwykle nowy dysk jest pusty i dopiero system w maszynie musi go sformatować. Kolejne częste nieporozumienie dotyczy sieci: konfigurowanie adresu karty sieciowej w maszynie wirtualnej to zupełnie inna para kaloszy. W ustawieniach hypervisora wybieramy tryb pracy interfejsu (NAT, bridge, host‑only, internal network itd.), a adres IP najczęściej i tak ustawia się już wewnątrz systemu operacyjnego, tak samo jak na zwykłym komputerze. To nie ma żadnego związku z plikami obrazów dysków – sieć służy do komunikacji, a nie do uruchamiania czy montowania nośników. Typowy błąd myślowy polega na tym, że użytkownik widząc „dysk”, „pamięć” albo „kontroler”, zakłada, że każda z tych opcji musi dotyczyć tego samego obszaru konfiguracji. W rzeczywistości standardowe podejście w wirtualizacji jest takie, że wybór pliku obrazu dysku odbywa się w sekcji pamięci masowej: tam dodaje się wirtualny napęd (HDD lub CD/DVD) i dopiero przy nim wskazuje konkretny plik obrazu. Oddzielenie tych funkcji – grafiki, dysków, sieci – jest kluczowe, żeby świadomie konfigurować maszyny i unikać później dziwnych problemów z uruchamianiem systemu czy brakiem instalatora.

Pytanie 36

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. trzeciej o długości 48 bitów
B. drugiej o długości 48 bitów
C. drugiej o długości 32 bitów
D. trzeciej o długości 32 bitów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przydzielanym każdemu interfejsowi sieciowemu, który korzysta z technologii Ethernet. Jego długość wynosi 48 bitów, co odpowiada 6 bajtom. Adres MAC jest używany w warstwie drugiej modelu OSI, czyli warstwie łącza danych, do identyfikacji urządzeń w sieci lokalnej. Dzięki standardowi IEEE 802.3, każda karta sieciowa produkowana przez różnych producentów otrzymuje unikalny adres MAC, co jest kluczowe dla prawidłowego działania sieci Ethernet. Przykładowo, w zastosowaniach takich jak DHCP (Dynamic Host Configuration Protocol), adres MAC jest niezbędny do przypisania odpowiednich adresów IP urządzeniom w sieci. Ponadto, w praktyce adresy MAC mogą być używane w różnych technologiach zabezpieczeń, takich jak filtracja adresów MAC, co pozwala na kontrolowanie dostępu do sieci. Zrozumienie roli adresu MAC w architekturze sieciowej jest fundamentalne dla każdego specjalisty w dziedzinie IT, a jego poprawne wykorzystanie jest zgodne z najlepszymi praktykami zarządzania siecią.

Pytanie 37

Jaki typ routingu jest najbardziej odpowiedni w złożonych, szybko ewoluujących sieciach?

A. Dynamiczny
B. Statyczny
C. Zewnętrzny
D. Lokalny
Routing dynamiczny jest najodpowiedniejszym rozwiązaniem dla rozbudowanych i szybko zmieniających się sieci, ponieważ automatycznie dostosowuje ścieżki przesyłania danych na podstawie aktualnych warunków w sieci. W przeciwieństwie do routingu statycznego, który opiera się na ręcznie skonfigurowanych trasach, routing dynamiczny wykorzystuje protokoły routingu, takie jak OSPF (Open Shortest Path First) czy EIGRP (Enhanced Interior Gateway Routing Protocol), które umożliwiają routerom wymianę informacji o dostępnych trasach. Dzięki temu, w razie awarii lub zmiany topologii sieci, routery mogą błyskawicznie zaktualizować swoje tabele routingu, co minimalizuje przestoje i zapewnia optymalne trasy przesyłania danych. Przykładem praktycznym może być sieć przedsiębiorstwa, w której zmiany w infrastrukturze, takie jak dodanie nowego segmentu sieci lub zmiana lokalizacji serwera, mogą być natychmiastowo uwzględnione przez routery, co zapewnia ciągłość działania usług. Warto również podkreślić, że routing dynamiczny jest zgodny z nowoczesnymi standardami oraz najlepszymi praktykami branżowymi, umożliwiając efektywne zarządzanie dużymi i złożonymi sieciami.

Pytanie 38

Na zdjęciu widać płytę główną komputera. Strzałka wskazuje na

Ilustracja do pytania
A. łącze do dysku IDE
B. gniazdo zasilające do płyty AT
C. gniazdo zasilające do płyty ATX
D. łącze do dysku SCSI
Na płycie głównej komputera można znaleźć różne rodzaje gniazd i portów, które pełnią specyficzne funkcje. Gniazdo zasilania do płyty AT było używane w starszych typach komputerów i ma inną konstrukcję w porównaniu do nowoczesnych gniazd ATX. Płyty AT nie są już powszechnie stosowane, ponieważ nowsze standardy, takie jak ATX, oferują lepsze zarządzanie energią i większą elastyczność. Połączenie do dysku IDE, chociaż kiedyś powszechne, zostało zastąpione przez nowsze technologie, takie jak SATA, które oferują wyższe prędkości transferu danych i lepszą niezawodność. IDE było używane do podłączania dysków twardych i napędów optycznych, ale teraz jest to przestarzała technologia. Połączenie do dysku SCSI było szeroko stosowane w serwerach i stacjach roboczych, oferując szybki transfer danych i możliwość podłączania wielu urządzeń; jednak w zastosowaniach konsumenckich zostało w dużej mierze zastąpione przez inne technologie. Błąd w rozpoznaniu tych gniazd może wynikać z nieznajomości współczesnych standardów oraz mylenia ich ze starszymi rozwiązaniami, które miały inne zastosowania i były charakterystyczne dla wcześniejszej generacji sprzętu komputerowego. Rozróżnianie tych standardów jest kluczowe w pracy z nowoczesnymi systemami komputerowymi, gdzie kompatybilność i wydajność są priorytetami.

Pytanie 39

Aby komputer osobisty współpracował z urządzeniami korzystającymi z przedstawionych na rysunku złącz, należy wyposażyć go w interfejs

Ilustracja do pytania
A. HDMI
B. Fire Wire
C. Display Port
D. DVI-A
To właśnie Display Port jest interfejsem przedstawionym na zdjęciu — da się to rozpoznać po charakterystycznym kształcie wtyczki, gdzie jeden z rogów jest ścięty. Ten standard jest szeroko stosowany przede wszystkim w monitorach komputerowych, zwłaszcza tych przeznaczonych do pracy profesjonalnej, grafiki czy gamingu. Display Port umożliwia przesyłanie sygnału cyfrowego o bardzo wysokiej jakości, obsługuje rozdzielczości nawet powyżej 4K, wysokie częstotliwości odświeżania oraz transmisję wielu kanałów audio. Co ciekawe, Display Port wspiera też tzw. daisy chaining, czyli łączenie kilku monitorów szeregowo jednym przewodem, co według mnie jest mega wygodne w nowoczesnych stanowiskach pracy. W branży IT coraz częściej zaleca się stosowanie właśnie tego złącza tam, gdzie zależy nam na maksymalnej jakości obrazu i pełnej kompatybilności z najnowszymi technologiami. Ważne jest też to, że Display Port występuje w kilku wersjach, które różnią się przepustowością i możliwościami, ale nawet starsze wersje spokojnie obsługują rozdzielczości Full HD bez żadnych problemów. Szczerze mówiąc, moim zdaniem to absolutny standard, jeśli ktoś pracuje z profesjonalnymi monitorami. Dodatkowo, na rynku są też przejściówki z Display Port na HDMI czy DVI, ale to już rozwiązania raczej tymczasowe. Ten wybór pozwala Ci korzystać z nowoczesnych urządzeń bez ograniczeń w kwestii jakości obrazu i dźwięku.

Pytanie 40

Jaką maksymalną długość może mieć kabel miedziany UTP kategorii 5e łączący bezpośrednio dwa urządzenia w sieci, według standardu Fast Ethernet 100Base-TX?

A. 150 m
B. 300 m
C. 1000 m
D. 100 m
Wybierając odpowiedzi takie jak 150 m, 1000 m czy 300 m, można się odnosić do mylnych przekonań dotyczących długości kabli UTP w kontekście technologii Ethernet. Wiele osób mylnie interpretuje maksymalne długości kabli, zakładając, że im dłuższy kabel, tym lepsza komunikacja, co jest absolutnie nieprawdziwe. Rzeczywista wydajność kabla Ethernet nie tylko zależy od jego długości, ale także od jakości sygnału, który może zostać zakłócony przez zjawiska takie jak tłumienie czy interferencje elektromagnetyczne. Użytkownicy mogą sądzić, że 150 m lub 300 m to akceptowalne długości, jednak takie podejście może prowadzić do poważnych problemów z wydajnością sieci. Na przykład, przy długości kabla 150 m, sygnał może ulegać znacznemu osłabieniu, co w praktyce skutkuje niską prędkością transferu danych oraz problemami z opóźnieniami. Podobnie, długość 1000 m znacznie przekracza maksymalne specyfikacje dla standardów Ethernet i może skutkować brakiem połączenia. Ponadto, różne standardy kabli, takie jak 10Base-T czy 1000Base-T, również mają swoje ograniczenia, które powinny być znane każdemu, kto projektuje lub zarządza siecią. Właściwe zrozumienie specyfikacji długości kabli jest kluczowe dla utrzymania stabilności i efektywności każdej sieci komputerowej.