Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 16 listopada 2025 00:33
  • Data zakończenia: 16 listopada 2025 00:49

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdy samochód wjeżdża na wzniesienie, obroty silnika rosną, podczas gdy prędkość liniowa pojazdu spada, co może być tego przyczyną?

A. za mała moc silnika
B. nieodpowiedni dobór przełożenia
C. niesprawne sprzęgło
D. uszkodzony mechanizm różnicowy
Niesprawne sprzęgło może być bezpośrednią przyczyną wzrostu prędkości obrotowej silnika przy jednoczesnym spadku prędkości liniowej samochodu. Kiedy sprzęgło nie działa prawidłowo, może dochodzić do poślizgu, co oznacza, że silnik osiąga wyższe obroty, ale nie przekłada się to na efektywną moc przekazywaną na koła. W praktyce, kierowca może zauważyć, że silnik 'wkręca się' na wysokie obroty, ale samochód nie przyspiesza adekwatnie do tych obrotów. To zjawisko jest szczególnie zauważalne podczas podjazdów pod wzniesienia, gdzie wymagane jest zwiększenie momentu obrotowego. Dobrą praktyką jest regularne sprawdzanie stanu sprzęgła i jego komponentów, w tym tarcz i docisku, aby zapewnić ich właściwe funkcjonowanie. W przypadku wystąpienia poślizgu sprzęgła, zaleca się szybkie zdiagnozowanie problemu, aby uniknąć dalszych uszkodzeń układu napędowego oraz straty efektywności pojazdu. Właściwe utrzymanie sprzęgła jest kluczowe dla zapewnienia optymalnych osiągów i bezpieczeństwa jazdy.

Pytanie 2

Wymiana zużytych wkładek ciernych w hamulcach tarczowych powinna zawsze odbywać się w parach?

A. tylko w stałym zacisku
B. w każdym typie zacisku
C. jedynie w zacisku pływającym
D. wyłącznie w zacisku przesuwnym
Wymiana zużytych wkładek ciernych hamulców tarczowych we wszystkich zaciskach jest kluczowym aspektem zapewnienia efektywności i bezpieczeństwa systemu hamulcowego. W przypadku hamulców tarczowych, zarówno na przedniej, jak i tylnej osi, konieczność wymiany wkładek parami wynika z konieczności zachowania równowagi sił hamujących oraz zapobiegania nierównomiernemu zużyciu. Gdy jedna wkładka jest wymieniana, a druga pozostaje zużyta, może to prowadzić do przesunięcia punktu działania siły hamującej, co z kolei skutkuje pogorszeniem stabilności pojazdu podczas hamowania. W praktyce, aby utrzymać optymalne osiągi, producent pojazdu oraz specjaliści od układów hamulcowych zalecają wymianę wkładek zawsze w parach. Wymiana wkładek w komplecie pozwala również na lepsze dopasowanie parametrów pracy hamulca, co przekłada się na dłuższą żywotność pozostałych komponentów układu hamulcowego, takich jak tarcze hamulcowe. Ponadto, w przypadku pojazdów sportowych lub użytkowanych w warunkach ekstremalnych, takich jak jazda w terenie, konsekwentne podejście do wymiany wkładek w parach jest jeszcze bardziej istotne ze względu na wymagania dotyczące bezpieczeństwa i osiągów.

Pytanie 3

Większa ilość zaworów ssących w silniku ma bezpośredni wpływ na

A. szybsze napełnianie cylindra
B. wolniejsze opróżnianie cylindra
C. większe zużycie paliwa
D. nadmiarowy pobór powietrza
Większa liczba zaworów ssących w silniku bezpośrednio wpływa na szybkość napełniania cylindra, co jest kluczowe dla osiągnięcia lepszej efektywności silnika. Większa liczba zaworów pozwala na większy przepływ mieszanki powietrzno-paliwowej do cylindra, co w rezultacie przekłada się na lepsze wypełnienie komory spalania. Przykładem zastosowania tej zasady mogą być silniki sportowe, które często wyposażone są w systemy z większą liczbą zaworów na cylinder, co pozwala na osiągnięcie wyższej mocy i lepszej reakcji na gaz. W praktyce, zastosowanie technologii takich jak VTEC w silnikach Hondy, gdzie wykorzystywana jest zmienna geometria zaworów, potwierdza, że zwiększona liczba zaworów skutkuje lepszym wykorzystaniem mocy silnika w różnych zakresach obrotów. Normy dotyczące emisji spalin i efektywności paliwowej również skłaniają producentów do optymalizacji liczby zaworów, co prowadzi do bardziej wydajnych i ekologicznych rozwiązań.

Pytanie 4

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. ciśnienia sprężania.
B. kąta wyprzedzenia zapłonu.
C. ustawień świateł.
D. zbieżności kół.
Lampy stroboskopowe są nieocenionym narzędziem w diagnostyce pojazdów, szczególnie do pomiaru kąta wyprzedzenia zapłonu. Działanie lampy stroboskopowej opiera się na zjawisku, które pozwala na wizualizację ruchomych punktów w czasie, w tym przypadku wałka rozrządu lub koła zamachowego. Dzięki synchronizacji błysków lampy z obrotami silnika można określić, czy kąt wyprzedzenia zapłonu jest zgodny z wartościami podanymi przez producenta pojazdu. Użycie lampy stroboskopowej pozwala na precyzyjne ustawienie zapłonu, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika, jego wydajności oraz emisji spalin. W praktyce, podczas diagnostyki, technik ustawia lampę stroboskopową w odpowiedniej pozycji, a następnie obserwuje, w którym miejscu znacznik na obudowie silnika jest wyznaczony przez błysk lampy. W przypadku odchyleń, mechaniczną regulację można przeprowadzić w celu optymalizacji pracy silnika. Standardy branżowe, takie jak te określone przez SAE (Society of Automotive Engineers), podkreślają znaczenie precyzyjnego pomiaru i ustawienia kąta zapłonu dla zapewnienia efektywności operacyjnej silników spalinowych.

Pytanie 5

Do technik defektoskopowych wykorzystywanych w ocenie komponentów nie zalicza się techniki

A. magnetycznej
B. ultradźwiękowej
C. rentgenowskiej
D. objętościowej
Zastosowanie metod defektoskopowych w weryfikacji części jest kluczowe w zapewnieniu jakości i bezpieczeństwa produktów przemysłowych. Odpowiedzi, które wskazują na metody magnetyczną, rentgenowską oraz ultradźwiękową, są jednym z najczęściej stosowanych podejść w przemyśle, co może wprowadzać w błąd osoby, które nie są zaznajomione z pełnym zakresem metod badań. Metoda magnetyczna, bazująca na właściwościach ferromagnetycznych materiałów, wykorzystuje pole magnetyczne do wykrywania wad powierzchniowych i podpowierzchniowych. Z kolei badania rentgenowskie wykorzystują promieniowanie elektromagnetyczne do analizy strukturalnej materiałów, co pozwala na identyfikację wewnętrznych nieciągłości. Metoda ultradźwiękowa, która polega na wysyłaniu fal dźwiękowych o wysokiej częstotliwości, umożliwia detekcję defektów w materiałach o różnej gęstości i strukturze. Wybór odpowiedniej metody jest kluczowy w zależności od rodzaju materiału oraz charakterystyki wad, co wymaga zrozumienia ich właściwości oraz zastosowania w praktyce. Wybierając nieprawidłową odpowiedź, można wpaść w pułapkę myślenia, że każda metoda defektoskopowa jest równoznaczna w kontekście badań różnych materiałów, co jest dalekie od prawdy. Kluczowe jest zatem świadome podejście do analizy, które uwzględnia specyfikę każdego z podejść oraz ich zastosowanie w praktyce, co jest niezbędne dla zapewnienia skutecznej detekcji wad.

Pytanie 6

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. suwmiarka.
B. szczelinomierz.
C. miernik wysokości.
D. czujnik zegarowy.
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.

Pytanie 7

Elementem jest sprężyna centralna (talerzowa)

A. przekładni napędowej
B. sprzęgła hydrokinetycznego
C. docisku sprzęgła ciernego
D. przekładni głównej
Niepoprawne odpowiedzi wskazują na powszechne nieporozumienia dotyczące funkcji sprężyny centralnej. Sprzęgło hydrokinetyczne, będące pierwszą opcją odpowiedzi, wykorzystuje płyny do przenoszenia momentu obrotowego, a nie elementy sprężynowe. Jego działanie opiera się na zjawisku hydraulicznym, co oznacza, że nie ma zastosowania dla sprężyn talerzowych, które pełnią inną funkcję w mechanice. Kolejną niepoprawną odpowiedzią jest przekładnia napędowa, która odpowiada za przenoszenie mocy z silnika, ale nie zawiera bezpośrednio sprężyn, ponieważ skupia się na zębatkach i ich interakcji. Przekładnia główna również nie ma związku z funkcją sprężyny centralnej, gdyż jej rola dotyczy zmiany kierunku i prędkości obrotowej, a nie regulacji ciśnienia na sprzęgle. Te błędne odpowiedzi ilustrują typowe mylenie ról poszczególnych komponentów w układzie napędowym. Rzeczywiste zastosowanie sprężyn centralnych w dociskach sprzęgła ciernego ma na celu optymalizację przenoszenia momentu obrotowego i zmniejszenie zużycia elementów układu. Zrozumienie, jak różne elementy współpracują ze sobą w silniku, jest kluczowe dla prawidłowego diagnozowania problemów i efektywnego serwisowania pojazdów.

Pytanie 8

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj
A. 3,21 %.
B. 508 ppm.
C. 1.141
D. 12,60 %.
Analiza spalin w samochodzie to ważny temat, bo wpływa na jego efektywność ekologiczną i ekonomiczną. Odpowiedzi 508 ppm i 1.141, mimo że mogą brzmieć ok, dotyczą innych parametrów i nie odnoszą się do stężenia tlenu w objętości. PPM to jednostka, którą zazwyczaj używamy do gazów, ale w analizie spalin lepiej trzymać się tych samych jednostek, bo inaczej można się pogubić. Odpowiedź 12,60% jest też błędna, bo sugeruje znacznie większe stężenie tlenu niż to, które mamy w analizie. Takie wartości mogą prowadzić do błędnych wniosków o efektywności spalania i wskazywać na problemy z układem dolotowym albo wtryskowym. W branży, błędne interpretacje mogą skutkować źle ustawionym silnikiem, co w dłuższej perspektywie zwiększa zużycie paliwa i emisję. Ważne, żeby podczas analizy wyników zawsze brać pod uwagę jednostki i ich kontekst, bo inaczej możemy się pomylić i źle ocenić stan techniczny samochodu.

Pytanie 9

Jaki jest łączny koszt wymiany łożyska w kole pojazdu, jeśli cena łożyska wynosi 100 zł, a czas pracy to 1 godzina 12 minut przy stawce za roboczogodzinę równiej 160 zł?

A. 192 zł
B. 260 zł
C. 132 zł
D. 292 zł
W przypadku zrozumienia kosztów wymiany łożyska koła, kluczowe jest poprawne obliczenie wszystkich składników całkowitych wydatków. Niepoprawne odpowiedzi często wynikają z błędów w obliczeniach lub niepełnego uwzględnienia wszystkich czynników wpływających na koszt. Na przykład, niektóre z odpowiedzi mogły wynikać z pominięcia kosztu robocizny lub nieprawidłowego przeliczenia czasu naprawy. Czasami użytkownicy mogą zignorować, że 12 minut to 1/5 godziny, co prowadzi do błędnego obliczenia kosztów pracy. W rzeczywistości, każda minuta pracy ma swoją wartość, a mechanicy zwykle naliczają stawkę godzinową za każdą rozpoczętą godzinę, co również może wprowadzać w błąd. Typowym błędem myślowym jest przyjęcie, że czas naprawy jest równy jedynie pełnym godzinom, co prowadzi do niedoszacowania całkowitych wydatków. Zrozumienie, jak obliczają się całkowite koszty naprawy, jest kluczowe dla właścicieli pojazdów, aby uniknąć nieprzyjemnych niespodzianek związanych z wydatkami na serwis. W branży motoryzacyjnej ważne jest, aby dokładnie dokumentować wszystkie koszty, co pozwala na pełne zrozumienie wydatków oraz skuteczne planowanie przyszłych napraw.

Pytanie 10

Jaki jest minimalny poziom efektywności hamowania hamulca roboczego, który pozwala na dalsze użytkowanie pojazdu osobowego?

A. 70%
B. 60%
C. 80%
D. 50%
Wybór wskaźnika skuteczności hamowania wyższego niż 50% może wynikać z nieporozumienia dotyczącego podstawowych standardów bezpieczeństwa. Odpowiedzi takie jak 60%, 70% czy 80% sugerują, że skuteczność hamowania powinna być na wyższym poziomie, co może prowadzić do błędnych interpretacji wymagań dotyczących eksploatacji pojazdów. W rzeczywistości, choć wyższe wskaźniki hamowania mogą być pożądane, to jednak normy określają, że minimalny wskaźnik efektywności hamulców roboczych ustalony na poziomie 50% jest wystarczający dla zapewnienia bezpieczeństwa na drodze. Wybierając wyższe wartości, użytkownicy mogą myśleć, że zapewnia to większe bezpieczeństwo, co w praktyce nie jest zgodne z przyjętymi normami. Taki błąd myślowy może wynikać z braku zrozumienia, że nadmierne wymagania dotyczące efektywności mogą prowadzić do nieuzasadnionych kosztów związanych z naprawami lub modyfikacjami pojazdów. Kluczowym aspektem jest, aby pojazdy były sprawne i spełniały określone normy, a niekoniecznie dążyły do osiągnięcia idealnych, ale niepraktycznych wskaźników efektywności. W praktyce, skuteczne zarządzanie stanem technicznym pojazdu powinno koncentrować się na regularnych przeglądach oraz bieżącej konserwacji hamulców, aby utrzymać ich efektywność na poziomie wymaganym przez przepisy prawa.

Pytanie 11

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. test na stanowisku rolkowym
B. pomiar zbieżności kół
C. jazdę próbną
D. kontrolę luzu elementów układu zawieszenia
Przeprowadzenie próby na stanowisku rolkowym, pomiaru zbieżności kół lub kontrola luzu elementów układu zawieszenia, choć istotne, nie zastępują jazdy próbnej jako metody weryfikacji naprawy układu przeniesienia napędu. Stanowisko rolkowe jest użyteczne do diagnostyki, jednak nie oddaje rzeczywistych warunków jazdy. Może pokazać pewne parametry, ale nie dostarczy informacji o zachowaniu pojazdu podczas jazdy w terenie, w zakrętach czy w reakcjach na zmiany prędkości. Zbieżność kół jest kluczowym parametrem, który wpływa na stabilność i kierowanie pojazdem, ale jej pomiar nie jest bezpośrednio związany z oceną naprawy układu napędowego. Kontrola luzów w zawieszeniu również ma znaczenie, ale koncentruje się na innym aspekcie pojazdu, a nie na samym układzie przeniesienia napędu. Te błędne podejścia pojawiają się często z braku zrozumienia, że naprawy wymuszają szeroką analizę całego systemu pojazdu w kontekście jego rzeczywistego użytkowania. Jazda próbna jest jedyną metodą, która pozwala na kompleksową ocenę działania układu przeniesienia napędu w rzeczywistych warunkach drogowych, co czyni ją niezbędnym etapem w procesie naprawczym.

Pytanie 12

Podczas przeprowadzania próby drogowej zauważono, że pojazd samoczynnie skręca w lewą stronę. Aby ustalić przyczynę oraz ewentualny zakres naprawy, na początku należy

A. sprawdzić ustawienie kątów kół kierowanych
B. zweryfikować ciśnienie w oponach
C. wymienić opony na osi przedniej
D. ocenić luzy w układzie kierowniczym
Zarówno kontrola kątów kół kierowanych, jak i sprawdzanie luzów w układzie kierowniczym oraz wymiana opon osi przedniej to działania, które mogą być istotne w kontekście problemów z geometrią i stanem technicznym pojazdu, ale nie są one pierwszymi krokami w diagnozowaniu problemu z samoczynnym zbaczaniem pojazdu. Kontrola kątów kół kierowanych, obejmująca ustawienie zbieżności oraz kątów pochylenia, ma na celu zapewnienie, że pojazd jedzie prosto. Niewłaściwe ustawienie kątów może prowadzić do trudności w kierowaniu, ale nie powinno być pierwszym krokiem, ponieważ często jest to efekt, a nie przyczyna problemu. Sprawdzanie luzów w układzie kierowniczym jest równie ważne, jednak luz może występować w różnych miejscach i rzadko jest przyczyną samoczynnego zbaczania na prostych odcinkach. Co do wymiany opon osi przedniej, to takie działanie może przynieść chwilową poprawę, jednak nie rozwiązuje problemu, jeśli przyczyną jest niewłaściwe ciśnienie, które należy skontrolować wcześniej. Zatem, mylenie kolejności działań oraz niewłaściwe rozumienie podstawowych zasad diagnostyki pojazdów może prowadzić do nieefektywnego zarządzania naprawami i potencjalnych zagrożeń na drodze.

Pytanie 13

W pneumatycznym systemie hamulcowym, elementem odpowiedzialnym za przechowywanie sprężonego powietrza jest

A. manometr
B. siłownik pneumatyczny
C. poduszka powietrzna
D. zbiornik powietrza
Zbiornik powietrza w pneumatycznym układzie hamulcowym jest kluczowym elementem odpowiedzialnym za magazynowanie sprężonego powietrza, które jest niezbędne do skutecznego działania hamulców. Zbiornik ten gromadzi powietrze w odpowiednim ciśnieniu, co umożliwia szybkie i efektywne uruchamianie hamulców w sytuacjach awaryjnych oraz w normalnych warunkach eksploatacyjnych. Przykładowo, w pojazdach ciężarowych oraz autobusach, zbiornik powietrza jest projektowany zgodnie z określonymi normami bezpieczeństwa, aby wytrzymał wysokie ciśnienia robocze. Dobre praktyki branżowe wskazują również na regularne kontrole zbiorników, w tym sprawdzanie ich szczelności oraz stanu technicznego, co jest niezbędne do zapewnienia bezpieczeństwa użytkowania. Utrzymując zbiornik powietrza w dobrym stanie, można zminimalizować ryzyko awarii układu hamulcowego i zapewnić nieprzerwaną wydajność działania systemu hamulcowego, co jest kluczowe w kontekście bezpieczeństwa transportu.

Pytanie 14

Jakim przyrządem pomiarowym powinno się zastąpić badany czujnik ciśnienia oleju, aby potwierdzić jego prawidłowość działania?

A. Manometrem
B. Pirometrem
C. Refraktometrem
D. Barometrem
Refraktometr, barometr i pirometr to przyrządy, które nie są przeznaczone do pomiaru ciśnienia oleju, co czyni je niewłaściwym wyborem w kontekście weryfikacji działania czujnika ciśnienia oleju. Refraktometr służy do pomiaru współczynnika załamania światła, co pozwala określić stężenie rozpuszczonych substancji w cieczy, ale nie ma zastosowania w pomiarze ciśnienia. Barometr mierzy ciśnienie atmosferyczne, a nie ciśnienie cieczy lub gazów w zamkniętym układzie, takim jak układ olejowy w silniku. Pirometr, z drugiej strony, jest urządzeniem do pomiaru temperatury, a nie ciśnienia. Użycie niewłaściwego przyrządu do pomiaru ciśnienia może prowadzić do błędnych interpretacji wyników, co jest niebezpieczne w zastosowaniach przemysłowych i motoryzacyjnych. Niezrozumienie funkcji różnych przyrządów pomiarowych i ich zastosowań w odpowiednich kontekstach jest typowym błędem. Kluczowe jest, aby przy pomiarach ciśnienia korzystać z manometrów, które są specjalnie zaprojektowane do tej funkcji, co zapewnia zarówno dokładność, jak i bezpieczeństwo operacyjne w różnych zastosowaniach technicznych.

Pytanie 15

Urządzenie (elektryczne lub hydrodynamiczne) wykorzystywane do długotrwałego hamowania pojazdu, stosowane w pojazdach ciężarowych o wysokiej ładowności oraz w autobusach, to

A. rezonator
B. rekuperator
C. retarder
D. dyfuzor
Rezonator, rekuperator i dyfuzor, mimo że są terminami technicznymi, nie są związane z długotrwałym hamowaniem pojazdów. Rezonator, wykorzystywany głównie w systemach audio oraz niektórych układach wydechowych, ma na celu poprawę akustyki, a nie wpływa na proces hamowania. Rekuperator, który jest urządzeniem stosowanym w systemach odzyskiwania energii, ma zastosowanie w kontekście zwiększenia efektywności energetycznej, ale nie jest przeznaczony do długotrwałego hamowania dużych pojazdów. Dyfuzor natomiast jest elementem aerodynamiki, używanym głównie w kontekście poprawy przepływu powietrza wokół pojazdów, co wpływa na ich osiągi, a nie na systemy hamulcowe. Typowym błędem myślowym jest mylenie urządzeń służących do regulacji różnych aspektów działania pojazdu. Użytkownicy często nie dostrzegają, że każdy z tych komponentów ma zupełnie inne funkcje, co prowadzi do mylnych konkluzji na temat ich zastosowania w kontekście hamowania. Właściwe zrozumienie funkcji tych urządzeń jest kluczowe, aby uniknąć nieporozumień w ich eksploatacji.

Pytanie 16

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. zacięta szczotka w szczotkotrzymaczu alternatora
B. kompletnie naładowany akumulator
C. spalona żarówka świateł mijania
D. zwarcie w obwodzie sygnałowym akustycznym
Zwarcie w obwodzie sygnału akustycznego raczej nie wpływa na ładowanie akumulatora, bo to zupełnie inny obwód i nie ma połączenia z systemem ładowania. Klakson działa na zasadzie przerywania, więc nie ma tu nic wspólnego z tym, jak alternator produkuje energię. Ponadto, naładowany akumulator nie powinien być przyczyną problemów z ładowaniem; jego stan nie ma wpływu na to, co robi alternator, dopóki wszystko działa jak należy. Jak świeci czerwona kontrolka ładowania, to raczej znaczy, że coś jest nie tak w systemie ładowania, a nie z akumulatorem. Przepalona żarówka świateł mijania też nie ma związku z ładowaniem. Warto zrozumieć, że elektryka w samochodzie to skomplikowana sprawa, a wszystkie części muszą ze sobą współpracować, żeby wszystko działało jak należy. Często ludzie mylą przyczyny i skutki; dużo osób myśli, że problem z ładowaniem może być winą akumulatora, mimo że to może być zupełnie inna rzecz. Zrozumienie, jak działa alternator i jak współpracuje z akumulatorem, to klucz do skutecznej diagnostyki i dbania o elektrykę w autach.

Pytanie 17

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
B. pomiar zadymienia spalin silnika ZI
C. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
D. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
Analizując inne odpowiedzi, można zauważyć, że sprawdzenie współczynnika tłumienia amortyzatorów osi przedniej jest ważnym elementem oceny stanu technicznego pojazdu, jednak nie jest to pierwsza czynność. Warto zwrócić uwagę, że przeprowadzenie tego pomiaru wymaga wcześniejszej weryfikacji danych pojazdu, co czyni tę czynność drugorzędną. Z kolei pomiar zadymienia spalin silnika ZI, choć istotny dla oceny emisji zanieczyszczeń, również powinien następować po zidentyfikowaniu pojazdu, aby zapewnić prawidłowość pomiarów i ich interpretację w kontekście faktycznego stanu pojazdu. Sprawdzenie i regulacja ciśnienia w ogumieniu do wartości nominalnych jest kluczowe dla bezpieczeństwa i wydajności pojazdu, jednak jest to czynność, która może być realizowana równolegle z innymi kontrolami, a nie jako pierwsza. Zatem, kluczowym błędem myślowym jest skupienie się na konkretnych aspektach technicznych pojazdu, które można realizować, nie uwzględniając konieczności wcześniejszej identyfikacji pojazdu oraz weryfikacji jego historii w CEP. Prawidłowe podejście do badania okresowego powinno zawsze zaczynać się od zbierania danych, co jest niezbędne dla dalszych, bardziej szczegółowych analiz stanu technicznego.

Pytanie 18

Częścią mechaniczną układu hamulcowego jest

A. cylinderek hamulcowy
B. dźwignia hamulca ręcznego
C. korektor siły hamowania
D. zbiornik płynu hamulcowego
Zbiornik płynu hamulcowego, korektor siły hamowania i cylinderek hamulcowy to ważne części układu hamulcowego, ale za dużo tu fachowego języka! Myślę, że można to powiedzieć w prostszy sposób, żeby było jaśniej.

Pytanie 19

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. kręcenie
B. lutowanie
C. zgrzewanie
D. klejenie
Wydaje się, że wybór innych metod łączenia elementów podłogi w samochodach może być łatwy, ale każda z nich ma swoje ograniczenia. Na przykład, skręcanie wykorzystuje mechaniczne połączenia, które mogą osłabić strukturę, szczególnie gdy elementy są narażone na wibracje i różne obciążenia. Jeśli używamy śrub czy nakrętek, to czasem może to prowadzić do luzów, a w ekstremalnych warunkach użytkowania, jak w samochodach, mogą wystąpić poważne awarie. A lutowanie, mimo że jest popularne w elektronice, nie nadaje się raczej do materiałów konstrukcyjnych podłogi - potrzebuje szczególnych stopów, które mogą nie wytrzymać obciążeń w pojazdach. I jeszcze do tego, lutowanie nie tworzy jednolitej struktury, co może być kluczowe dla wytrzymałości. Choć klejenie czasami działa, w motoryzacji często nie radzi sobie z warunkami atmosferycznymi i zmianami temperatury. To wszystko sprawia, że zgrzewanie wydaje się najlepszym wyborem, bo łączy w sobie wytrzymałość, niską wagę oraz koszty produkcji, co pokazuje, jak ważne jest dobrze dobierać metody łączenia w inżynierii motoryzacyjnej.

Pytanie 20

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. z zanieczyszczenia płynu cząstkami i osadami
B. z zapowietrzenia układu hamulcowego
C. ze zwiększenia zawartości wody w płynie
D. ze zmiany składu chemicznego płynu
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 21

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. spinek zabezpieczających przewody powrotne
B. pierścieni uszczelniających wtryskiwacze
C. przewodów paliwowych powrotnych
D. przewodów paliwowych wysokiego ciśnienia
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 22

W pojazdach metalowe żeliwo wykorzystuje się do produkcji

A. łożysk tocznych
B. kolektorów wydechowych
C. zaworów wydechowych
D. wałów napędowych
Żeliwo jest materiałem powszechnie stosowanym w budowie kolektorów wydechowych w samochodach, głównie ze względu na swoje korzystne właściwości mechaniczne i termiczne. Kolektory wydechowe muszą wytrzymywać wysokie temperatury oraz korozję, co czyni żeliwo idealnym wyborem. Dzięki swojej odporności na ścieranie i utlenianie, żeliwo zapewnia długowieczność elementów, co przekłada się na mniejsze koszty serwisowania. Przykładowo, w silnikach spalinowych żeliwne kolektory wydechowe są w stanie wytrzymać intensywne warunki pracy, takie jak wysokie ciśnienie spalin. Ponadto, żeliwo ma doskonałą zdolność tłumienia drgań, co pozwala na cichszą pracę silnika, a także ogranicza przenoszenie wibracji na inne elementy układu wydechowego. Zastosowanie żeliwa w kolektorach wydechowych jest zgodne z najlepszymi praktykami inżynieryjnymi, które kładą nacisk na trwałość i bezpieczeństwo komponentów samochodowych.

Pytanie 23

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. hydrokinetyczne.
B. dwutarczowe.
C. podwójne.
D. klasyczne.
Sprzęgło klasyczne, które zostało przedstawione na zdjęciu, jest powszechnie stosowane w pojazdach osobowych. Jego konstrukcja opiera się na jednej tarczy sprzęgłowej oraz kole zamachowym z dociskiem, co pozwala na efektywne przenoszenie momentu obrotowego pomiędzy silnikiem a skrzynią biegów. Ważnym aspektem pracy sprzęgła klasycznego jest możliwość płynnego rozłączania napędu, co jest kluczowe podczas zmiany biegów. Tego typu sprzęgła charakteryzują się prostą budową, co przekłada się na ich niezawodność oraz łatwość w serwisowaniu. W praktyce, sprzęgło klasyczne jest często wykorzystywane w autach osobowych oraz niektórych pojazdach dostawczych, gdzie wymagane jest dobre wyczucie w prowadzeniu oraz stabilność podczas jazdy. Ponadto, dzięki swoim właściwościom, sprzęgło to znajduje zastosowanie w wielu systemach automatyki przemysłowej, gdzie niezbędne jest precyzyjne sterowanie momentem obrotowym.

Pytanie 24

Sprzęt do wyważania kół w pojazdach jest uzupełnieniem wyposażenia stacji do

A. sprawdzania ustawienia kół oraz osi w samochodzie
B. demontażu i montażu opon
C. weryfikacji zawieszenia pojazdu
D. analizy układu hamulcowego pojazdu
Urządzenie do wyważania kół samochodowych jest niezbędne w procesie demontażu i montażu ogumienia, ponieważ zapewnia, że opony są właściwie wyważone przed ich zamontowaniem na pojeździe. Niewłaściwe wyważenie kół może prowadzić do drgań, co z kolei wpływa na komfort jazdy, zużycie opon oraz komponentów zawieszenia. Wyważanie kół polega na rozłożeniu masy opony i felgi w sposób równomierny, co jest kluczowe dla stabilności pojazdu. W profesjonalnych warsztatach mechanicznych stosuje się nowoczesne urządzenia, które są w stanie wykrywać nawet niewielkie nierówności. Dobrą praktyką jest także wykonywanie wyważania kół po każdym demontażu opon, co jest zgodne z normami branżowymi. Tego typu procedury są powszechnie stosowane w serwisach samochodowych, aby zapewnić bezpieczeństwo i wydajność pojazdów, a także przedłużyć żywotność opon.

Pytanie 25

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy odnoszą się do układu

A. kierowniczego
B. hamulcowego
C. napędowego
D. jezdnego
Rozważając inne układy, takie jak napędowy, jezdny czy hamulcowy, można zauważyć, że nie odnoszą się one bezpośrednio do pojęć związanych z kątem wyprzedzenia i pochylem osi sworznia zwrotnicy. Układ napędowy koncentruje się na przenoszeniu mocy z silnika na koła, co obejmuje takie elementy jak skrzynia biegów, wały napędowe i mechanizmy różnicowe. W kontekście układu jezdnego, który obejmuje zawieszenie i elementy wpływające na komfort jazdy, równie nieistotne są te kąty, ponieważ skupia się on głównie na absorpcji drgań i stabilizacji pojazdu. Podobnie, układ hamulcowy dotyczy procesu zatrzymywania pojazdu i jego efektywności, zatem nie uwzględnia aspektów związanych z kierowaniem pojazdem. Typowe błędy myślowe, prowadzące do mylnego przypisania tych kątów do innych układów, mogą wynikać z braku zrozumienia funkcji każdego z tych elementów. Użytkownicy nie dostrzegają, że kąt wyprzedzenia i kąt pochylenia to terminy specyficzne dla geometrii układu kierowniczego, co jest kluczowe dla zapewnienia precyzyjnego prowadzenia pojazdu oraz jego stabilności, zwłaszcza podczas manewrów.

Pytanie 26

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. pompa wtryskowa
B. gaźnik
C. wtryskiwacz
D. pompa paliwowa
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 27

Termostat uruchamia przepływ cieczy chłodzącej do dużego układu

A. gdy temperatura cieczy chłodzącej jest niska.
B. po uruchomieniu ogrzewania wnętrza.
C. gdy temperatura cieczy chłodzącej jest wysoka.
D. tuż po zapłonie silnika.
Odpowiedź, że termostat otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy chłodzącej jest wysoka, jest jak najbardziej prawidłowa. Termostaty w układach chłodzenia silnika pełnią kluczową rolę w zarządzaniu temperaturą pracy silnika. Kiedy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybsze nagrzewanie się silnika. Gdy temperatura cieczy chłodzącej osiąga określony poziom, termostat otwiera przelot do dużego obiegu, co pozwala na cyrkulację cieczy chłodzącej przez chłodnicę. To z kolei zapobiega przegrzewaniu się silnika, co jest kluczowe dla jego optymalnej pracy i żywotności. Przykładem zastosowania tej zasady są nowoczesne pojazdy, które wyposażone są w inteligentne systemy zarządzania temperaturą, które optymalizują wydajność silnika oraz emisję spalin. Dobrze działający termostat zapewnia, że silnik osiąga i utrzymuje optymalną temperaturę roboczą, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 28

Klient zgłosił pojazd do serwisu z uszkodzonym systemem wydechowym. Pracownik serwisu określił potrzebę wymiany komponentów: kolektora wydechowego za 290 zł oraz tylnego tłumika wydechowego za 150 zł. Czas niezbędny do przeprowadzenia naprawy wynosi 240 minut, a stawka za roboczogodzinę to 80 zł. Jakie będą łączne koszty naprawy?

A. 760 zł
B. 632 zł
C. 520 zł
D. 440 zł
Całkowity koszt naprawy pojazdu można obliczyć, sumując koszty części oraz robocizny. Koszty części to suma kolektora wydechowego (290 zł) i tylnego tłumika wydechowego (150 zł), co daje 440 zł. Następnie należy obliczyć koszt robocizny. Czas wykonania naprawy wynosi 240 minut, co odpowiada 4 godzinom (240 minut ÷ 60 minut/godzinę). Przy stawce za roboczogodzinę wynoszącej 80 zł, koszt robocizny wyniesie 4 godziny × 80 zł/godzinę = 320 zł. Zatem całkowity koszt naprawy to 440 zł (części) + 320 zł (robocizna) = 760 zł. Przykładem zastosowania tej wiedzy może być sytuacja, w której warsztat serwisowy musi rzetelnie przedstawiać klientom wyceny napraw, uwzględniając zarówno koszty materiałów, jak i robocizny, zgodnie z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 29

Podczas demontażu łożysk z uszczelniającym pierścieniem, siłę należy kierować bezpośrednio na

A. niedemontowalny pierścień łożyska
B. elementy toczne łożyska
C. wszystkie części łożyska
D. zdejmowany pierścień łożyska
Odpowiedź na pytanie jest poprawna, ponieważ podczas demontażu łożysk, szczególnie w przypadku łożysk z pierścieniem uszczelniającym, kluczowe jest oddziaływanie siłą na zdejmowany pierścień łożyska. Jest to zgodne z zasadami inżynierii mechanicznej, które zalecają, aby siły demontażu były kierowane na elementy, które mogą być bezpiecznie usunięte bez uszkadzania innych komponentów. Działając na zdejmowany pierścień łożyska, minimalizujemy ryzyko uszkodzenia elementów tocznych, co jest szczególnie istotne w przypadku łożysk precyzyjnych, takich jak łożyska kulkowe czy wałeczkowe. Przykładem zastosowania tej zasady może być demontaż łożysk w silnikach elektrycznych, gdzie nieprawidłowe podejście do demontażu może prowadzić do konieczności wymiany kosztownych części. Utrzymanie odpowiednich procedur demontażu zgodnych z wytycznymi producentów łożysk jest kluczowe dla zachowania ich funkcji oraz wydłużenia żywotności podzespołów.

Pytanie 30

Ciśnienie podciśnienia to ciśnienie, które jest

A. wyższe od ciśnienia atmosferycznego
B. niższe od ciśnienia atmosferycznego
C. równe ciśnieniu atmosferycznemu
D. równe ciśnieniu atmosferycznemu na poziomie morza
Zrozumienie podciśnienia wymaga przemyślenia, jak ciśnienie działa w różnych kontekstach. Odpowiedzi sugerujące, że podciśnienie jest większe lub równe ciśnieniu atmosferycznemu są nieprawidłowe z kilku powodów. Po pierwsze, podciśnienie definiuje się jako sytuację, w której ciśnienie jest niższe niż ciśnienie otoczenia. Mogłoby to prowadzić do mylnych przekonań, że w warunkach podciśnienia ciśnienie wewnętrzne jakiegoś systemu, np. zbiornika, jest wyższe od atmosferycznego, co jest fizycznie niemożliwe. Ciśnienie atmosferyczne na poziomie morza wynosi około 1013 hPa. Mówiąc o podciśnieniu, mówimy o wartościach ciśnienia, które są znacznie niższe, co prowadzi do różnych zjawisk fizycznych, takich jak wytwarzanie próżni. W praktyce, gdy ciśnienie jest równe ciśnieniu atmosferycznemu, nie mamy do czynienia z podciśnieniem, lecz z równowagą ciśnień, co nie wpływa na żadne procesy, które mogłyby wykorzystywać podciśnienie. Stąd pomylenie podciśnienia z odpowiadającym mu ciśnieniem atmosferycznym może prowadzić do błędnych decyzji w projektowaniu systemów, które wymagają precyzyjnego zarządzania ciśnieniem, jak np. w systemach wentylacyjnych czy eksperymentach laboratoryjnych. Kluczowe jest zrozumienie, że podciśnienie ma charakter niszczący dla niektórych substancji, a jego kontrola jest niezbędna w wielu procesach przemysłowych i laboratoryjnych. Wiedza o tym, jak podciśnienie wpływa na materiały i procesy, jest niezbędna dla inżynierów i technologów.

Pytanie 31

Aby odkręcić zapieczoną nakrętkę w układzie zawieszenia, należy użyć

A. rurhaka
B. młotka
C. szlifierki kątowej
D. podgrzewacza indukcyjnego
Podgrzewacz indukcyjny jest najskuteczniejszym narzędziem do poluzowania zapieczonych nakrętek w układzie zawieszenia. Działa na zasadzie indukcji elektromagnetycznej, generując ciepło bezpośrednio w metalowych elementach. Wysoka temperatura, która szybko osiąga wartość niezbędną do rozszerzenia metalu, powoduje, że nakrętka oddziela się od złącza. To podejście jest preferowane, ponieważ minimalizuje ryzyko uszkodzenia otaczających komponentów oraz eliminuje konieczność użycia siły mechanicznej, co mogłoby prowadzić do deformacji lub pęknięć. W praktyce, stosowanie podgrzewacza indukcyjnego jest zgodne z normami bezpieczeństwa i najlepszymi praktykami w branży motoryzacyjnej. Pozwala to także na bardziej efektywne i szybkie wykonanie pracy, co jest kluczowe w środowisku warsztatowym. Przykładowo, podczas demontażu zawieszenia w pojazdach, gdzie nakrętki są często narażone na działanie czynników atmosferycznych, ich poluzowanie za pomocą podgrzewacza jest zarówno skuteczne, jak i bezpieczne. Dodatkowo, technologia ta pozwala na precyzyjne kontrolowanie temperatury, co jest istotne w przypadku wrażliwych materiałów.

Pytanie 32

Jak przeprowadza się naprawę niewielkiego uszkodzenia opony bezdętkowej?

A. wklejając od wewnętrznej strony gumowy grzybek uszczelniający
B. przyklejając z zewnątrz gumową łatkę
C. wulkanizując z zewnątrz gumowy grzybek uszczelniający
D. wprowadzając do nieszczelności masę uszczelniającą
Przyklejanie gumowej łatki od zewnątrz może wydawać się prostym sposobem na naprawę opony, lecz w przypadku opon bezdętkowych nie zapewnia to odpowiedniego uszczelnienia. Łatka stosowana na zewnątrz opony narażona jest na działanie czynników atmosferycznych, mechanicznych oraz chemicznych, co może prowadzić do jej odklejania się i ponownego pojawienia się nieszczelności. Dodatkowo, w przypadku drobnych uszkodzeń, zewnętrzna łatka nie jest w stanie skutecznie zablokować ucieczki powietrza, co może prowadzić do niebezpiecznej sytuacji na drodze. Wprowadzenie masy uszczelniającej w nieszczelność opony jest innowacyjnym, lecz nie zawsze skutecznym rozwiązaniem. Tego typu produkty mają swoje ograniczenia, a ich skuteczność często zależy od rodzaju uszkodzenia. W przypadku większych uszkodzeń, masa może nie być w stanie trwale zablokować wycieku powietrza. Wulkanizacja grzybka od zewnątrz również nie jest zalecana, ponieważ nie zapewnia odpowiedniego połączenia z oponą, a także nie spełnia standardów bezpieczeństwa. Wszystkie te błędne podejścia do naprawy opon bezdętkowych mogą prowadzić do poważnych konsekwencji, takich jak awarie na drodze, co powinno być dla nas alarmujące i skłaniać do stosowania jedynie sprawdzonych i zatwierdzonych metod naprawy.

Pytanie 33

Przy regulacji geometrii przednich kół pojazdu, w którym można dostosować wszystkie kąty, kolejność przeprowadzania tych ustawień wygląda następująco:

A. Wyprzedzenie sworznia zwrotnicy, kąt pochylenia każdego koła, a później regulacja zbieżności kół
B. Wyprzedzenie sworznia zwrotnicy każdego koła, regulacja zbieżności kół, a potem kąt pochylenia każdego koła
C. Kąt pochylenia każdego koła, wyprzedzenie sworznia zwrotnicy każdego koła, a na końcu regulacja zbieżności kół
D. Najpierw regulacja zbieżności kół, następnie kąt pochylenia każdego koła, a na końcu wyprzedzenie sworznia zwrotnicy każdego koła
Patrząc na błędy, które się pojawiły, to widać kilka rzeczy. Po pierwsze, niektóre odpowiedzi sugerują, że kolejność regulacji nie ma znaczenia, a to nie jest prawda. Jeśli zaczniemy od zbieżności, a nie od wyprzedzenia sworznia zwrotnicy, to możemy mieć naprawdę poważne problemy z prowadzeniem pojazdu. Wyprzedzenie powinno być na pierwszym miejscu, bo stabilność kierowania jest kluczowa dla bezpieczeństwa. Kolejna rzecz, to pochylenie kół – wcale nie można je zaniedbać. Regulując pochylenie przed zbieżnością, nie bierzemy pod uwagę, jak to wszystko działa razem. Z mojego punktu widzenia, brak zrozumienia tych wszystkich kątów może prowadzić do kłopotów, które będą nas kosztować w naprawach. Takie pomyłki naprawdę nie służą jakości jazdy, warto to mieć na uwadze.

Pytanie 34

Jaka powinna być minimalna grubość okładzin ściernych klocków hamulcowych?

A. od 1,5 mm do 2 mm
B. od 1,5 cm do 2 cm
C. od 0,5 cm do 1 cm
D. od 0,5 mm do 1 mm
Odpowiedzi dotyczące grubości okładzin ściernych klocków hamulcowych, które zakładają minimalne wartości od 0,5 cm do 1 cm oraz od 0,5 mm do 1 mm, są błędne i nieodpowiednie w kontekście standardów bezpieczeństwa. Po pierwsze, grubość 0,5 cm do 1 cm jest zdecydowanie zbyt wysoka dla klocków hamulcowych, co sugeruje nieporozumienie dotyczące ich budowy. Klocki hamulcowe nie powinny być tak grube, ponieważ prowadziłoby to do nieodpowiedniego dopasowania w układzie hamulcowym, co mogłoby skutkować nieefektywnym działaniem hamulców i zwiększonym obciążeniem na inne elementy, takie jak tarcze hamulcowe. Z kolei wartości od 0,5 mm do 1 mm są zbyt niskie, co prowadziłoby do zbyt szybkiego zużycia klocków i skutkowało ryzykiem całkowitego wyeliminowania okładzin ściernych, co jest skrajnie niebezpieczne. W praktyce, zbyt niskie lub zbyt wysokie wartości grubości prowadzą do nieprawidłowego działania układu hamulcowego, a w efekcie mogą stwarzać zagrożenie dla kierowcy i pasażerów. Dbanie o właściwe dimensje okładzin jest kluczowe dla zachowania efektywności hamowania oraz bezpieczeństwa na drodze.

Pytanie 35

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. siły hamowania
B. skuteczności hamulców
C. rodzaju użytego płynu hamulcowego
D. rozkładu siły hamowanej na każde z kół
Skuteczność hamulców jest kluczowym wskaźnikiem, który pozwala ocenić, czy wymiana klocków hamulcowych przyniosła zamierzony efekt. Jazda próbna po wymianie klocków hamulcowych ma na celu nie tylko sprawdzenie, czy nowo zamontowane części działają poprawnie, ale również, czy ich działanie jest zgodne z wymaganiami bezpieczeństwa i komfortu jazdy. W praktyce, skuteczność hamulców można ocenić poprzez obserwację reakcji pojazdu na wciśnięcie pedału hamulca, co powinno skutkować natychmiastowym i proporcjonalnym spowolnieniem. Przy odpowiednim doborze klocków i tarcz hamulcowych, ich współpraca powinna zapewniać optymalne warunki hamowania, co jest kluczowe dla zapobiegania wypadkom drogowym. Warto również wspomnieć, że skuteczność hamulców powinna być regularnie weryfikowana, a jej ocena powinna być zgodna z wytycznymi producentów oraz standardami branżowymi, takimi jak normy ECE R90, które regulują wymagania dotyczące wydajności hamulców w pojazdach. Dodatkowo, nieodpowiednie dobranie klocków hamulcowych może prowadzić do ich przegrzewania, co może negatywnie wpływać na ich skuteczność. Aspekty te powinny być brane pod uwagę podczas każdej wymiany klocków hamulcowych.

Pytanie 36

W pojeździe z silnikiem ZS obserwuje się nadmierną emisję czarnych spalin. Co jest przyczyną tej sytuacji?

A. nieszczelność pierścieni tłokowych oraz spalanie oleju silnikowego
B. nieszczelność uszczelki podgłowicowej
C. nieprawidłowe ustawienie zaworów
D. wadliwe rozpylenie paliwa spowodowane usterką wtryskiwaczy
W przypadku silnika ZS, nadmierne zadymienie spalin barwy czarnej jest najczęściej spowodowane wadliwym rozpyleniem paliwa, co jest bezpośrednio związane z niesprawnością wtryskiwaczy. Wtryskiwacze są kluczowymi elementami systemu wtrysku paliwa, odpowiedzialnymi za atomizację paliwa i jego precyzyjne dostarczenie do komory spalania. Gdy wtryskiwacze nie funkcjonują poprawnie, paliwo może być wtryskiwane w zbyt dużych ilościach lub w sposób nieprawidłowy, co prowadzi do niepełnego spalania i powstawania czarnych spalin. Przykładowo, zanieczyszczenia lub uszkodzenia wtryskiwaczy mogą powodować, że paliwo nie jest efektywnie atomizowane, przez co jego nadmiar gromadzi się w cylindrze i nie spala się całkowicie. W praktyce, regularne serwisowanie układu wtryskowego, w tym czyszczenie wtryskiwaczy, jest kluczowe dla utrzymania optymalnej wydajności silnika i minimalizacji emisji spalin. Standardy branżowe, takie jak wytyczne dotyczące emisji spalin, podkreślają znaczenie dobrze wyregulowanego układu wtryskowego, co ma na celu zarówno ochronę środowiska, jak i efektywność paliwową pojazdów.

Pytanie 37

Termin DOHC odnosi się do układu

A. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
B. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
C. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
D. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 38

EGR to skrót oznaczający system

A. recyrkulacji spalin
B. wspomagania układu kierowniczego
C. zmiennych faz rozrządu
D. wspomagania układu hamulcowego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 39

Użycie zbyt bogatej mieszanki paliwowo-powietrznej w silniku skutkuje pokryciem izolatora świecy zapłonowej osadem w odcieniu

A. błękitnym
B. czarnym
C. białoszarym
D. brunatnym
Stosowanie zbyt bogatej mieszanki paliwowo-powietrznej do zasilania silnika objawia się pokryciem izolatora świecy zapłonowej nalotem w kolorze czarnym. Taki nalot jest wynikiem nadmiaru paliwa, które nie spala się w komorze spalania, co prowadzi do osadzania się niespalonego węgla na świecy. W praktyce, czarny nalot może wskazywać również na złą regulację gaźnika lub złą jakość paliwa. W przypadku silników z zapłonem iskrowym, dobrym praktyką jest regularne kontrolowanie stanu świec zapłonowych, co może pomóc w diagnozowaniu problemów z mieszanką paliwowo-powietrzną. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne serwisowanie układu zasilania, co obejmuje kontrolę mieszanki paliwowej. Warto również wspomnieć, że czarny nalot może wpływać na efektywność pracy silnika, prowadząc do zwiększonego zużycia paliwa i emisji zanieczyszczeń.

Pytanie 40

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. uszkodzeniu tarczy sprzęgłowej
B. zablokowaniu systemu chłodzenia
C. deformacji tarczy hamulcowej
D. niewyważeniu kół
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.