Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 lutego 2026 15:12
  • Data zakończenia: 2 lutego 2026 15:13

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q1
B. NO stycznika Q1
C. NO stycznika Q2
D. NC stycznika Q2
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 2

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
B. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
C. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
D. gniazda umieszczać tylko w strefie przypodłogowej.
Umieszczanie wyłączników i gniazd na wysokości co najmniej 100 cm od podłoża, jak sugeruje jeden z błędnych podejść, nie zawsze jest zgodne z praktykami branżowymi. Choć wysokość ta może być stosowana w niektórych przypadkach, nie uwzględnia ona różnorodnych potrzeb użytkowników i specyfikacji pomieszczeń, co prowadzi do nieoptymalnych rozwiązań. Wysokość montażu powinna być dostosowana do konkretnego zastosowania – na przykład, w kuchniach i biurach, gdzie użytkownicy mogą stać lub siedzieć, istotne jest, aby gniazda były łatwo dostępne w różnej pozycji. Stawianie gniazd tylko w strefie przypodłogowej to kolejny powszechny błąd. Takie podejście może ograniczać dostępność elektryczności w miejscach, gdzie jest to konieczne, jak np. w okolicy biurka czy w pobliżu urządzeń AGD. Ponadto, umieszczanie gniazd w odległości co najmniej 50 cm od krawędzi drzwi i okien nie jest standardem, który ma powszechne zastosowanie, a w wielu przypadkach może być zbędne – istotniejsze jest zapewnienie bezpieczeństwa oraz funkcjonalności w kontekście użycia i estetyki pomieszczenia. Właściwe podejście do montażu osprzętu elektrycznego powinno koncentrować się na zrównoważeniu przepisów z indywidualnymi preferencjami użytkowników, a nie na sztywnych normach, które nie odpowiadają rzeczywistym potrzebom mieszkańców.

Pytanie 3

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 250 V
B. 500 V
C. 750 V
D. 1 000 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 4

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Impedancję pętli zwarcia.
C. Rezystancję izolacji.
D. Czas wyłączenia wyłącznika nadprądowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 5

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka w łazience oraz kuchni
C. zasilającego gniazdka jedynie w kuchni
D. oddzielnego dla urządzeń gospodarstwa domowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 6

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 20 A
B. 32 A
C. 16 A
D. 6 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 20 A, ponieważ stycznik SM-320, który jest kluczowym elementem obwodu oświetleniowego, ma prąd znamionowy wynoszący 20 A. W praktyce oznacza to, że stycznik ten jest przystosowany do długotrwałego obciążenia prądowego o takiej wartości, co jest istotne w kontekście zapewnienia bezpieczeństwa i niezawodności systemu oświetleniowego. Włączenie obwodu oświetleniowego z prądem przekraczającym 20 A mogłoby prowadzić do przeciążenia stycznika, co w konsekwencji może doprowadzić do jego uszkodzenia oraz zwiększonego ryzyka pożaru. Ponadto, w standardach branżowych, takich jak normy IEC, podkreśla się, że elementy obwodów elektrycznych należy dobierać zgodnie z ich maksymalnymi parametrami znamionowymi, aby uniknąć potencjalnych awarii. W tym kontekście, znajomość i respektowanie wartości nominalnych elementów obwodów jest fundamentalne dla projektowania bezpiecznych instalacji elektrycznych. Przykładem zastosowania tej wiedzy jest dobór odpowiednich zabezpieczeń dla oświetlenia w budynkach użyteczności publicznej, gdzie nadmiarowy prąd mógłby prowadzić do niebezpiecznych sytuacji.

Pytanie 7

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Pomiar rezystancji izolacji i próbne uruchomienie
B. Impregnację uzwojeń i wyważenie wirnika
C. Sprawdzenie układów rozruchowych i regulacyjnych
D. Sprawdzenie układów sterowania i sygnalizacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 8

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
B. pisemne polecenie do wykonania prac
C. wyłączenie zasilania z instalacji
D. oznaczenie i zabezpieczenie obszaru roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 9

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. wymagają uziemienia obudowy.
B. muszą być zasilane wyłącznie przez transformator separacyjny.
C. mają wzmocnioną izolację.
D. muszą być zasilane wyłącznie z sieci PELV.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawy oświetleniowe oznaczone symbolem podwójnej izolacji, który widnieje na ilustracji, posiadają wzmocnioną izolację, co jest kluczowe dla ich bezpiecznego użytkowania. Tego typu oprawy są projektowane w taki sposób, aby zminimalizować ryzyko porażenia prądem elektrycznym, korzystając z dwóch niezależnych warstw izolacyjnych zamiast tradycyjnego uziemienia. W praktyce oznacza to, że mogą być stosowane w miejscach, gdzie uziemienie jest trudne do zrealizowania, na przykład w pomieszczeniach wilgotnych. Zastosowanie podwójnej izolacji jest zgodne z normą IEC 61140, która określa wymagania dotyczące ochrony osób przed porażeniem elektrycznym. Wzmocniona izolacja sprawia, że są one odpowiednie do użytku w domach, biurach oraz innych obiektach, gdzie bezpieczeństwo użytkowników jest priorytetem. Warto również zauważyć, że wiele nowoczesnych opraw LED posiada ten symbol, co podkreśla ich innowacyjność oraz zgodność z aktualnymi standardami bezpieczeństwa.

Pytanie 10

Którą funkcję spełnia uzwojenie kompensacyjne w silniku prądu stałego?

A. Ogranicza oddziaływanie twornika w strefie biegunów głównych.
B. Zwiększa moment obrotowy przy rozruchu.
C. Zmniejsza straty mocy czynnej w uzwojeniu stojana.
D. Ogranicza oddziaływanie twornika w strefie szczotek.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie wskazana funkcja uzwojenia kompensacyjnego jest bardzo istotna z punktu widzenia prawidłowej pracy silnika prądu stałego obciążonego. Uzwojenie kompensacyjne jest umieszczone w żłobkach bieguna głównego, tuż pod jego nabiegunnikiem, i jest połączone szeregowo z twornikiem. Dzięki temu prąd płynący w uzwojeniu kompensacyjnym jest proporcjonalny do prądu twornika, a więc do obciążenia maszyny. Jego zadaniem jest wytworzenie takiego strumienia magnetycznego, który w strefie biegunów głównych przeciwstawia się strumieniowi od twornika (czyli zjawisku reakcji twornika). W praktyce chodzi o to, żeby ograniczyć odkształcenie głównego pola magnetycznego, przesuwanie się strefy komutacji i ryzyko iskrzenia na szczotkach przy zmianach obciążenia. Dzięki uzwojeniu kompensacyjnemu silnik lepiej znosi duże prądy obciążenia, ma stabilniejszą komutację i może pracować przy wyższych gęstościach prądu bez nadmiernego zużycia komutatora. Moim zdaniem, w zastosowaniach przemysłowych, gdzie silniki prądu stałego są często narażone na gwałtowne zmiany momentu (np. walcarki, dźwigi, napędy trakcyjne starszego typu), uzwojenie kompensacyjne to wręcz standard dobrej praktyki konstrukcyjnej. W normach i literaturze dotyczącej maszyn elektrycznych podkreśla się, że dla maszyn dużej mocy i dużych prądów reakcja twornika musi być ograniczana nie tylko biegunami komutacyjnymi, ale właśnie także uzwojeniem kompensacyjnym w strefie biegunów głównych. W efekcie otrzymujemy bardziej „posłuszny” silnik: napięcie komutacji mniej zależy od obciążenia, charakterystyki mechaniczne są stabilniejsze, a sprawność eksploatacyjna wyższa, bo nie tracimy energii na nadmierne nagrzewanie komutatora i szczotek.

Pytanie 11

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 3 do 5
B. 2 do 3
C. 10 do 20
D. 5 do 10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 12

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,4 s i 0,2 s
C. 0,4 s i 0,8 s
D. 0,2 s i 0,4 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,4 s dla obwodu z przewodem neutralnym oraz 0,8 s dla obwodu bez przewodu neutralnego jest zgodna z normami dotyczącymi bezpieczeństwa w układach sieci typu IT. W przypadku obwodów z przewodem neutralnym, czas wyłączenia wynoszący 0,4 s zapewnia odpowiednią ochronę przed skutkami porażenia prądem, co jest kluczowe w kontekście ochrony ludzi oraz sprzętu. W obwodach bez przewodu neutralnego wydłużony czas wyłączenia do 0,8 s ma na celu zmniejszenie ryzyka niepożądanych skutków w przypadku awarii, co jest zgodne z wymaganiami określonymi w normach IEC 60364. Przykładowo, w sytuacji, gdy wystąpi zwarcie lub ucieczka prądu do ziemi, szybka reakcja urządzenia różnicowoprądowego jest kluczowa dla zminimalizowania ryzyka porażenia oraz ochrony przed pożarami. Dodatkowo, zastosowanie urządzenia różnicowoprądowego w obwodach sieci IT w znaczący sposób zwiększa bezpieczeństwo użytkowników, a przestrzeganie tych czasów wyłączenia jest kluczowe w projektowaniu systemów elektrycznych.

Pytanie 13

Na rysunku przedstawiono

Ilustracja do pytania
A. sprawdzanie ciągłości przewodów ochronnych.
B. pomiar impedancji pętli zwarcia.
C. badanie skuteczności ochrony podstawowej.
D. pomiar rezystancji izolacji przewodów ochronnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie ciągłości przewodów ochronnych stanowi niezwykle istotny element zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na przedstawionym rysunku widzimy schemat, w którym zaznaczone są kluczowe elementy, takie jak przewód ochronny PE oraz przewód ochronno-neutralny PEN, a także przyrząd pomiarowy, który jest wykorzystywany do tego typu testów. Sprawdzanie ciągłości przewodów ochronnych polega na pomiarze oporu elektrycznego pomiędzy końcami przewodów ochronnych, co pozwala na upewnienie się, że są one prawidłowo połączone i nie mają przerw. W praktyce, taki pomiar jest kluczowy przed oddaniem do użytku nowej instalacji elektrycznej oraz podczas regularnych przeglądów technicznych. Zgodnie z normą PN-EN 60204-1, ciągłość przewodów ochronnych powinna być sprawdzana w regularnych odstępach czasu, co jest niezbędne dla zapewnienia ochrony przed porażeniem prądem elektrycznym. Takie działania pomagają w wykrywaniu potencjalnych zagrożeń i zapewniają bezpieczeństwo użytkowników instalacji.

Pytanie 14

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Prąd błądzący
C. Przepięcie
D. Przeciążenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 15

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Watomierza
C. Waromierza
D. Reflektometru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 16

Niszczenie części metalowych silnika wskutek zetknięcia się ich z roztworem, mogącym stanowić elektrolit przewodzący prąd między lokalnymi ogniwami znajdującymi się na powierzchni metalu, jest uszkodzeniem spowodowanym

A. korozją chemiczną.
B. przyczyną termiczną.
C. przyczyną mechaniczną.
D. korozją elektrochemiczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie wskazana została korozja elektrochemiczna, bo w opisie pytania kluczowe są dwie rzeczy: obecność roztworu działającego jak elektrolit oraz lokalne ogniwa na powierzchni metalu. To jest dokładnie definicja korozji elektrochemicznej – metal w środowisku przewodzącym prąd (np. woda z solami, płyn chłodniczy, kondensat z dodatkami) tworzy mini-ogniwa galwaniczne, w których zachodzą reakcje anodowe i katodowe. W miejscach anodowych metal się rozpuszcza, czyli po prostu ubywa materiału. W silnikach elektrycznych i spalinowych zjawisko to dotyczy np. obudów, wałów, śrub, kadłubów, a nawet zacisków elektrycznych, jeśli mają kontakt z wilgocią i zanieczyszczeniami. W praktyce widać to jako wżery, naloty, zmatowienia, czasem zielonkawe osady na połączeniach miedzianych. Dobre praktyki branżowe mówią jasno: trzeba ograniczać dostęp elektrolitu (czyli wilgoci i agresywnych związków), stosować odpowiednie powłoki ochronne (farby, galwanizację, anodowanie), właściwe dobieranie par materiałowych (żeby nie robić sobie przypadkiem ogniwa galwanicznego np. stal–miedź w wilgotnym środowisku) oraz dbać o odprowadzanie kondensatu. W dokumentacjach producentów silników i normach dotyczących eksploatacji urządzeń elektrycznych często jest mowa o wymaganej klasie szczelności IP, dopuszczalnej wilgotności oraz konieczności okresowych przeglądów antykorozyjnych. Z mojego doświadczenia w warsztacie największym problemem jest ignorowanie drobnych śladów korozji – potem nagle okazuje się, że śruba się urwała albo zacisk grzeje się, bo kontakt jest zniszczony przez korozję elektrochemiczną. Tu naprawdę opłaca się profilaktyka: czyste środowisko pracy, właściwe uszczelnienia, dobre jakościowo płyny eksploatacyjne i regularne oględziny elementów metalowych narażonych na wilgoć.

Pytanie 17

Który zestaw narzędzi należy użyć do montażu aparatury i wykonania połączeń elektrycznych w rozdzielnicy mieszkaniowej?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji.
B. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka.
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków.
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W montażu rozdzielnicy mieszkaniowej kluczowe jest użycie narzędzi dokładnie dopasowanych do wykonywanych czynności: cięcia przewodów, zdejmowania powłoki z kabli, zdejmowania izolacji z żył oraz dokręcania zacisków aparatury modułowej. Zestaw: szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji i zestaw wkrętaków dokładnie to zapewnia. Szczypce do cięcia przewodów pozwalają na precyzyjne i czyste odcięcie żył bez ich miażdżenia. To jest ważne, bo zgnieciona żyła ma gorszy przekrój efektywny, może się grzać i w skrajnym przypadku prowadzić do przegrzewania zacisków w rozdzielnicy. Przyrząd do ściągania powłoki służy do zdejmowania zewnętrznej osłony kabla, np. YDYp, bez uszkadzania izolacji poszczególnych żył. Z mojego doświadczenia to naprawdę robi różnicę – kto raz podciął izolację nożem, ten wie, jak łatwo potem o przebicie. Przyrząd do ściągania izolacji umożliwia kontrolowane zdjęcie izolacji z końcówek żył na odpowiednią długość, zgodnie z wymaganiami producenta zacisków aparatury modułowej (wyłączniki nadprądowe, różnicowoprądowe, rozłączniki). Dzięki temu końcówka przewodu dobrze siedzi w zacisku i ma właściwy styk. Zestaw wkrętaków, najlepiej izolowanych 1000 V zgodnie z normą PN-EN 60900, jest niezbędny do prawidłowego dokręcenia zacisków śrubowych, montażu szyn, listew zaciskowych i reszty osprzętu w rozdzielnicy. Dobre praktyki mówią jasno: używamy narzędzi specjalistycznych, a nie „co jest pod ręką”. Ten zestaw to w praktyce standard przy estetycznym i bezpiecznym montażu rozdzielnic mieszkaniowych, zarówno pod względem elektrycznym, jak i mechanicznym.

Pytanie 18

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z miedzi w formie linki
C. Z miedzi w formie drutu
D. Z aluminium w formie drutu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 19

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. IT
B. TN-C
C. TN-S
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 20

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. gG
C. aM
D. aL

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 21

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Badanie wyłącznika różnicowoprądowego
C. Pomiar rezystancji izolacji przewodów
D. Badanie stanu izolacji podłóg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 22

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F2:2 i 1
B. Neutralny między zaciskami F1:N2 i 2
C. Neutralny między zaciskami N i F1:N1
D. Fazowy między zaciskami F1:2 i F2:1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 23

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 3.
C. Narzędzie 4.
D. Narzędzie 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 24

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do formowania oczek na końcach żył jednodrutowych.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że szczypce są przeznaczone do formowania oczek na końcach żył jednodrutowych, jest prawidłowa, ponieważ szczypce okrągłe zostały zaprojektowane z myślą o precyzyjnym formowaniu takich elementów w obszarze elektryki i mechaniki. Oczka na końcach żył są kluczowe, ponieważ umożliwiają solidne połączenie przewodów z zaciskami, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności instalacji. W praktyce, formowanie oczek to nie tylko kwestia estetyki, ale również funkcjonalności; dobrze uformowane oczka minimalizują ryzyko luźnych połączeń, które mogą prowadzić do przegrzewania się lub awarii. W inżynierii elektrycznej stosuje się różne standardy, takie jak IEC 60947-1, które regulują wymagania dotyczące połączeń elektrycznych. Warto również wspomnieć, że odpowiednie formowanie końców żył ma kluczowe znaczenie w kontekście odporności na wibracje i długotrwałą niezawodność połączeń.

Pytanie 25

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 2 godziny
B. 1 godzinę
C. 3 godziny
D. 4 godziny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas, przez jaki działa oświetlenie ewakuacyjne, powinien wynosić co najmniej 2 godziny. To ważne, żeby ludzie w budynku mogli bezpiecznie się ewakuować, gdy coś się dzieje, na przykład, gdy zasilanie przestaje działać. Są różne normy, takie jak EN 1838 czy PN-EN 50172, które określają te kwestie. W praktyce to oznacza, że światło ewakuacyjne musi świecić przez wystarczająco długi czas, żeby każdy mógł dotrzeć do wyjścia, zwłaszcza w dużych budynkach, gdzie można sporo przejść. Przykładem może być biurowiec, w którym regularnie sprawdzają oświetlenie ewakuacyjne, by mieć pewność, że wszystko działa jak trzeba. Regularna konserwacja tych systemów jest naprawdę ważna dla bezpieczeństwa całego budynku.

Pytanie 26

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP44
C. IP55
D. IP20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 27

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Badanie kolejności faz.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Pomiar rezystancji uziemienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tester wyłączników różnicowoprądowych, który widzisz na ilustracji, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Jego główną funkcją jest sprawdzanie poprawności działania wyłączników różnicowoprądowych. Te urządzenia zabezpieczające mają na celu ochronę ludzi przed porażeniem prądem elektrycznym, wykrywając nieprawidłowości w przepływie prądu. Tester symuluje różne warunki, takie jak prąd upływowy, co pozwala na weryfikację, czy wyłącznik prawidłowo zareaguje na zagrożenie. W praktyce, regularne testowanie wyłączników różnicowoprądowych jest zalecane zgodnie z normami PN-EN 61010-1 i PN-EN 60947-2, co pomaga w utrzymaniu wysokiego poziomu bezpieczeństwa elektrycznego w budynkach. Warto również pamiętać, że nieprzeprowadzanie takich testów może prowadzić do niebezpiecznych sytuacji, w których uszkodzone lub wadliwe wyłączniki nie zadziałają w przypadku awarii, co stwarza ryzyko porażenia prądem lub pożaru.

Pytanie 28

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 600/1000 V
B. 450/750 V
C. 300/500 V
D. 300/300 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 29

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 766,7 Ω
B. 1,3 Ω
C. 166,7 Ω
D. 6,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 166,7 Ω jest prawidłowa, ponieważ określa maksymalną wartość rezystancji uziemienia, która zapewnia skuteczną ochronę przed porażeniem elektrycznym w systemie TT. W układzie tym, przy zastosowaniu wyłącznika różnicowoprądowego o znamionowym prądzie różnicowym 300 mA oraz długotrwale dopuszczalnym napięciu dotykowym wynoszącym 50 V, stosuje się wzór: Rmax = U / I, gdzie U to wartość napięcia dotykowego, a I to prąd różnicowy. Podstawiając wartości, otrzymujemy Rmax = 50 V / 0,3 A = 166,67 Ω, co zaokrąglamy do 166,7 Ω. W praktyce, przestrzeganie tego ograniczenia pozwala na zminimalizowanie ryzyka wystąpienia niebezpiecznych napięć dotykowych w przypadku uszkodzenia izolacji. Wiele norm, takich jak PN-EN 61008 i PN-EN 61140, wskazuje na konieczność przeprowadzania takich obliczeń, co potwierdza ich znaczenie w pracy projektantów instalacji elektrycznych. W związku z tym, odpowiednia wartość rezystancji uziemienia w systemie TT jest kluczowa dla zapewnienia bezpieczeństwa użytkowników i ochrony przed skutkami porażenia elektrycznego.

Pytanie 30

Sumienny pracownik w czasie wyznaczonym na zrealizowanie działań

A. przekracza terminy wszystkich zleconych zadań.
B. wykonuje część zleconych zadań.
C. przekracza dopuszczalne normy wykonywanych zadań.
D. wykonuje wszystkie zadania w terminie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie – sumienny pracownik to ktoś, kto w wyznaczonym czasie wykonuje wszystkie zadania w terminie, a nie tylko ich część czy „jak się uda”. W realnej pracy technika, np. przy instalacjach elektrycznych czy przeglądach urządzeń, terminowość jest tak samo ważna jak sama jakość wykonania. Z mojego doświadczenia to właśnie połączenie dokładności i dotrzymywania terminów buduje zaufanie przełożonych i klientów. Sumienność oznacza, że pracownik potrafi zaplanować swoją pracę, dobrze ocenić czas potrzebny na wykonanie zlecenia i na bieżąco kontrolować postęp. Jeżeli ma do zrobienia kilka zadań, np. pomiary instalacji, sporządzenie protokołu i drobną naprawę, to tak nimi zarządza, żeby każde było skończone przed deadlinem, a nie zostawione „na potem”. W dobrych praktykach branżowych terminowość jest jednym z kryteriów oceny pracownika – często zapisywanym w procedurach jakości, systemach ISO czy wewnętrznych regulaminach pracy. Szef nie interesuje się tylko tym, czy zadanie jest zrobione, ale też czy zrobione jest wtedy, kiedy było potrzebne, bo od tego zależy np. bezpieczeństwo użytkowników instalacji, ciągłość produkcji czy brak przestojów. Sumienny pracownik, jeśli widzi, że może nie zdążyć, zawczasu zgłasza problem, prosi o wsparcie albo ustala priorytety z przełożonym, a nie czeka, aż termin minie. Można powiedzieć, że w branży technicznej rzetelność = wykonanie wszystkich powierzonych zadań w ustalonym czasie i zgodnie z wymaganiami technicznymi. To jest taki standard, którego się od fachowca po prostu oczekuje.

Pytanie 31

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 12 szt.
B. 2 szt.
C. 6 szt.
D. 10 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 32

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. 0
C. I
D. II

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 33

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji I.
B. Na ilustracji IV.
C. Na ilustracji II.
D. Na ilustracji III.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny rozłącznika, zaprezentowany na ilustracji II, jest kluczowym elementem schematów elektrycznych. Rozłączniki służą do przerywania obwodów elektrycznych w celu zapewnienia bezpieczeństwa podczas konserwacji lub napraw. Oznaczenie rozłącznika składa się z dwóch równoległych linii, które reprezentują przewody, oraz kółka, które wskazuje punkt styku, gdzie następuje rozłączenie obwodu. Zrozumienie tych symboli jest niezbędne dla projektowania i analizy obwodów elektrycznych. Przykładem zastosowania rozłączników jest ich wykorzystanie w systemach zasilania awaryjnego, gdzie pozwalają na szybkie wyłączenie zasilania w przypadku awarii. Zgodnie z normą IEC 60617, symbole graficzne muszą być jednolite i zrozumiałe, co zapewnia efektywną komunikację między inżynierami a technikami. Dlatego znajomość tych symboli jest nie tylko praktyczna, ale i konieczna w pracy zawodowej inżyniera elektryka.

Pytanie 34

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Samozaciskową.
B. Gwintową.
C. Skrętną.
D. Śrubową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 35

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 36

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±2,0% + 2 cyfry
C. ±1,5% + 3 cyfry
D. ±1,0% + 4 cyfry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 37

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Łącznik krańcowy.
B. Dławik.
C. Gniazdo z transformatorem separacyjnym.
D. Autotransformator.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 38

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 1000 V
B. 250 V
C. 500 V
D. 100 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna wymagana wartość napięcia probierczego przy pomiarach rezystancji izolacji w obwodach SELV i PELV wynosi 250 V. Tego rodzaju obwody są projektowane z myślą o bezpieczeństwie użytkowników, a ich izolacja musi spełniać określone standardy jakości. Przeprowadzenie pomiaru rezystancji izolacji z użyciem napięcia 250 V pozwala na skuteczne zidentyfikowanie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpieczeństwa porażenia prądem elektrycznym. W praktyce, przy pomiarach tego typu, wartość 250 V jest uznawana za wystarczającą do zbadania jakości izolacji, a także zapewnia odpowiedni margines bezpieczeństwa. Na przykład, w przypadku instalacji elektrycznych w budynkach mieszkalnych, stosowanie tego napięcia probierczego pozwala na wykrycie nieprawidłowości, które mogą powstać w wyniku starzenia się materiałów lub niewłaściwego montażu. Warto również zauważyć, że normy międzynarodowe, takie jak IEC 60364, wskazują na konieczność przeprowadzania pomiarów izolacji przy odpowiednich wartościach napięcia, aby zapewnić bezpieczeństwo użytkowania elektrycznych urządzeń i instalacji.

Pytanie 39

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Automat zmierzchowy.
C. Regulator temperatury.
D. Przekaźnik priorytetowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 40

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zastosowanie podwójnej warstwy izolacji
B. Połączenie obudowy z przewodem ochronnym sieci
C. Zasilanie z transformatora izolacyjnego
D. Użycie napięcia zasilania o zmniejszonej wartości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.