Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 24 stycznia 2026 19:46
  • Data zakończenia: 24 stycznia 2026 20:19

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
B. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
C. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
D. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
<strong>Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego.</strong> Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze <em>C₁V₁ = C₂V₂</em>, gdzie <em>C₁</em> i <em>V₁</em> to stężenie i objętość stężonego kwasu, a <em>C₂</em> i <em>V₂</em> – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 2

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 185 °C - 190 °C
B. 178 °C - 182 °C
C. 181 °C - 185 °C
D. 175 °C - 179 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 3

Którego odczynnika należy użyć do przygotowania roztworu wzorcowego, zawierającego jony \( \text{Fe}^{3+} \)?

A. \( \text{Fe(OH)}_3 \) cz.d.a.
B. \( \text{NH}_4\text{Fe(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O} \) cz.d.a.
C. \( \text{NH}_4\text{Fe(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O} \) cz.
D. \( \text{Fe(OH)}_3 \) cz.
Wybór nieprawidłowego odczynnika do przygotowania roztworu wzorcowego może prowadzić do poważnych błędów w analizach chemicznych. Odpowiedzi A, B i C zazwyczaj zawierają związki, które nie dysocjują na jony Fe3+ w roztworze wodnym, co skutkuje brakiem możliwości uzyskania wymaganej koncentracji tych jonów. Często użytkownicy sądzą, że wystarczy zastosować jakikolwiek związek chemiczny zawierający żelazo, ale nie wszystkie formy żelaza są rozpuszczalne w wodzie lub dostępne w postaci Fe3+. Ponadto, brak zrozumienia różnic między różnymi formami chemicznymi żelaza, takimi jak Fe2+ i Fe3+, może prowadzić do nieprawidłowego doboru odczynnika. Kluczowe jest, aby pracować z reagentami o znanej czystości, co jest zgodne z praktykami laboratoryjnymi, aby uniknąć kontaminacji i niepewności w wynikach. Często występującym błędem jest mylenie związków chemicznych, co wynika z nieznajomości ich właściwości i zachowań w roztworach. Zrozumienie zasad dysocjacji elektrolitów oraz roli różnych anionów i kationów w roztworach jest niezbędne, aby skutecznie przeprowadzać analizy chemiczne i uzyskiwać wiarygodne dane. Praktyczne zastosowanie tej wiedzy w laboratoriach chemicznych polega na umiejętnym dobieraniu reagentów do konkretnych procedur analitycznych, co jest kluczowe dla uzyskania precyzyjnych i powtarzalnych wyników.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 20 g KCl i 180 g wody
B. 5 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 10 g KCl i 200 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały
A. pumeks.
B. masło.
C. bite białko.
D. mgła.
Pumeks jest doskonałym przykładem piany stałej, co wynika z jego unikalnej struktury porowatej. W tej strukturze pęcherze gazu są uwięzione w ciele stałym, co tworzy materiał o niskiej gęstości i wysokiej wytrzymałości. Pumeks, jako skała wulkaniczna, powstaje w wyniku szybkiego schłodzenia lawy, co prowadzi do powstawania licznych pęcherzyków gazu. Zastosowanie pumeksu jest szerokie. W budownictwie wykorzystuje się go jako materiał izolacyjny oraz lekki agregat do betonu. Dodatkowo, pumeks jest stosowany w kosmetykach jako naturalny środek peelingujący oraz w przemyśle rekreacyjnym, w produkcji akcesoriów do pielęgnacji stóp. Zrozumienie właściwości pumeksu jako piany stałej pozwala na lepsze dobieranie materiałów do odpowiednich zastosowań, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście naukowym, klasyfikacja materiałów na podstawie ich struktury i właściwości jest kluczowa, co potwierdzają standardy dotyczące materiałoznawstwa.

Pytanie 8

Destylacja to metoda

A. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
B. transformacji ciała z formy ciekłej w stałą
C. syntezy substancji zachodząca w obecności katalizatora
D. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 9

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na ilość domieszek w składzie oraz datę przydatności
B. na pojemność oraz skład opakowania
C. na obecność zanieczyszczeń oraz metody ich usuwania
D. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
Odpowiedź dotycząca oznaczeń literowych R i S (obecnie H i P zgodnie z rozporządzeniem CLP) jest prawidłowa, ponieważ te oznaczenia mają na celu informowanie o ryzyku związanym z substancjami chemicznymi oraz zalecanych środkach ostrożności. Oznaczenia R (ryzyko) wskazują na potencjalne zagrożenia, takie jak toksyczność, wybuchowość czy korozja, z jakimi można się spotkać podczas pracy z danym odczynnikiem. Z kolei oznaczenia S (środki ostrożności) sugerują praktyczne zalecenia dotyczące bezpiecznego obchodzenia się z substancją, takie jak stosowanie odpowiednich środków ochrony osobistej, unikanie kontaktu ze skórą, czy przechowywanie w odpowiednich warunkach. Dla przykładu, substancja z oznaczeniem H300 (może być śmiertelna w przypadku połknięcia) wymaga szczególnej uwagi i zachowania ostrożności podczas jej używania. Stosowanie tych oznaczeń jest integralną częścią systemu zarządzania bezpieczeństwem chemicznym, a ich znajomość i przestrzeganie są kluczowe w laboratoriach, przemysłach chemicznych i w wszelkich zastosowaniach, gdzie występują substancje niebezpieczne. Obowiązujące standardy i dobre praktyki, takie jak ISO 45001, podkreślają znaczenie oceny ryzyka i stosowania odpowiednich środków ochrony w miejscach pracy, co czyni te oznaczenia niezbędnym elementem w codziennym obiegu informacji o substancjach chemicznych.

Pytanie 10

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.
A. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
B. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
C. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
D. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 11

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. destylacja
B. ekstrakcja
C. dekantacja
D. saturacja
Ekstrakcja to proces inżynierii chemicznej, który polega na wydobywaniu jednego lub więcej składników z mieszaniny za pomocą odpowiedniego rozpuszczalnika. Kluczowym aspektem ekstrakcji jest wybór właściwego rozpuszczalnika, który powinien selektywnie rozpuszczać substancje pożądane, pozostawiając inne składniki nietknięte. Przykładowo, w przemyśle farmaceutycznym wykorzystuje się ekstrakcję do oddzielania aktywnych składników z roślin, co pozwala na produkcję leków. W branży spożywczej ekstrakcja jest stosowana do uzyskiwania olejków eterycznych z roślin, co znajduje zastosowanie w aromaterapii i produkcji żywności. Dobór rozpuszczalnika może być determinowany przez takie czynniki jak rozpuszczalność składników, pH oraz temperatura. Dobre praktyki w ekstrakcji obejmują także optymalizację warunków procesu, co może znacząco zwiększyć wydajność i jakość uzyskiwanych produktów. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie kontrolowania procesów, aby zapewnić ich efektywność i zgodność z wymaganiami jakościowymi.

Pytanie 12

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. zobojętniania
B. hydrolizy
C. wytrącania osadu
D. redoks
Odpowiedź 'zobojętniania' jest prawidłowa, ponieważ podczas reakcji pomiędzy kwasem solnym (HCl) a zasadowym roztworem sodowym (NaOH) dochodzi do neutralizacji, co jest klasycznym przykładem reakcji zobojętniania. W tej reakcji protony (H+) z kwasu reagują z jonami hydroksylowymi (OH-) z zasady, tworząc cząsteczki wody (H2O) oraz sól (NaCl). Proces ten jest fundamentalny w chemii analitycznej, szczególnie w titracji, gdzie precyzyjne określenie stężenia kwasu czy zasady jest kluczowe. Stosując mianowany roztwór NaOH do titracji HCl, uzyskujemy dokładny wynik, który jest niezbędny w laboratoriach do opracowywania roztworów o znanym stężeniu. Reakcje zobojętnienia są powszechnie wykorzystywane w różnych dziedzinach, w tym w przemyśle chemicznym, farmaceutycznym oraz w produkcji żywności, aby kontrolować pH i zapewnić właściwe warunki dla procesów chemicznych.

Pytanie 13

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500
A. 100 g
B. 2500 g
C. 200 g
D. 1000 g
Wybór innych mas próbki, takich jak 200 g, 2500 g czy 1000 g, może wynikać z nieporozumienia dotyczącego związku między wielkością próbki a jej reprezentatywnością. Większość użytkowników może sądzić, że większa masa próbki przyczyni się do lepszej dokładności analizy. Jednak w kontekście wielkości ziarna poniżej 1 mm, stosowanie większej masy może prowadzić do problemów z homogenizacją próbki oraz zwiększać ryzyko zanieczyszczenia. Zgodnie z dobrymi praktykami, przy małych ziarnach kluczowe jest, aby masa próbki była odpowiednia do ich właściwości fizycznych. W rzeczywistości, większa masa niekoniecznie poprawia jakość analizy, a może nawet wprowadzić dodatkowe błędy. W wielu przypadkach, aby uniknąć tzw. efektu selektywnego, zaleca się stosowanie minimalnych mas próbki określonych w standardach, które zapewniają odpowiednią reprezentatywność. Na przykład, w badaniach materiałów sypkich, zwłaszcza w kontekście przemysłu chemicznego, zbyt duża masa próbki może generować dodatkowe wydatki i komplikacje w przygotowaniu, co może prowadzić do nieefektywności w procesie analitycznym. Z tego powodu, kluczowe jest, aby przestrzegać wskazanych norm dotyczących masy próbki, aby uzyskać wiarygodne i powtarzalne wyniki analizy.

Pytanie 14

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. krystalizacja
B. destylacja
C. filtracja
D. dekantacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 15

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 1,6 g
B. 8,0 g
C. 16,0 g
D. 9,6 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 16

Aby przeprowadzić syntezę substancji organicznej w temperaturze 150°C, należy zastosować łaźnię

A. wodną
B. powietrzną
C. parową
D. olejową
Odpowiedź związana z łaźnią olejową jest trafna. Te łaźnie są super użyteczne w laboratoriach, bo umożliwiają dokładne kontrolowanie temperatury, zwłaszcza gdy mówimy o wyższych wartościach, jak 150°C. W przeciwieństwie do innych typów łaźni, łaźnie olejowe potrafią utrzymać stabilną temperaturę przez dłuższy czas, co jest kluczowe dla dobrego przebiegu reakcji. Olej ma wyższą temperaturę wrzenia niż woda, więc można podnieść temperaturę bez obaw, że coś się zagotuje. Przykładowo, w syntezach organicznych, korzystając z łaźni olejowej, unikamy problemów z kondensacją pary wodnej, co mogłoby zanieczyścić naszą reakcję. Podsumowując, łaźnia olejowa daje najlepsze warunki w przypadku przeprowadzania reakcji chemicznych w wysokotorowych warunkach, więc świetny wybór!

Pytanie 17

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
B. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
C. W otrzymanym zielonym proszku Cr<sub>2</sub>O<sub>3</sub> nie powinny być widoczne pomarańczowe kryształy substratu
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 18

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. płynnych
B. półpłynnych
C. sypkich
D. ciastowatych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 19

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
B. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
C. BaCl2 + H2SO4 → BaSO4 + 2HCl
D. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 20

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, koncentrację i numer katalogowy
B. koncentrację, producenta i wykaz zanieczyszczeń
C. koncentrację, ostrzeżenia H oraz datę przygotowania
D. masę, datę przygotowania i numer katalogowy
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 21

Jakie jest przeznaczenie pieca muflowego?

A. separacji próbek
B. koncentracji próbek
C. rozkładu próbek na sucho
D. przygotowania próbek do postaci jonowej
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. korodującym na metale
C. toksycznym dla skóry
D. żrącym dla skóry
Niektóre odpowiedzi mogą prowadzić do nieporozumień związanych z interpretacją symboliki piktogramu. Oznaczenie substancji żrących na skórę wskazuje na ich zdolność do powodowania poważnych uszkodzeń tkanki, ale nie jest tożsama z toksycznością. Żrące substancje, takie jak kwasy i zasady, działają poprzez korodowanie skóry, co różni je od substancji, które są jedynie toksyczne. Przykładem substancji żrących mogą być kwas siarkowy lub wodorotlenek sodu. Z kolei określenie „korodująco na metale” odnosi się do substancji, które potrafią uszkadzać materiały metalowe, a nie do ich oddziaływania na organizm ludzki. Substancje korodujące są klasyfikowane według ich zdolności do niszczenia metali, co także ma swoje piktogramy, ale nie jest to to samo, co działanie toksyczne na skórę. Odpowiedź dotycząca działania narkotycznego jest równie myląca, ponieważ substancje narkotyczne nie są jednoznacznie klasyfikowane na podstawie ich wpływu na skórę, ale raczej na ich działanie na układ nerwowy. Dlatego ważne jest, aby zrozumieć, że każdy z tych terminów ma swoje specyficzne znaczenie, a ich nieprawidłowe użycie może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i ochrony zdrowia.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. 0,200 mol/dm3
B. około 0,2 mol/dm3
C. 0,100 mol/dm3
D. ściśle 0,2 mol/dm3
Wybór stężenia, które jest oszacowaniem, jak '0,200 mol/dm3', może wydawać się poprawny, jednak nie spełnia ono wymogów dotyczących roztworów mianowanych. Roztwory mianowane wymagają, aby ich stężenie było dokładnie określone i precyzyjnie przygotowane. Stężenia takie jak '0,100 mol/dm3' oraz 'ściśle 0,2 mol/dm3' wskazują na dokładność i precyzję przygotowania roztworu, co jest kluczowe w laboratoriach chemicznych. Przykłady roztworów mianowanych są istotne w kontekście analizy chemicznej, gdzie niewielkie różnice w stężeniu mogą prowadzić do znaczących błędów w wynikach. Typowym błędem myślowym jest zakładanie, że przybliżone wartości stężenia mogą być traktowane jako równe dokładnym pomiarom. W rzeczywistości, takie przybliżenia w kontekście roztworów chemicznych mogą prowadzić do nieodwracalnych błędów w eksperymentach analitycznych. Zrozumienie różnicy między wartościami przybliżonymi a dokładnymi jest kluczowe dla każdego chemika, który pragnie uzyskać wiarygodne wyniki w swoich badaniach.

Pytanie 26

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek sodu
B. glicerynę
C. wodorotlenek potasu
D. kwas fluorowodorowy
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 27

Nie należy używać gorącej wody do mycia

A. szkiełka zegarkowego
B. kolby stożkowej
C. zlewki
D. kolby miarowej
Mycie szkiełka zegarkowego gorącą wodą może wydawać się logiczne ze względu na potrzebę usunięcia zanieczyszczeń, ale w rzeczywistości może prowadzić do niepotrzebnych uszkodzeń. Szkiełka zegarkowe są często wykonane z materiałów odpornych na działanie wody, jednak ich struktura może być wrażliwa na ekstremalne temperatury. W przypadku kolby stożkowej i zlewki, te naczynia również powinny być myte z zachowaniem ostrożności. Kolby stożkowe są bardziej wytrzymałe niż kolby miarowe, ale ich mycie gorącą wodą może wpływać na ich trwałość i dokładność pomiarów, jeśli są używane do bardziej precyzyjnych aplikacji. Zlewki, podobnie jak kolby, mogą być narażone na uszkodzenia, ale są mniej wrażliwe na zmiany temperatury. Kluczowym aspektem mycia wszelkich naczyń laboratoryjnych jest ich odpowiednia konserwacja w celu zapewnienia ich długowieczności. Użytkownicy często mylą właściwe techniki mycia, co prowadzi do uszkodzeń sprzętu, a co za tym idzie do błędów w eksperymentach. Dlatego zaleca się stosowanie letniej wody i delikatnych detergentów, aby uniknąć negatywnych skutków dla sprzętu laboratoryjnego.

Pytanie 28

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. roztworu KMnO4 z dodatkiem kwasu solnego
B. wody destylowanej
C. kwasu solnego
D. płynu do zmywania naczyń
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.

Pytanie 29

Rysunek przedstawia chłodnice:

Ilustracja do pytania
A. 1 - Liebiga, 2 - spiralną, 3 - Westa.
B. 1 - Liebiga, 2 - palcową, 3 - Dewara.
C. 1 - powietrzną, 2 - spiralną, 3 - kulkową.
D. 1 - Liebiga, 2 - spiralną, 3 - kulkową.
Wygląda na to, że wybrałeś złą odpowiedź. Czasem bywa, że mieszamy różne typy chłodnic, co prowadzi do nieporozumień. Chłodnica powietrzna, którą wymieniłeś, faktycznie wykorzystuje powietrze do chłodzenia, ale w laboratoriach nie jest to najlepsza opcja, bo nie działa tak efektywnie jak chłodnice wodne. Co do spiralnej chłodnicy, to mimo że sprawdza się w wielu sytuacjach, to nie pasuje do tej kategorii. Chłodnice kulkowe z kolei rzadko są używane w kontekście, który dotyczy pytania. Warto pamiętać, że każda chłodnica działa na innej zasadzie i ma swoje unikalne cechy, które są ważne w różnych zastosowaniach. Zrozumienie, jak działają różne typy chłodnic, pomoże ci lepiej dobierać sprzęt do konkretnych potrzeb.

Pytanie 30

Sprzęt laboratoryjny przedstawiony na ilustracji stanowi element zestawu do

Ilustracja do pytania
A. sączenia.
B. pomiaru pH roztworu.
C. ogrzewania.
D. ważenia substancji.
Odpowiedź "ogrzewania" jest poprawna, ponieważ sprzęt przedstawiony na ilustracji to trójnóg, który jest kluczowym elementem w laboratoriach chemicznych. Trójnóg został zaprojektowany do podtrzymywania różnorodnych naczyń laboratoryjnych, takich jak kolby czy zlewki, podczas ich ogrzewania. Działanie to jest istotne w wielu eksperymentach chemicznych, gdzie wymagane jest podgrzewanie substancji w kontrolowanych warunkach. Stosowanie trójnoga przyczynia się do zwiększenia stabilności naczynia oraz redukcji ryzyka przegrzania lub przypadkowego przewrócenia, co jest szczególnie ważne w przypadku cieczy łatwopalnych. Zgodnie z dobrymi praktykami laboratoryjnymi, trójnóg powinien być używany w połączeniu z palnikiem Bunsena lub innym źródłem ciepła, co umożliwia równomierne ogrzewanie i precyzyjne kontrolowanie temperatury. Warto zwrócić uwagę, że w kontekście bezpieczeństwa wszystkie elementy używane w laboratoriach powinny spełniać odpowiednie normy jakości i bezpieczeństwa, co jest fundamentalne w pracy z substancjami chemicznymi.

Pytanie 31

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
B. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
C. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 32

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
B. Kolba miarowa, lejek szklany, bagietka
C. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
D. Kolba stożkowa, lejek z sitkiem, bagietka
Wybór sprzętu laboratoryjnego, który nie obejmuje kolby ssawkowej, lejka z sitowym dnem oraz pompki wodnej, świadczy o niepełnym zrozumieniu procesu sączenia pod zmniejszonym ciśnieniem. Odpowiedzi takie jak kolba miarowa, lejek szklany lub bagietka, choć przydatne w różnych kontekstach laboratoryjnych, nie są właściwe w tej sytuacji. Kolba miarowa służy głównie do dokładnego pomiaru objętości cieczy, co jest kluczowe w procesach chemicznych, ale nie ma zastosowania w kontekście sączenia. Lejek szklany, mimo że może być używany do filtracji, nie zapewnia odpowiedniego wsparcia w uzyskiwaniu podciśnienia, które jest istotne dla efektywności procesu. Bagietka, używana do przenoszenia cieczy, nie jest narzędziem odpowiednim do tworzenia warunków próżniowych. Zrozumienie zasad działania sprzętu i ich zastosowania jest kluczowe w laboratoriach, gdzie błędne podejście do doboru narzędzi może prowadzić do nieefektywności lub wręcz zanieczyszczenia próbek. Dlatego istotne jest, aby nie tylko znać funkcję poszczególnych elementów, ale także umieć je odpowiednio zestawić w kontekście danego procesu technologicznego.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. z polietylenu
B. ze szkła sodowego
C. ze szkła borokrzemowego
D. ze szkła krzemowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 36

Zestaw przedstawiony na rysunku może służyć do

Ilustracja do pytania
A. ogrzewania pod chłodnicą zwrotną i jest zmontowany prawidłowo.
B. wkraplania reagenta, ale jest zmontowany nieprawidłowo.
C. wkraplania reagenta i jest zmontowany prawidłowo.
D. ogrzewania pod chłodnicą zwrotną, ale jest zmontowany nieprawidłowo.
Zestaw przedstawiony na rysunku rzeczywiście może być stosowany do ogrzewania pod chłodnicą zwrotną, co jest istotnym zastosowaniem w przypadku wielu reakcji chemicznych wymagających precyzyjnej kontroli temperatury. Ogrzewanie pod chłodnicą zwrotną polega na tym, że ciecz reagująca jest podgrzewana, a jednocześnie para, która powstaje w wyniku tego procesu, jest skraplana z powrotem do cieczy. Ważne jest, aby cały układ był skonfigurowany w sposób zapewniający efektywność procesu. Zastosowanie odpowiednich materiałów i technik montażu, takich jak uszczelki, rury o odpowiednich średnicach oraz ich prawidłowe izolowanie, ma kluczowe znaczenie dla bezpieczeństwa i efektywności procesu. W przeciwnym razie, niewłaściwe połączenia mogą prowadzić do strat ciepła, czy nawet niebezpiecznych sytuacji, co podkreśla znaczenie przestrzegania dobrych praktyk i standardów branżowych. Dobrze zmontowany układ powinien także pozwalać na łatwe monitorowanie temperatury oraz ciśnienia, co jest kluczowe dla optymalizacji reakcji chemicznych.

Pytanie 37

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste chemicznie
B. czyste do badań
C. spektralnie czyste
D. czyste
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 38

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. B
B. In
C. Ex
D. A
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 39

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h
A. BZT.
B. Barwy.
C. Azotu azotanowego(V).
D. Fosforanów ogólnych.
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 40

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g
A. B.
B. C.
C. A.
D. D.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.