Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 21 lutego 2026 21:09
  • Data zakończenia: 21 lutego 2026 21:51

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 720 zł
B. 1 440 zł
C. 1 220 zł
D. 560 zł
Podczas analizy błędnych odpowiedzi, należy zwrócić uwagę na kilka kluczowych aspektów, które mogą prowadzić do nieprawidłowych wniosków. Wiele osób może mylnie interpretować jednostki miary lub błędnie przeliczać powierzchnię ścian. Na przykład, jeśli ktoś pomyli jednostki i zamiast m2 zastosuje h, koszt robocizny wyjdzie znacznie niższy, co prowadzi do poważnych błędów w budżetowaniu projektu. Innym częstym błędem jest nieprawidłowe obliczenie całkowitego nakładu pracy. Zamiast poprawnie pomnożyć powierzchnię przez wartość nakładu pracy 1,44 h/m2, niektórzy mogą obliczyć to jako dodatkowy czas potrzebny na jedną ścianę, co również wpłynie na ostateczną kwotę. Warto również zwrócić uwagę na to, że nieprawidłowe odczytanie stawek godzinowych murarzy lub pominięcie dodatkowych kosztów materiałowych może prowadzić do błędnych kalkulacji. Dobry inżynier budowlany powinien znać zasady obliczania kosztów i nakładów pracy, a także umieć stosować standardowe wzory i metody, aby uniknąć takich pułapek. W praktyce, błędy te można zminimalizować poprzez staranne przygotowanie przed przystąpieniem do budowy, co w dłuższej perspektywie oszczędza czas i pieniądze.

Pytanie 2

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. cegły wapienno-piaskowej
B. pustaków żużlobetonowych
C. cegły dziurawki
D. cegły pełnej
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.

Pytanie 3

Długość odcinka ścianki działowej, przedstawionej na fragmencie rzutu pomieszczenia, od lica ściany nośnej do początku otworu drzwiowego wynosi

Ilustracja do pytania
A. 100 cm
B. 80 cm
C. 160 cm
D. 200 cm
Odpowiedź 160 cm jest prawidłowa, ponieważ opiera się na dokładnej analizie rysunku, który przedstawia układ pomieszczenia. Całkowita długość ścianki działowej wynosi 200 cm, a otwór drzwiowy ma szerokość 40 cm. Zrozumienie tej proporcji jest kluczowe w praktyce architektonicznej i budowlanej, gdzie precyzyjne pomiary i obliczenia są niezwykle istotne. Aby uzyskać długość odcinka ścianki działowej, dokonujemy prostego obliczenia: 200 cm (całkowita długość) minus 40 cm (szerokość otworu drzwiowego) daje nam 160 cm. Tego typu obliczenia są podstawą projektowania przestrzeni, gdzie musi być zachowana odpowiednia funkcjonalność oraz estetyka. W praktyce, takich pomiarów dokonujemy z użyciem standardowych narzędzi pomiarowych, takich jak taśmy miernicze, a w projektach architektonicznych często korzysta się z programów CAD, które automatyzują te obliczenia. Zachowanie dokładności w takich kwestiach jest kluczowe, aby uniknąć błędów w realizacji projektu, które mogą prowadzić do kosztownych poprawek.

Pytanie 4

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
B. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
C. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
D. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
Właściwa organizacja stanowiska roboczego w robót murarskich jest kluczowa dla efektywności i bezpieczeństwa pracy. Podział stanowiska na trzy równoległe do muru pasma: robocze, materiałowe i transportowe, jest zgodny z najlepszymi praktykami w zakresie organizacji pracy w budownictwie. Pasmo robocze to obszar, w którym wykonuje się główne czynności murarskie, co pozwala na płynne układanie materiałów budowlanych. Pasmo materiałowe powinno być zorganizowane w sposób umożliwiający łatwy dostęp do cegieł, zaprawy oraz innych niezbędnych materiałów, co zwiększa wydajność pracy. Pasmo transportowe natomiast powinno być wolne od przeszkód, co ułatwia przemieszczanie się i transportowanie materiałów do miejsca roboczego. Taki podział nie tylko zwiększa efektywność pracy, ale także minimalizuje ryzyko wypadków, ponieważ pozwala na lepszą kontrolę nad otoczeniem roboczym, a także umożliwia zachowanie porządku. Warto również pamiętać, że zgodnie z normami ISO oraz Kodeksem Pracy, odpowiednia organizacja stanowiska pracy jest kluczowa dla zachowania bezpieczeństwa pracowników.

Pytanie 5

Na podstawie danych zawartych w tablicy z KNR oblicz, ile zaprawy cementowo-wapiennej M30 potrzeba do wykonania 25 m2tynku kategorii III.

Tynki zwykłe biegów klatek schodowych
Nakłady na 100 m2Tablica 0811
Lp.WyszczególnienieJednostki miary, oznaczeniaBiegi klatek schodowych
kategoria tynku
symbole etorodzaje zawodów, materiałów i maszyncyfroweliteroweIIIIIIV
abcde010203
202380800Zaprawa wapienna M4060m3-0,150,14
212380802Zaprawa cementowo-wapienna M15060m31,790,900,91
222380803Zaprawa cementowo-wapienna M30060m30,230,21-
232380804Zaprawa cementowo-wapienna M50060m30,22-0,21
242380806Zaprawa cementowa M50060m3-1,081,08
252380807Zaprawa cementowa M80060m3-0,220,22
7034000Wyciąg148m-g3,514,004,00
A. 0,0575 m3
B. 0,0525 m3
C. 0,0595 m3
D. 0,0555 m3
Wybór nieprawidłowej odpowiedzi może wynikać z kilku typowych błędów myślowych i nieporozumień związanych z obliczeniami. Niektóre z niepoprawnych wyników, takich jak 0,0555 m3, 0,0595 m3 czy 0,0575 m3, mogą sugerować, że użytkownik niewłaściwie zastosował proporcje lub błędnie zinterpretował dane z KNR. Często zdarza się, że osoby rozważające takie problemy mylą jednostki miary lub nieprawidłowo wykonują obliczenia, co prowadzi do zawyżenia potrzebnej objętości zaprawy. Kluczowym krokiem w tym procesie jest zawsze upewnienie się, że dane wejściowe są odpowiednio analizowane i stosowane, co w przypadku podanej liczby 0,21 m3 na 100 m2 oznacza, że przed przystąpieniem do obliczeń należy dobrze zrozumieć, jak przeliczać wartości dla mniejszych powierzchni. Ponadto błędne odpowiedzi mogą wynikać z nieznajomości praktycznych zasad dotyczących aplikacji materiałów budowlanych, co jest istotne w kontekście jakości tynków. Właściwe obliczenia nie tylko wpływają na efektywność kosztową, ale również na jakość finalnego produktu, dlatego tak ważne jest, aby stosować się do wytycznych i standardów branżowych, które precyzyjnie określają wymagania dotyczące ilości materiałów na różnych powierzchniach. W przypadku tynków, ich nadmiar lub niedobór może mieć poważne konsekwencje, w tym problemy ze strukturą, estetyką i trwałością wykonanego tynku.

Pytanie 6

Pomierzono 4 otwory drzwiowe o przewidzianych w dokumentacji wymiarach 90 x 200 cm. Na podstawie podanych w tabeli dopuszczalnych odchyleń wskaż wymiary otworu wykonanego nieprawidłowo.

Dopuszczalne odchylenia wymiarów otworów w świetle ościeży
Wymiary otworu [mm]Dopuszczalne odchylenie [mm]
szerokośćwysokość
do 1000+6
-3
+15
-10
powyżej 1000+10
-5
+15
-10
A. 905 x 2012 mm
B. 897 x 1991 mm
C. 896 x 2015 mm
D. 903 x 1990 mm
Odpowiedź 896 x 2015 mm jest poprawna, ponieważ wymiary te są niezgodne z dopuszczalnymi odchyleniami dla otworów drzwiowych. Dokumentacja przewiduje szerokość otworu na poziomie 90 cm, co odpowiada 900 mm. Minimalne dopuszczalne odchylenie wynosi 900 mm - 3 mm = 897 mm, co oznacza, że szerokość otworu nie powinna być mniejsza niż 897 mm. W tym przypadku, szerokość 896 mm jest zbyt mała. Dodatkowo, wysokość otworu wynosi 2015 mm, co również wykracza powyżej maksymalnego dopuszczalnego odchylenia dla wysokości, które wynosi 200 cm + 3 mm = 2003 mm. W praktyce, przestrzeganie tych wymiarów jest kluczowe dla zapewnienia prawidłowego montażu drzwi, wpływa to na ich funkcjonalność oraz estetykę. Dobrą praktyką jest przeprowadzanie regularnych pomiarów otworów przed montażem i dostosowywanie ich do wymagań technicznych, co przyczyni się do zwiększenia trwałości oraz bezpieczeństwa użytkowania.

Pytanie 7

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 210 kg
B. 105 kg
C. 42 kg
D. 70 kg
Wybór niepoprawnej odpowiedzi może wynikać z kilku typowych błędów w obliczeniach oraz zrozumieniu zagadnienia. Często mylnie zakłada się, że zużycie tynku można bezpośrednio pomnożyć przez powierzchnię, nie uwzględniając zmiany grubości tynku. Na przykład, w przypadku odpowiedzi wskazujących na 42 kg, może występować błędne założenie, że proporcjonalnie zmniejszone zużycie będzie na tyle małe, że wystarczy tylko na pokrycie połowy powierzchni. Takie podejście ignoruje fakt, że przy grubości 5 mm rzeczywiste zużycie tynku będzie znacznie niższe niż to dla 10 mm, a wynikające z tego obliczenia muszą być dostosowane do aktualnych warunków aplikacji. Kolejnym błędem może być nieprawidłowe zrozumienie, co oznacza średnie zużycie; obliczenia opierające się na założeniu, że 14 kg/m² jest stałą wartością niezależną od grubości, prowadzą do niedokładnych wyników. Wiedza na temat proporcji i kalkulacji w budownictwie jest kluczowa, aby uniknąć marnotrawstwa materiałów oraz nadmiernych kosztów związanych z zakupem. Dlatego znajomość technik obliczeniowych oraz ich praktyczne zastosowanie są niezwykle istotne w pracach budowlanych.

Pytanie 8

Przedstawiony na rysunku przyrząd murarski jest

Ilustracja do pytania
A. wężem wodnym.
B. linią ważną.
C. poziomnicą.
D. warstwomierzem.
Wąż wodny, znany również jako szlaufwaga, to narzędzie kluczowe w budownictwie, służące do precyzyjnego wyznaczania poziomu. Jego działanie opiera się na zasadzie naczyń połączonych, co oznacza, że poziom wody w obu rurkach będzie jednakowy, niezależnie od ich położenia. Dzięki temu, zastosowanie węża wodnego pozwala na uzyskanie dokładnych pomiarów na dużych odległościach, co jest szczególnie istotne w przypadku większych projektów budowlanych, gdzie tradycyjne poziomnice mogą być niewystarczające. W praktyce, wąż wodny jest wykorzystywany do wyznaczania fundamentów, określania poziomów podłóg oraz w innych zastosowaniach, gdzie precyzyjne pomiary są kluczowe dla jakości wykonania. Zgodnie z normami budowlanymi, takie jak PN-EN 1991-1-4, stosowanie odpowiednich narzędzi do pomiaru poziomu jest fundamentalnym elementem zapewnienia bezpieczeństwa i trwałości budowli. Rekomenduje się regularne kalibrowanie narzędzi pomiarowych, aby uniknąć błędów związanych z ich użyciem.

Pytanie 9

Jaką część konstrukcyjną należy umieścić bezpośrednio nad otworem okiennym?

A. Nadproże
B. Ławę podokaenną
C. Filar międzyokienny
D. Gzyms
Nadproże to naprawdę istotny element w budowie, który montujemy tuż nad oknem. Jego głównym zadaniem jest przenoszenie obciążeń z góry, żeby ściana była stabilna i nie zaczęły się robić pęknięcia. Z praktyki wiem, że najczęściej robimy je z betonu, stali, a czasami też z drewna, zależnie od tego, co jest w projekcie. Ważne, żeby nadproże było dobrze zaprojektowane, bo jego rozmiar i nośność muszą pasować do obciążeń, które będzie musiało wytrzymać. W budownictwie mamy takie normy, jak Eurokody, które podkreślają, że trzeba przeprowadzić obliczenia, aby upewnić się, że wszystko będzie bezpieczne i trwałe. Dobrze też pamiętać o izolacji termicznej nadproża, bo to znacznie poprawia efektywność energetyczną budynku.

Pytanie 10

Na rysunku podano wysokość ściany

Ilustracja do pytania
A. kolankowej.
B. działowej.
C. osłonowej.
D. instalacyjnej.
Wysokość ściany kolankowej to kluczowy element konstrukcji budowlanych, szczególnie w kontekście poddaszy oraz dachów. Jest to pionowa odległość od podłogi do miejsca, w którym ściana łączy się z nachyloną częścią dachu. Na ilustracji wysokość ta oznaczona jest liczba 105, co jednoznacznie wskazuje na wysokość ściany kolankowej. Zastosowanie ściany kolankowej jest istotne z punktu widzenia efektywności przestrzennej oraz estetyki wnętrz. Dzięki niej możliwe jest uzyskanie dodatkowej przestrzeni użytkowej na poddaszu, co ma znaczenie w projektowaniu domów jednorodzinnych, a także w obiektach użyteczności publicznej. Dodatkowo, odpowiednia wysokość ściany kolankowej wpływa na ergonomię pomieszczeń, zapewniając komfort użytkowania oraz odpowiednią ilość światła dziennego. Znajomość wysokości tych ścian jest również istotna przy planowaniu instalacji, takich jak wentylacja czy oświetlenie. W zgodzie z normami budowlanymi, odpowiednie zaplanowanie wysokości kolankowej ma również znaczenie w kontekście bezpieczeństwa i stabilności konstrukcji. Właściwe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla każdego projektanta i architekta.

Pytanie 11

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 30 zł
B. 45 zł
C. 60 zł
D. 48 zł
Wynagrodzenie za zamurowanie otworu w ścianie działowej wymaga zastosowania odpowiednich wzorów i przemyślenia danych parametrów. Błędne podejście do rozwiązania tego problemu często opiera się na pominięciu kluczowej informacji dotyczącej nakładu robocizny. Niektóre odpowiedzi mogą wynikać z mylnego przeliczenia powierzchni lub z niewłaściwego zastosowania stawek robocizny. Na przykład, jeżeli ktoś obliczyłby wynagrodzenie, mnożąc powierzchnię otworu przez stawkę, bez uwzględnienia nakładu robocizny, przyjąłby błędne założenie, że wynagrodzenie można obliczyć bezpośrednio proporcjonalnie do powierzchni. Tego rodzaju uproszczenia mogą prowadzić do znacznych różnic w oszacowaniach kosztów. Kluczowe jest również zrozumienie, że wynagrodzenie murarza musi opierać się na rzeczywistym czasie pracy potrzebnym do wykonania danej usługi. W praktyce budowlanej, każdy projekt wymaga szczegółowego planowania i dokładnego obliczenia wszystkich związanych z nim kosztów, aby uniknąć nieporozumień i przekroczenia budżetu. Właściwe zarządzanie kosztami robocizny oraz ich odpowiednie oszacowanie są standardem w profesjonalnych projektach budowlanych, co pozwala na lepsze zarządzanie czasem i zasobami oraz minimalizację ryzyka finansowego.

Pytanie 12

Przedstawiony na rysunku fragment muru tworzy ścianę

Ilustracja do pytania
A. dwuwarstwową.
B. z izolacją wewnętrzną
C. jednorodną.
D. z pustką powietrzną.
Fragment muru przedstawiony na rysunku jest jednorodny, co oznacza, że jest zbudowany z jednego rodzaju materiału, bez widocznych warstw izolacyjnych czy pustek powietrznych. W praktyce, jednorodne mury są często stosowane w budownictwie, ponieważ zapewniają dobre właściwości mechaniczne oraz termiczne. Przykładem mogą być ściany z cegły ceramicznej, które charakteryzują się wysoką wytrzymałością i niską przewodnością cieplną. Dobre praktyki budowlane zalecają stosowanie jednorodnych materiałów w miejscach, gdzie nie jest wymagane dodatkowe ocieplenie, co pozwala na uproszczenie procesu budowy oraz zmniejszenie kosztów. Ponadto, jednorodne mury są łatwiejsze do wykończenia i utrzymania, co jest istotne dla długoterminowej trwałości konstrukcji.

Pytanie 13

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Cięgna z prętów stalowych i kątowniki mocujące
B. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
C. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
D. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
Wybór klamr stalowych Ø15-18 mm oraz zaczynu cementowego do naprawy pęknięć muru o głębokości większej niż 30 mm jest uzasadniony ze względu na wysoką wytrzymałość materiałów oraz ich zdolność do zapewnienia stabilności strukturalnej. Klamry stalowe są stosowane w celu wzmocnienia połączeń w murze, co jest kluczowe w przypadku głębokich pęknięć. Dzięki odpowiedniej średnicy klamr, możliwe jest efektywne przeniesienie obciążeń na otaczające materiały. Zaczyn cementowy, z kolei, charakteryzuje się doskonałymi właściwościami wiążącymi oraz odpornością na działanie czynników atmosferycznych. W praktyce, taka kombinacja materiałów pozwala nie tylko na skuteczne wypełnienie pęknięć, ale także na ich długotrwałe zabezpieczenie przed dalszymi uszkodzeniami. Stosowanie klamr stalowych w połączeniu z zaczynem cementowym jest zgodne z dobrymi praktykami budowlanymi, które wskazują na konieczność używania wytrzymałych materiałów w przypadku napraw strukturalnych.

Pytanie 14

Zaprawy szamotowe powinny być wykorzystywane do budowania

A. kominów niezwiązanych z budynkiem
B. ścian w piwnicach
C. kanałów wentylacyjnych
D. ścian osłonowych
Stosowanie zapraw szamotowych w innych elementach budowlanych, takich jak ściany piwniczne, kanały wentylacyjne czy ściany osłonowe, nie jest uzasadnione ich właściwościami. Ściany piwniczne nie są narażone na wysokie temperatury, a ich konstrukcja wymaga zastosowania zapraw cementowych, które zapewniają odpowiednią nośność oraz odporność na wilgoć. W przypadku kanałów wentylacyjnych, kluczowe jest, aby materiał był odporny na korozję chemiczną, a niekoniecznie na wysoką temperaturę, co czyni zaprawy szamotowe niewłaściwym wyborem. Ściany osłonowe, z kolei, pełnią funkcję izolacyjną oraz estetyczną, co także wyklucza wykorzystanie zaprawy szamotowej, gdyż ich głównym zadaniem nie jest wytrzymałość na wysoką temperaturę, lecz skuteczna ochrona przed warunkami atmosferycznymi. Wybór niewłaściwego materiału może prowadzić do uszkodzeń konstrukcji, a tym samym do zwiększenia kosztów napraw oraz obniżenia bezpieczeństwa. Dlatego ważne jest, aby każdy element budowlany był murowany z użyciem materiałów odpowiednio skomponowanych do jego funkcji i miejsca zastosowania.

Pytanie 15

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. pospolitym.
B. wielowarstwowym.
C. polskim.
D. krzyżykowym.
W kontekście budownictwa, różne typy wiązań stosowanych w murach mają swoje specyficzne właściwości i zastosowania. Odpowiedzi, które wskazują na wiązania wielowarstwowe, pospolite i krzyżykowe, zawierają błędne założenia, które mogą prowadzić do nieprawidłowego wykonania konstrukcji. Wiązanie wielowarstwowe zazwyczaj odnosi się do muru, w którym różne materiały lub warstwy jednostek murarskich są wykorzystywane w celu osiągnięcia lepszych parametrów izolacyjnych lub akustycznych, co nie jest zgodne z zasadami wiązania polskiego. Wiązanie pospolite, z kolei, jest bardziej tradycyjnym układem, w którym cegły są ustawione w prostych liniach bez przesunięć, co może prowadzić do osłabienia struktury w przypadku intensywnych obciążeń. Krzyżykowe natomiast charakteryzuje się układaniem cegieł w układzie krzyżowym, co może być stosowane w określonych zastosowaniach dekoracyjnych, ale nie zapewnia stabilności porównywalnej z wiązaniem polskim. Typowe błędy myślowe związane z tymi odpowiedziami mogą wynikać z niepełnej znajomości koncepcji materiałów budowlanych oraz ich właściwości, co prowadzi do błędnej oceny ich zastosowań. Dlatego zrozumienie, jak różne wiązania wpływają na wytrzymałość i trwałość murów, jest kluczowe w projektowaniu i wykonawstwie budynków.

Pytanie 16

Który rodzaj wiązania dwuwarstwowego przedstawiony jest na rzutach dwóch warstw fragmentu narożnika muru?

Ilustracja do pytania
A. Pospolite.
B. Gotyckie.
C. Pierścieniowe.
D. Krzyżykowe.
Wiązanie pospolite jest jednym z najczęściej stosowanych typów wiązań w budownictwie, szczególnie w murach dwuwarstwowych. W przypadku tego wiązania cegły są układane na przemian w poziomie i w pionie, co zapewnia odpowiednią stabilność oraz estetykę konstrukcji. Przykładowo, w praktyce murarskiej stosuje się ten typ wiązania, aby zminimalizować ryzyko pęknięć oraz zwiększyć wytrzymałość całej ściany. Dobrze wykonane wiązanie pospolite poprawia również efektywność cieplną budynku, ponieważ pozwala na lepsze zgrupowanie materiałów izolacyjnych pomiędzy warstwami. Zgodnie z zasadami sztuki budowlanej, odpowiednie ułożenie cegieł w tym systemie zapewnia, że siły działające na ścianę są równomiernie rozłożone. Stosując wiązanie pospolite, murarz powinien również zwrócić uwagę na zachowanie odpowiednich spoin, co wpłynie na trwałość i estetykę muru. W kontekście dobrych praktyk, warto zasięgnąć opinii specjalistów w zakresie budownictwa, aby mieć pewność, że wszelkie zastosowane techniki są zgodne z obowiązującymi normami budowlanymi.

Pytanie 17

W efekcie "klawiszowania" stropu na tynku sufitu w pomieszczeniu utworzyła się rysa. Usunięcie tego defektu polega w szczególności na

A. pokryciu rysy pasem papy asfaltowej
B. zaszpachlowaniu rysy zaprawą cementową
C. pokryciu rysy pasem siatki z włókna szklanego
D. zaszpachlowaniu rysy zaprawą gipsową
Zaszpachlowanie rysy zaprawą gipsową jest podejściem, które, mimo że może wydawać się logiczne, w rzeczywistości nie jest wystarczające w przypadku poważniejszych uszkodzeń, takich jak rysy wynikające z klawiszowania stropu. Zaprawa gipsowa, chociaż dobrze przylega do powierzchni i daje estetyczne wykończenie, nie jest materiałem elastycznym. W efekcie, w miejscach, gdzie występują mikro ruchy, gips może pękać, co prowadzi do konieczności powtarzania napraw. Używanie papy asfaltowej jako rozwiązania również jest nieadekwatne, ponieważ papa nie jest przeznaczona do użytku w pomieszczeniach i nie posiada właściwości wytrzymałościowych wymaganych do naprawy tynku. Zastosowanie zaprawy cementowej w tym kontekście również nie jest optymalne, gdyż cement, podobnie jak gips, nie rozwiązuje problemu związania materiału z ruchem konstrukcyjnym, a jego sztywność może pogłębiać problem. Te błędne podejścia wskazują na niezrozumienie dynamiki uszkodzeń budowlanych oraz braku znajomości materiałów, które powinny być stosowane w celu zapewnienia długotrwałej i efektywnej naprawy. Kluczowe jest, aby przy naprawach uwzględniać nie tylko estetykę, ale przede wszystkim trwałość i odporność na zmiany zachodzące w strukturze budynku.

Pytanie 18

Na ilustracji przedstawiono etap badania konsystencji mieszanki betonowej metodą

Ilustracja do pytania
A. opadu stożka.
B. oznaczania stopnia zagęszczalności.
C. stolika rozpływowego.
D. Ve-be.
Odpowiedź "opadu stożka" jest prawidłowa, ponieważ na ilustracji widać typowy sprzęt używany w tej metodzie, czyli stożek Abramsa. Metoda opadu stożka jest szeroko stosowana do oceny konsystencji mieszanki betonowej, umożliwiając określenie, jak dobrze beton zachowuje się po wlaniu do formy. Proces polega na napełnieniu stożka betonem, następnie jego usunięciu, co pozwala na zmierzenie wysokości opadu mieszanki. Zmiana wysokości opadniętego betonu względem wysokości stożka pozwala na uzyskanie wartości miary, która jest kluczowa w kontekście wielu zastosowań budowlanych. Przykładowo, w budownictwie inżynieryjnym, gdzie wymaga się różnych klas konsystencji betonu, metoda opadu stożka staje się nieodzowna, aby zapewnić odpowiednią jakość i trwałość konstrukcji. Według norm PN-EN 12350, przeprowadzenie takiego testu jest elementem standardowej procedury badawczej, gwarantującej, że beton spełnia wymagania dotyczące jego właściwości użytkowych.

Pytanie 19

Na której ilustracji przedstawiono chwytak do przenoszenia cegieł?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 4.
Ilustracja 2 przedstawia chwytak do przenoszenia cegieł, co czyni ją poprawną odpowiedzią w tym pytaniu. Chwytaki tego typu są niezwykle istotnym narzędziem w branży budowlanej, umożliwiającym szybki i efektywny transport cegieł z miejsca na miejsce. Ich konstrukcja opiera się na mechanizmie zaciskowym, który pozwala na pewne i bezpieczne uchwycenie cegły, co znacznie minimalizuje ryzyko uszkodzenia materiału oraz obrażeń pracowników. W praktyce, chwytaki do przenoszenia cegieł są często stosowane na placach budowy, gdzie zwiększają wydajność pracy, a także redukują czas potrzebny na transport ciężkich materiałów. Warto zaznaczyć, że zgodność z normami BHP oraz standardami pracy odgrywa kluczową rolę w zapewnieniu bezpieczeństwa podczas używania takich narzędzi. Właściwe techniki przenoszenia materiałów, jak również znajomość właściwości cegieł, to aspekty, które każdy pracownik budowlany powinien znać, aby efektywnie i bezpiecznie wykonywać swoje zadania.

Pytanie 20

Jaką wytrzymałość ma klasa zaprawy na

A. ugięcie
B. rozciąganie
C. ściśnięcie
D. przesuwanie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 21

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1 cegły
B. 1/2 cegły
C. 1/4 cegły
D. 2 cegieł
Wykorzystanie pustek w murze jest kluczowym zagadnieniem w budownictwie, jednak odpowiedzi sugerujące głębokości 1/2 cegły, 1 cegłę oraz 2 cegły są błędne. W przypadku głębokości 1/2 cegły, można napotkać problemy związane z nadmiernym osłabieniem struktury muru, co prowadzi do zwiększonego ryzyka pęknięć i zniekształceń. Tego rodzaju pustki mogą powodować nierównomierne osiadanie budynku, a także wpływać negatywnie na jego trwałość. Głębsze pustki, takie jak 1 cegła czy 2 cegły, w ogóle nie spełniają zamierzonej funkcji, gdyż eliminują zasadniczą korzyść, jaką jest kontrolowanie ruchów konstrukcji. Zbyt duże pustki mogą wprowadzać do muru nadmierne luki, które osłabiają spójność materiałów budowlanych i prowadzą do problemów z izolacją termiczną oraz akustyczną. Ponadto, błędne przekonanie o tym, że większe pustki mogą zwiększać wentylację muru, jest mylne, gdyż może to prowadzić do niekontrolowanego przepływu powietrza i w konsekwencji do zawilgocenia. Znajomość właściwych standardów i praktyk budowlanych, w tym zasad dotyczących głębokości pustek, jest kluczowa dla osiągnięcia stabilności i trwałości obiektów budowlanych.

Pytanie 22

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. ustaleniu stopnia zagęszczenia kruszywa
B. przesianiu kruszywa przez sito o oczkach 5 mm
C. przesianiu kruszywa przez sito o oczkach 2 mm
D. ustaleniu gęstości pozornej kruszywa
Przesianie kruszywa przez sito o oczkach 2 mm jest kluczowym etapem w przygotowaniu zaprawy tynkarskiej przeznaczonej do wykonania narzutu tynku zwykłego. Użycie sita o takiej wielkości oczek pozwala na usunięcie większych zanieczyszczeń oraz fragmentów kruszywa, które mogłyby negatywnie wpłynąć na właściwości mechaniczne i estetyczne gotowego tynku. Zastosowanie właściwego rozmiaru kruszywa jest zgodne z normami budowlanymi, które wskazują, że do zapraw tynkarskich powinno się używać kruszywa o odpowiednich uziarnieniach, aby zapewnić optymalną przyczepność i jednorodność zaprawy. Przesiewanie kruszywa ma także na celu poprawę jego jednorodności, co jest istotne dla uzyskania stabilnych właściwości tynków oraz zapobiega pojawianiu się pęknięć. W praktyce, w zależności od wymagań projektu, można przeprowadzać dodatkowe testy, aby określić, czy wybrane kruszywo spełnia normy jakościowe, co przyczynia się do długotrwałych i estetycznych efektów końcowych w budownictwie.

Pytanie 23

Oblicz wydatki na materiał do tynkowania ściany o powierzchni 40 m2, gdy koszt jednego 25-kilogramowego worka suchej mieszanki tynku mineralnego wynosi 35,00 zł, a zużycie tej mieszanki to 2,5 kg/m2?

A. 1 400,00 zł
B. 100,00 zł
C. 1 000,00 zł
D. 140,00 zł
W przypadku błędnych odpowiedzi na to pytanie, często można zauważyć nieprecyzyjne analizy dotyczące zużycia materiałów. Na przykład, jeśli ktoś pomylił zasady obliczania zużycia, może przyjąć, że koszt tynku wynosi 100,00 zł, co wynika z nieprawidłowego założenia o ilości potrzebnego materiału. Zdarza się, że osoby obliczają koszt na podstawie całkowitej powierzchni bez uwzględnienia zużycia na metr kwadratowy, co prowadzi do zaniżenia kosztów. Z kolei odpowiedź wynosząca 1 000,00 zł może wynikać z mnożenia całkowitej ilości materiału bez zrozumienia ciężaru worka, co także jest istotnym błędem. Osoby odpowiedzialne za planowanie budowy powinny dokładnie zapoznawać się z normami dotyczącymi zużycia materiałów budowlanych oraz praktykami branżowymi, aby unikać takich pomyłek. Również niektóre osoby mogą popełniać błąd w obliczeniach, myląc ilość worków z ich wagą, co prowadzi do dodatkowych kosztów. Zrozumienie, jak prawidłowo obliczać koszty materiałów budowlanych, pomoże w efektywniejszym zarządzaniu projektami budowlanymi oraz w utrzymaniu budżetu w ryzach.

Pytanie 24

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. wysokościowych.
B. niskich.
C. wysokich.
D. średniowysokich.
Zrozumienie, jak się klasyfikuje budynki według wysokości, to bardzo ważna sprawa, bo mogą się pojawić jakieś niejasności. Można spotkać się z odpowiedziami, które mówią, że budynek biurowy z 9 piętrami to coś średniowysokiego, niskiego albo wyskokowego, ale to mija się z prawdą. W przepisach nie ma dokładnej definicji 'średniowysoki', co może prowadzić do zamieszania. Budynek o 27 metrach zdecydowanie nie może być uznany za niski, bo te zazwyczaj mieszczą się poniżej 12 metrów. Jeśli się to pomija, to można wyciągnąć złe wnioski co do projektowania i budowy. Kiedy uznajemy, że budynek jest wysoki, projektanci muszą wziąć pod uwagę różne normy, co wpływa na systemy zabezpieczeń, takie jak windy przeciwpożarowe czy inne instalacje. Jeśli ktoś nie rozumie tego, to może to prowadzić do złego projektowania i niebezpiecznych sytuacji. Dlatego architekci i inżynierowie powinni znać definicje, ale też praktyczne skutki związane z klasyfikacją budynków.

Pytanie 25

Bloczki silikatowe to wyroby poddawane autoklawizacji?

A. z zaczynu gipsowego
B. cementowo-piaskowe
C. wapienno-piaskowe
D. z betonu komórkowego
Bloczki silikatowe, klasyfikowane jako autoklawizowane wyroby wapienno-piaskowe, są produktem, który powstaje w wyniku połączenia wapna, piasku oraz wody, a następnie poddawany jest obróbce w autoklawie, gdzie zachodzi proces utwardzania pod wysokim ciśnieniem i temperaturą. Ten proces nie tylko zapewnia wysoką wytrzymałość bloczków, ale również ich doskonałe właściwości izolacyjne. W praktyce, bloczki silikatowe są niezwykle cenione w budownictwie mieszkaniowym i przemysłowym, dzięki ich łatwości w obróbce oraz możliwości formowania różnych kształtów i wymiarów. Wiele projektów budowlanych korzysta z tych materiałów w celu budowy ścian nośnych oraz działowych, co przekłada się na oszczędności w kosztach materiałowych oraz czasu pracy. Zgodnie z normami PN-EN 771-1, bloczki silikatowe spełniają wymagania dotyczące wytrzymałości, a także izolacyjności akustycznej i cieplnej, co czyni je zgodnymi z dobrą praktyką budowlaną w zakresie efektywności energetycznej budynków.

Pytanie 26

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. siatek z drutu stalowego
B. stolika rozpływowego
C. stolika wibracyjnego
D. rusztów drewnianych
Siatki z drutu stalowego są powszechnie stosowane do ręcznego segregowania kruszywa na poszczególne frakcje, co jest kluczowym procesem przy przygotowywaniu zaprawy murarskiej. Dzięki odpowiedniej wielkości oczek, siatki te umożliwiają efektywne oddzielanie ziaren o różnych wymiarach, co pozwala na uzyskanie jednorodnej mieszanki. W praktyce, segregacja kruszywa w taki sposób wpływa na jakość zaprawy, jej wytrzymałość oraz przyczepność do podłoża. Przykładowo, stosując siatki o różnych rozmiarach oczek, można skutecznie oddzielić piasek gruboziarnisty od drobniejszego, co jest zgodne z zasadami klasyfikacji materiałów budowlanych. Dodatkowo, stosowanie siatek zgodnych z normami PN-EN 13139 (Materiał do produkcji zapraw) oraz PN-EN 12620 (Kruszywa do betonu) zapewnia, że materiał użyty do zaprawy jest najwyższej jakości, co przekłada się na długotrwałość i stabilność konstrukcji budowlanych.

Pytanie 27

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. wyburzone.
B. przeznaczone do wyburzenia.
C. projektowane.
D. istniejące.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.

Pytanie 28

Aby uniknąć wilgoci na zewnętrznych ścianach parteru budynku z bloczków betonowych, pierwszą warstwę należy ułożyć na

A. zaprawie cementowej
B. zaprawie cementowo-wapiennej
C. lepiku asfaltowym
D. papie asfaltowej
Zgadza się, papa asfaltowa to dobry wybór. Działa jak tarcza przed wilgocią, chroniąc ściany budynku przed wodą. Ułożenie bloczków betonowych na tej papie to świetny pomysł, bo izoluje nam to od wilgoci z gruntu i deszczu, a to naprawdę ważne, żeby wszystko było trwałe. Papa asfaltowa ma super właściwości, jeśli chodzi o odporność na wodę, co w budownictwie jest mega ważne. Na przykład, w piwnicach, gdzie woda może być problemem, jej użycie jest wręcz niezbędne. Trzeba pamiętać, że według norm budowlanych, stosowanie papy na fundamentach i ścianach parteru to naprawdę dobra praktyka, bo minimalizuje ryzyko wilgoci i uszkodzeń. Generalnie, dobrze jest myśleć o izolacji od początku budowy, bo to wpływa na to, jak długo konstrukcja wytrzyma i czy będzie bezpieczna.

Pytanie 29

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:0,5:4, co powinno zostać zgromadzone?

A. 1 część cementu, 0,5 części piasku i 4 części wapna
B. 1 część piasku, 0,5 części wapna i 4 części cementu
C. 1 część cementu, 0,5 części wapna i 4 części piasku
D. 1 część piasku, 0,5 części cementu i 4 części wapna
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:0,5:4 oznacza, że na każdą część cementu przypada 0,5 części wapna oraz 4 części piasku. Przygotowanie zaprawy w takich proporcjach zapewnia odpowiednią wytrzymałość i trwałość materiału budowlanego. W praktyce, zaprawa cementowo-wapienna jest powszechnie stosowana w budownictwie do murowania, tynkowania oraz jako materiał do łączenia różnorodnych elementów konstrukcyjnych. Dobrze zbilansowane proporcje składników wpływają na właściwości fizyczne i chemiczne zaprawy, co jest zgodne z normami PN-EN 998-1, które określają wymagania dotyczące zapraw murarskich. Warto również zaznaczyć, że odpowiednie przygotowanie zaprawy, w tym staranne wymieszanie składników, jest kluczowe dla uzyskania pożądanej konsystencji oraz właściwości użytkowych. Przykładem zastosowania zaprawy cementowo-wapiennej jest budowa ścian nośnych z bloczków betonowych, gdzie zaprawa zapewnia stabilność i trwałość konstrukcji przez długie lata.

Pytanie 30

Przedstawiona na rysunku łata typu H służy do

Ilustracja do pytania
A. gładzenia tynku po zwilżeniu jego powierzchni.
B. wyrównywania tynku po lekkim związaniu.
C. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
D. nakładania poszczególnych warstw tynku.
Zrozumienie zastosowania łaty typu H jest kluczowe dla skutecznego tynkowania. Wybór odpowiedzi dotyczących wyrównywania tynku po lekkim związaniu, nakładania poszczególnych warstw tynku, czy gładzenia tynku po zwilżeniu jego powierzchni opiera się na nieprawidłowym zrozumieniu funkcji tego narzędzia. W przypadku wyrównywania tynku po związaniu, narzędzie o innej konstrukcji, takie jak paca, jest bardziej odpowiednie, ponieważ łata H jest zaprojektowana do działania na świeżo nałożonym tynku. Co więcej, nakładanie poszczególnych warstw tynku wymaga precyzyjnego dozowania materiału, co również nie jest funkcją łaty H, gdyż jej głównym celem jest zaciąganie tynku, a nie jego nakładanie. Gładzenie tynku po zwilżeniu jego powierzchni może być mylnie postrzegane jako zadanie dla łaty, jednak w rzeczywistości, dla uzyskania gładkiej powierzchni po wyschnięciu, najczęściej stosuje się pacy gładkie lub inne narzędzia. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują mylenie różnych etapów procesu tynkowania, a także niepoprawne przypisanie funkcji narzędzi do ich rzeczywistych zastosowań w budownictwie. Kluczowe jest zrozumienie specyfiki każdego narzędzia i jego optymalnego zastosowania, co ma fundamentalne znaczenie dla uzyskania wysokiej jakości wykończenia.

Pytanie 31

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)
A. 150 cm
B. 250 cm
C. 200 cm
D. 225 cm
Wybór długości 225 cm, 150 cm czy 200 cm jest niewłaściwy, ponieważ nie spełnia podstawowych wymagań dotyczących zbrojenia w konstrukcjach budowlanych. Pręty zbrojeniowe powinny zawsze wystawać poza zasięg otworu, aby móc skutecznie przenosić obciążenia oraz zapobiegać pęknięciom w obrębie konstrukcji. Odpowiedzi te mogą wynikać z błędnego zrozumienia roli zbrojenia w budownictwie. W przypadku 225 cm, istnieje brak wystarczającej długości prętów, co prowadzi do ryzyka niewłaściwego rozkładu naprężeń, a w rezultacie może skutkować uszkodzeniami strukturalnymi. Z kolei 150 cm to całkowita szerokość otworu, co jest błędnym podejściem, ponieważ nie uwzględnia dodatkowych wymagań dotyczących długości prętów zbrojeniowych, które powinny być dłuższe niż sama szerokość otworu. Odpowiedź 200 cm również nie zapewnia wystarczającego marginesu, co jest niezgodne z procedurami projektowymi. W praktyce, właściwe zbrojenie wymaga znajomości zasad inżynierii budowlanej i norm, które jasno określają potrzebne długości prętów zbrojeniowych oraz ich rozmieszczenie, aby zapewnić bezpieczeństwo i stabilność budowli.

Pytanie 32

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 190 mm
B. 250 mm
C. 220 mm
D. 300 mm
Odpowiedź 220 mm jest prawidłowa, ponieważ wysokość stropu gęstożebrowego zaznaczona na rysunku wynosi dokładnie 220 mm. Wysokość ta odnosi się do całkowitego wymiaru stropu, który jest istotny w projektowaniu konstrukcji budowlanych. W praktyce, właściwa wysokość stropu gęstożebrowego ma kluczowe znaczenie dla nośności oraz efektywności energetycznej budynku. Stropy gęstożebrowe, wykonane z materiałów takich jak beton komórkowy, są popularnym rozwiązaniem w budownictwie, ponieważ łączą w sobie lekkość oraz wysoką wytrzymałość. Normy budowlane, takie jak PN-EN 1992, precyzują minimalne i maksymalne wysokości stropów, co wpływa na ich projektowanie i zastosowanie w różnych typach budynków. W sytuacjach, gdy strop ma być stosowany jako element wykończeniowy, wysokość ta jest również istotna z perspektywy estetyki oraz funkcjonalności przestrzeni.

Pytanie 33

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Kruszywo piaskowe
B. Perlit
C. Pospółka
D. Kruszywo żwirowe
Perlit to materiał o doskonałych właściwościach izolacyjnych, który jest powszechnie stosowany do produkcji ciepłochronnych zapraw murarskich. Jego unikalna struktura, powstała w wyniku poddania wysokiej temperaturze naturalnego wulkanicznego szkła, sprawia, że perlit ma niską przewodność cieplną. Dzięki temu, zaprawy murarskie z dodatkiem perlitu skutecznie ograniczają straty ciepła, co jest istotne w kontekście budownictwa energooszczędnego. Przykłady zastosowania perlitu obejmują budowę domów pasywnych, gdzie kluczowe jest osiągnięcie jak najniższego zapotrzebowania na energię. Standardy branżowe, takie jak PN-EN 998-1, podkreślają znaczenie jakości izolacji w budynkach, a użycie perlitu w zaprawach murarskich jest zgodne z najlepszymi praktykami w tej dziedzinie. Warto dodać, że perlit jest materiałem ekologicznym, co dodatkowo zwiększa jego atrakcyjność w nowoczesnym budownictwie.

Pytanie 34

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. szamotowych
B. ciepłochronnych
C. krzemionkowych
D. kwasoodpornych
Perlit to naprawdę świetny materiał, jeśli chodzi o izolację. Dzięki swojej porowatej strukturze świetnie trzyma powietrze, co znacząco poprawia izolację termiczną zapraw. Z tego co widziałem, często stosuje się go w mieszankach tynkarskich i zaprawach, żeby zmniejszyć straty ciepła w budynkach. To jest ważne, zwłaszcza teraz, kiedy wszyscy myślimy o zrównoważonym budownictwie i efektywności energetycznej. Poza tym, perlit jest lekki, co znacznie ułatwia transport i użycie. Dzięki temu nasze konstrukcje są mniej obciążone. Warto pamiętać, że świetnie sprawdza się w systemach ociepleń, co naprawdę przekłada się na długowieczność i efektywność energetyczną budynków.

Pytanie 35

Zgodnie z podaną zasadą oblicz powierzchnię ściany pokazanej na rysunku, jeśli będą tynkowane ościeża otworów.

Zasada obliczania powierzchni ścian tynkowanych
Od powierzchni tynkowanej ściany odlicza się powierzchnię otworów powyżej 3 m2.
Od powierzchni tynkowanej ściany nie odlicza się powierzchni otworów do 3 m2, jeśli tynkowane będą ościeża otworu.
Ilustracja do pytania
A. 33,00 m2
B. 33,50 m2
C. 35,00 m2
D. 32,00 m2
Gdy popełniłeś błąd, ważne, żeby zrozumieć, dlaczego źle podszedłeś do tych obliczeń. Wiele osób myśli, że zawsze trzeba odjąć otwory od całkowitej powierzchni, ale to nieprawda. To częsty błąd, bo nie do końca rozumie się zasady tynkowania. Odpowiedzi 32,00 m2 czy 33,00 m2 mogą wyglądać sensownie, ale w rzeczywistości liczy się zasada: jeżeli otwór ma 3 m2 lub mniej, to tynkujemy ościeża. Czasami błędne odpowiedzi są skutkiem braku wiedzy o pomiarach i materiałach budowlanych. Ignorowanie tej zasady prowadzi do złych wyników, co może wpłynąć na obliczenia materiałów i cen robót. W budownictwie ważne jest, żeby dobrze rozumieć, jak to wszystko działa, zanim zabierzesz się do liczenia.

Pytanie 36

Tynk dekoracyjny, który składa się z wielu warstw i ma różne kolory, a jego odcień uzyskuje się przez usuwanie odpowiednich warstw wierzchnich, to

A. sgraffito
B. sztablatura
C. sztukateria
D. stiuk
Sgraffito to technika dekoracyjna, która polega na tworzeniu wzorów i rysunków poprzez zeskrobanie wierzchniej warstwy tynku, aby odsłonić kolor niższej warstwy. Metoda ta jest szeroko stosowana w architekturze i sztuce wnętrz, oferując unikalne efekty wizualne i estetyczne. Sgraffito można spotkać na wielu budynkach, zwłaszcza w stylu renesansowym i barokowym, a także w sztuce nowoczesnej. Przykłady użycia sgraffito obejmują fasady budynków, gdzie różnorodność kolorystyczna i wzory przyciągają wzrok i nadają charakter zabudowaniom. W branży budowlanej sgraffito uznawane jest za technikę wymagającą dużych umiejętności, dlatego często współpracują z nią doświadczeni artyści i rzemieślnicy. Znajomość tej metody jest kluczowa dla projektów konserwatorskich, gdzie zachowuje się oryginalne elementy dekoracyjne, a także w nowoczesnej architekturze, gdzie sgraffito może być użyte do nadania indywidualnego stylu nowym budynkom.

Pytanie 37

Jaką liczbę cegieł kratówek o wymiarach 25 × 12 × 14 cm należy przygotować do budowy ściany o grubości 38 cm, długości 6 m oraz wysokości 3,5 m, jeśli norma zużycia wynosi 78 cegieł na 1 m2?

A. 1 638 szt.
B. 2 964 szt.
C. 1 950 szt.
D. 798 szt.
Analizując inne dostępne odpowiedzi, można zauważyć, że każda z nich pomija kluczowy krok w obliczeniach. Nieprawidłowe podejście do obliczeń powierzchni ściany jest najczęściej spotykanym błędem. Na przykład, przy obliczaniu liczby cegieł, ważne jest, aby dokładnie przeliczyć wymiary ściany na metry kwadratowe, a następnie zastosować normę zużycia. Jeśli nie uwzględnimy wymiarów w metrach kwadratowych, możemy dojść do błędnych wyników, takich jak 798 czy 2 964 cegły, co jest efektem niewłaściwego przeliczenia powierzchni lub zastosowania niewłaściwej normy. Również typowym błędem jest pomijanie dodatkowych strat materiałowych, które mogą wystąpić w trakcie budowy, co prowadzi do zaniżania potrzebnej ilości cegieł. W praktyce, tak ważne jest nie tylko dokładne obliczenie ilości materiałów, ale również ich odpowiednia rezerwa, co jest zgodne z zasadami dobrych praktyk budowlanych. Dlatego kluczowe znaczenie ma stosowanie standardowych norm oraz precyzyjnych obliczeń, co pozwala na uniknięcie opóźnień i dodatkowych kosztów w realizacji projektu.

Pytanie 38

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 101,25 kg
B. 1 012,5 kg
C. 10 125 kg
D. 10,125 kg
Błędne odpowiedzi często wynikają z nieprawidłowego zrozumienia podstawowych zasad obliczania ilości materiałów budowlanych. Niekiedy zdarza się, że osoby nieprawidłowo stosują proporcje lub mylą jednostki miary. Na przykład, niektórzy mogą myśleć, że wystarczy po prostu pomnożyć powierzchnię ścian przez wagę zaprawy, co prowadzi do przeszacowania wymaganej ilości materiału. Tego typu podejście pomija kluczową informację o wydajności zaprawy, co jest błędem logicznym. Inny typowy błąd to nieodpowiednie uwzględnienie grubości tynku; niektórzy mogą zakładać, że grubość nie ma znaczenia w kontekście obliczeń, co jest niezgodne z praktyką budowlaną. W rzeczywistości grubość warstwy tynku ma bezpośredni wpływ na jego zużycie. Również często spotykaną pomyłką jest nieodpowiednie zrozumienie przelicznika między kilogramami a powierzchnią, co prowadzi do znacznych różnic w oszacowanej ilości materiału. Użycie precyzyjnych obliczeń jest kluczowe w skutecznym zarządzaniu projektem budowlanym i minimalizacji odpadów, co jest zgodne z zasadami zrównoważonego rozwoju w budownictwie.

Pytanie 39

Naprawa uszkodzenia ściany przedstawionej na fotografii powinna polegać na

Ilustracja do pytania
A. wypełnieniu ubytków muru zaprawą cementową.
B. przemurowaniu uszkodzonego fragmentu muru.
C. wzmocnieniu muru prętami stalowymi.
D. uzupełnieniu ubytku muru mieszanką betonową.
Przemurowanie uszkodzonego fragmentu muru jest właściwą odpowiedzią na przedstawioną sytuację. Na podstawie analizy zdjęcia można zauważyć, że uszkodzenie jest na tyle poważne, że obejmuje całą grubość muru, co negatywnie wpływa na jego integralność strukturalną. Przemurowanie to proces, który polega na usunięciu uszkodzonych elementów i wstawieniu nowych, co pozwala na przywrócenie pierwotnej wytrzymałości i stabilności obiektu. W praktyce takie działania powinny być zgodne z normami budowlanymi, które regulują sposób naprawy murów. Należy również zwrócić uwagę na dobór odpowiednich materiałów, które powinny być zgodne z klasą i specyfiką oryginalnego muru. Przykładowo, jeśli mur został wykonany z cegły ceramicznej, do przemurowania należy użyć cegieł o podobnych właściwościach mechanicznych, aby uniknąć różnic w zachowaniu materiałów. Dodatkowo, przemurowanie to także dobra okazja do oceny stanu całej struktury muru i ewentualnego wzmocnienia go w miejscach narażonych na przyszłe uszkodzenia.

Pytanie 40

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na obydwu stronach przegrody
B. na tej stronie przegrody, gdzie przeważa wyższa temperatura
C. po każdej stronie przegrody
D. na tej stronie przegrody, gdzie przeważa niższa temperatura
Izolację cieplną przegrody budowlanej należy umieścić po tej stronie, gdzie zazwyczaj panuje niższa temperatura, co wynika z podstawowych zasad termodynamiki. Celem izolacji jest ograniczenie wymiany ciepła pomiędzy wnętrzem budynku a jego otoczeniem. W praktyce oznacza to, że w zimie izolacja powinna być umieszczona od strony zewnętrznej, aby zminimalizować straty ciepła do chłodniejszego otoczenia. W lecie, natomiast, izolacja ma za zadanie chronić przed nagrzewaniem się wnętrza, dlatego również w tym przypadku ważne jest, aby znajdowała się po stronie, gdzie temperatura zewnętrzna jest wyższa. Przy projektowaniu budynków mieszkalnych kluczowe jest uwzględnienie lokalnych warunków klimatycznych oraz standardów budowlanych, takich jak norma PN-EN 13162, która określa wymagania dla materiałów izolacyjnych. Przykład praktyczny to domy jednorodzinne, w których stosowanie izolacji termicznej po stronie północnej, gdzie temperatura jest zazwyczaj niższa, pozwala na znaczną poprawę efektywności energetycznej budynku.