Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 15:05
  • Data zakończenia: 8 grudnia 2025 15:33

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki stopień ochrony powinien posiadać silnik trójfazowy eksploatowany w pomieszczeniu narażonym na wybuch?

A. IP56
B. IP34
C. IP11
D. IP00
Stopień ochrony IP56 oznacza, że urządzenie jest całkowicie chronione przed kurzem oraz odporne na silne strumienie wody. W kontekście silnika trójfazowego pracującego w pomieszczeniu zagrożonym wybuchem, taki stopień ochrony jest kluczowy, ponieważ zanieczyszczenia i wilgoć mogą negatywnie wpływać na jego wydajność oraz bezpieczeństwo. W przypadku zastosowań w strefach Ex, gdzie występują substancje łatwopalne, zgodność z normami takimi jak ATEX czy IECEx staje się obowiązkowa. Zastosowanie silnika z odpowiednim stopniem ochrony, jak IP56, minimalizuje ryzyko uszkodzeń oraz potencjalnych wybuchów. Przykładem może być użycie takich silników w przemysłach chemicznych, gdzie nie tylko trzeba dbać o bezpieczeństwo, ale także o ciągłość procesów produkcyjnych. Warto również pamiętać o regularnych przeglądach technicznych, które pozwalają na wczesne wykrywanie ewentualnych problemów związanych z ochroną przed pyłem i wodą.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowego.
B. Nadnapięciowego.
C. Podczęstotliwościowego.
D. Podnapięciowego.
Wybór odpowiedzi na temat przekaźników wymaga zrozumienia ich funkcji oraz zastosowań w systemach automatyki. Odpowiedzi takie jak nadprądowy, podczęstotliwościowy oraz nadnapięciowy odnoszą się do różnych typów przekaźników, które działają w innych warunkach i mają różne funkcje. Przekaźnik nadprądowy, na przykład, jest używany do ochrony obwodów przed przeciążeniem; aktywuje się, gdy natężenie prądu przekroczy ustalony próg. Z kolei przekaźnik nadnapięciowy działa wtedy, gdy napięcie wzrośnie powyżej bezpiecznego poziomu. Oba te typy przekaźników są kluczowe dla zabezpieczenia układów elektrycznych, jednak ich działanie nie jest związane z niskim napięciem, co jest kluczowym aspektem w kontekście przekaźników podnapięciowych. Przekaźniki podczęstotliwościowe są rzadziej spotykane i służą do detekcji niskich częstotliwości sygnałów, co nie ma bezpośredniego związku z problematyką napięcia. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w kontekście projektowania obwodów i systemów kontrolnych. W praktyce, nieodpowiedni dobór przekaźników może prowadzić do awarii systemów, co podkreśla znaczenie wiedzy na temat ich działania i zastosowania w różnych sytuacjach inżynieryjnych.

Pytanie 4

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. D.
B. A.
C. B.
D. C.
Zrozumienie zasad bezpieczeństwa pracy jest kluczowe w każdej branży, w tym w elektryce. Odpowiedzi, które sugerują kontynuowanie pracy mimo stwierdzenia niedostatecznego oświetlenia, są nie tylko nieodpowiedzialne, ale także sprzeczne z podstawowymi zasadami ochrony zdrowia i życia w miejscu pracy. Podejście, w którym nie wskazuje się na konieczność zaprzestania prac, może wynikać z błędnego założenia, że pracownicy są w stanie samodzielnie zidentyfikować i zminimalizować zagrożenia. Takie myślenie jest niebezpieczne, ponieważ może prowadzić do lekceważenia problemów, które są widoczne tylko w pełnym świetle. Nieodpowiednie oświetlenie może prowadzić do błędów w ocenie sytuacji oraz zwiększać ryzyko wypadków, co podkreśla znaczenie natychmiastowego zgłaszania takich niedociągnięć przełożonym. Innym typowym błędem jest założenie, że efekty pracy można zrealizować w każdym kontekście, nawet w trudnych warunkach. W praktyce, ignorowanie zasad dotyczących oświetlenia jest nie tylko niezgodne z przepisami, ale również z normami zawartymi w kodeksie pracy oraz regulacjach BHP. Pracownicy powinni być świadomi, że ich bezpieczeństwo ma priorytet i że każdy problem związany z warunkami pracy musi być zgłaszany i rozwiązywany. Ignorowanie tych zasad może prowadzić do poważnych konsekwencji prawnych oraz zdrowotnych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zwiększając moment napędowy
B. Zmniejszając prąd wzbudzenia
C. Zmniejszając moment napędowy
D. Zwiększając prąd wzbudzenia
Zmniejszanie prądu wzbudzenia nie tylko nie pozwala na zwiększenie mocy biernej indukcyjnej, ale wręcz przeciwnie, może prowadzić do jej zmniejszenia. Przy niższym prądzie wzbudzenia strumień magnetyczny w wirniku zostaje osłabiony, co w konsekwencji ogranicza zdolność prądnicy do wytwarzania mocy biernej. Taki błąd myślowy wynika z nieporozumienia dotyczącego relacji między prądem wzbudzenia a mocą bierną. Często przyjmuje się, że zmniejszanie prądu wzbudzenia prowadzi do zmniejszenia obciążenia, co jest prawdą w kontekście mocy czynnej, jednak w przypadku mocy biernej działa to w odwrotny sposób. Podobnie, zmniejszanie momentu napędowego nie ma wpływu na zwiększenie mocy biernej, ponieważ moment napędowy jest związany z mocą czynną i obciążeniem maszyny. Zmniejszenie momentu napędowego może prowadzić do obniżenia prędkości obrotowej prądnicy, co może skutkować niewystarczającą produkcją zarówno mocy czynnej, jak i biernej. Zwiększanie momentu napędowego z kolei może być pomocne w innych kontekstach, ale sama w sobie nie dostarczy dodatkowej mocy biernej, jeśli nie zostanie skorelowane z odpowiednią regulacją prądu wzbudzenia. W związku z tym, kluczowe jest zrozumienie, że regulacja wzbudzenia jest decydującym czynnikiem w zarządzaniu mocą bierną w systemach elektroenergetycznych.

Pytanie 7

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Obniżenie wytrzymałości mechanicznej przewodów
B. Wzrost obciążalności prądowej instalacji
C. Obniżenie napięcia roboczego
D. Wzrost rezystancji pętli zwarcia
Wymiana przewodów ADG na przewody DY w instalacji elektrycznej przynosi szereg korzyści, w tym zwiększenie obciążalności prądowej. Przewody DY, zgodne z normą PN-IEC 60227, charakteryzują się lepszymi właściwościami przewodzenia prądu elektrycznego, co jest kluczowe w kontekście bezpieczeństwa i efektywności energetycznej. Ich konstrukcja wykonana z materiałów o lepszej przewodności, takich jak miedź, pozwala na większe prądy robocze bez ryzyka przegrzania. Dla przykładu, w instalacjach o dużym zapotrzebowaniu na energię elektryczną, jak kuchnie elektryczne czy systemy grzewcze, wyższa obciążalność prądowa jest niezbędna do zapewnienia stabilności działania urządzeń. W praktyce oznacza to, że instalacje z przewodami DY mogą skuteczniej obsługiwać większe obciążenia, co jest zgodne z zasadą projektowania instalacji elektrycznych, by nie przekraczać maksymalnych obciążeń przewodów. Wybór odpowiednich przewodów jest kluczowy również dla zapewnienia długotrwałej i bezawaryjnej pracy całego systemu elektrycznego, co jest zgodne z dobrymi praktykami inżynieryjnymi.

Pytanie 8

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik nie włączy się
B. Silnik zmieni swój kierunek obrotów
C. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
D. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
Istnieje kilka nieporozumień związanych z błędnymi odpowiedziami. Zamiana kondensatora rozruchowego z kondensatorem pracy nie spowoduje uszkodzenia kondensatora 50 µF w chwili rozruchu, ponieważ kondensator ten nie jest przeznaczony do pracy w warunkach rozruchowych. Jego zadaniem jest podtrzymywanie momentu obrotowego podczas pracy silnika. Dodatkowo, zmiana kierunku wirowania silnika nie jest możliwa w tej sytuacji. Kierunek obrotów silnika indukcyjnego jednofazowego jest determinowany przez przesunięcie fazowe, które nie zostanie osiągnięte przy użyciu niewłaściwego kondensatora. Co więcej, twierdzenie, że uzwojenie pomocnicze może się uszkodzić po kilku minutach pracy, jest również błędne, ponieważ w rzeczywistości silnik po prostu nie uruchomi się, co zapobiegnie jego uszkodzeniu. Kluczowym błędem myślowym w tych odpowiedziach jest niezrozumienie zasady działania kondensatorów w silnikach jednofazowych, co prowadzi do nieprawidłowych wniosków o skutkach zamiany kondensatorów. Zastosowanie niewłaściwego kondensatora w systemach elektrycznych może prowadzić do nieodwracalnych uszkodzeń, dlatego istotne jest przestrzeganie zaleceń producentów oraz standardów branżowych przy konserwacji i naprawie urządzeń elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się czterokrotnie
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 11

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
B. Zmierzyć ciągłość przewodów ochronnych PE
C. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
D. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
Sprawdzanie działania wyłącznika RCD przy pomocy przycisku 'TEST' nie rozwiązuje problemu z wysoką wartością impedancji pętli zwarcia, a jedynie testuje funkcjonalność samego urządzenia. Wyłączniki RCD mają na celu ochronę przed porażeniem prądem elektrycznym, ale ich sprawność nie wpływa bezpośrednio na impedancję pętli zwarcia. Wartość impedancji pętli zwarcia jest krytycznym parametrem, który powinien mieścić się w określonych granicach, aby zapewnić, że zabezpieczenia, takie jak bezpieczniki lub wyłączniki, zadziałają w odpowiednim czasie w przypadku zwarcia. Testy rezystancji izolacji przewodów, choć istotne, nie są bezpośrednio związane z problemem impedancji pętli zwarcia, ponieważ koncentrują się na integralności izolacji, a nie na połączeniach. Z kolei pomiar ciągłości przewodów ochronnych PE, choć ważny, nie identyfikuje potencjalnych problemów z połączeniami wewnętrznymi obwodu, które mogą być źródłem wysokiej impedancji. Niestety, często dochodzi do mylnego przekonania, że pojedyncze testy mogą kompleksowo rozwiązać problem, podczas gdy kluczowe jest zdiagnozowanie i nawiązanie do przyczyn wysokiej impedancji, które mogą wynikać z wielu czynników, w tym właśnie z nieprawidłowych połączeń elektrycznych.

Pytanie 12

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po wymianie elementów instalacji
B. Nie rzadziej niż co 10 lat
C. Tylko po przeprowadzonym remoncie budynku
D. Nie rzadziej niż co 5 lat
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny z widoczną przerwą.
B. Odłącznik instalacyjny.
C. Łącznik silnikowy bez zabezpieczeń termicznych.
D. Wyłącznik małej mocy.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zmniejszenie momentu rozruchowego.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie mocy silnika.
D. uszkodzenie silnika.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 18

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Zmniejszyć prąd wzbudzenia
B. Zwiększyć częstotliwość napięcia zasilającego
C. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
D. Zastosować dodatkowe uziemienie
Zwiększenie częstotliwości napięcia zasilającego nie jest właściwym rozwiązaniem problemu obniżonej rezystancji izolacji w uzwojeniu stojana silnika elektrycznego. Tego rodzaju działanie mogłoby prowadzić do dodatkowego stresu termicznego i mechanicznego na uzwojeniach, co tylko pogorszyłoby sytuację. Nie jest to zgodne z dobrą praktyką inżynierską, ponieważ nie odnosi się bezpośrednio do poprawy rezystancji izolacji. Z kolei zmniejszenie prądu wzbudzenia dotyczy głównie maszyn synchronicznych, a nie bezpośrednio kwestii izolacji w silnikach elektrycznych. Choć mogłoby to mieć pewien wpływ na ogólne warunki pracy silnika, nie rozwiązuje podstawowego problemu związanego z izolacją. Zastosowanie dodatkowego uziemienia jako środek zaradczy w sytuacji obniżonej rezystancji izolacji jest również niewłaściwe. Uziemienie jest istotnym elementem ochrony przed porażeniem elektrycznym, ale nie wpływa bezpośrednio na poprawę stanu izolacji uzwojeń. Uziemienie ma na celu bezpieczne odprowadzanie prądów upływowych w przypadku awarii, a nie poprawę parametrów izolacji. Wszystkie te błędne podejścia wynikają z nieporozumień dotyczących prawidłowego postępowania przy problemach z rezystancją izolacji i mogą prowadzić do niepotrzebnych awarii oraz zagrożeń dla bezpieczeństwa.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. YAKY 4×10
B. AsXS 4×70
C. AFL 6 120
D. AAFLwsXSn 50
Przewody AsXS 4×70, AAFLwsXSn 50 oraz AFL 6 120, mimo że są to przewody o dużych przekrojach i różnych zastosowaniach, nie spełniają wymagań dla wykonania przyłącza elektrycznego ziemnego dla budynku jednorodzinnego z linią napowietrzną 230/400 V. Przewód AsXS 4×70, mimo że ma wyższy przekrój, jest typowym przewodem stosowanym w instalacjach przemysłowych, co czyni go zbyt dużym i niepraktycznym w kontekście przyłącza do jednorodzinnego budynku. Wybór przewodu o tak dużym przekroju może prowadzić do nieefektywnie wysokich kosztów oraz problemów z montażem. Przewód AAFLwsXSn 50, z kolei, jest przewodem aluminiowym, ale jego przekrój i specyfika zastosowania nie są zgodne z wymaganiami dla bezpiecznego przyłącza ziemnego. Użycie przewodu o takiej budowie mogłoby prowadzić do problemów z uziemieniem oraz zwiększoną podatnością na uszkodzenia mechaniczne. Natomiast AFL 6 120, choć jest przewodem dostosowanym do dużych obciążeń, to jego konstrukcja i przeznaczenie w szczególności w instalacjach energetycznych sprawiają, że nie jest on zalecany do przyłącza dla budynku jednorodzinnego. Wybór niewłaściwego przewodu może prowadzić nie tylko do problemów technicznych, ale również do naruszenia przepisów prawa budowlanego oraz norm bezpieczeństwa, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa użytkowników budynku.

Pytanie 22

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1,5 mm²
B. 4 mm²
C. 2,5 mm²
D. 1 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 23

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 6A
B. 16A
C. 20A
D. 10A
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 24

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń wirnika
B. rezystancji uzwojeń stojana
C. natężenia pola magnetycznego rozproszenia
D. stratności magnetycznej blach stojana
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zastosować dodatkowy filtr harmonicznych
B. Zwiększyć długość przewodów zasilających
C. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
D. Zwiększyć napięcie zasilające
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Zwarcie między fazami L1-L2
B. Brak ciągłości przewodu PE
C. Uszkodzenie przewodu N
D. Przebicie izolacji między L1-N
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 29

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 4, 1, 5, 3, 6, 2
B. 3, 4, 2, 1, 5, 6
C. 3, 1, 4, 5, 6, 2
D. 1, 4, 3, 5, 2, 6
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 30

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 1,1
B. 0,9
C. 2,0
D. 1,2
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do którego z wymienionych pomieszczeń przeznaczona jest oprawa oświetleniowa przedstawiona na ilustracji?

Ilustracja do pytania
A. Do magazynu spożywczego.
B. Do młyna zbożowego.
C. Do serwerowni.
D. Do hali sportowej.
Oprawa oświetleniowa przedstawiona na ilustracji jest idealnie przystosowana do zastosowania w młynie zbożowym, co wynika z jej konstrukcji oraz materiałów, z których została wykonana. Młyny zbożowe charakteryzują się obecnością dużych ilości pyłu, co stawia wyzwania dla standardowego oświetlenia, które może być narażone na uszkodzenia lub ma mniejszą wydajność w trudnych warunkach. Oprawy odporne na pył, a także na potencjalne uszkodzenia mechaniczne są kluczowe w takich miejscach, aby zapewnić bezpieczeństwo i efektywność pracy. Dodatkowo, zgodnie z normami dotyczącymi oświetlenia przemysłowego, takimi jak PN-EN 12464-1, ważne jest, aby oświetlenie w miejscach o dużym zanieczyszczeniu pyłem miało odpowiednią klasę ochrony IP, co zapewnia długotrwałość i niezawodność. Przykłady zastosowania takich opraw można znaleźć w przemyśle spożywczym, gdzie wymagane są odpowiednie warunki sanitarno-epidemiologiczne. Dlatego też, wybór oprawy oświetleniowej dostosowanej do młyna zbożowego nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do efektywności procesu produkcyjnego.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Która z wymienionych przyczyn może powodować przegrzewanie się uzwojenia stojana w trakcie działania trójfazowego silnika indukcyjnego?

A. Nierównomierna szczelina powietrzna
B. Nieprawidłowe połączenie grup zezwojów
C. Zbyt niska częstotliwość napięcia zasilającego
D. Zmiana kolejności faz zasilających
Istnieje kilka koncepcji, które mogą wydawać się przekonywujące, ale w rzeczywistości nie są przyczyną przegrzewania się uzwojenia stojana w trójfazowych silnikach indukcyjnych. Zmieniona kolejność faz zasilających może prowadzić do problemów z momentem obrotowym i stabilnością pracy silnika, ale niekoniecznie do przegrzewania uzwojeń. W rzeczywistości, silnik może działać w sposób nieoptymalny, ale niekoniecznie ulegać przegrzaniu z tego powodu. Nierówna szczelina powietrzna, choć może wpływać na wydajność oraz generowanie hałasu, nie jest bezpośrednią przyczyną przegrzewania uzwojeń. Problemy ze szczeliną powietrzną mogą generować dodatkowe straty mocy, ale ich bezpośredni wpływ na temperaturę uzwojeń jest ograniczony. Zbyt niska częstotliwość napięcia zasilającego rzeczywiście może prowadzić do zmiany momentu obrotowego i wynikających z tego niewłaściwych warunków pracy, lecz nie jest to bezpośrednia przyczyna przegrzewania. W przypadku niewłaściwego działania silnika, jego diagnostyka wymaga uwzględnienia całego systemu zasilania oraz mechanizmu, aby zrozumieć rzeczywiste źródło problemu, a nie skupiać się jedynie na pojedynczych parametrach, co może prowadzić do fałszywych wniosków.

Pytanie 36

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 4 lata
B. 1 rok
C. 2 lata
D. 3 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Moc wydobywana w piecu wzrośnie 1,5 raza.
C. Moc wydobywana w piecu zmaleje 1,5 raza.
D. Spadek napięcia na przewodach zasilających zmniejszy się.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.