Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 grudnia 2025 23:42
  • Data zakończenia: 29 grudnia 2025 23:59

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Na podstawie analizy fragmentu programu określ reakcję programu na podanie na wejście S1 jedynki logicznej, a na wejście S2 zera logicznego?

Ilustracja do pytania
A. Ustawiona zostanie jedynka logiczna na wyjściu H1 i H2.
B. Ustawiona zostanie jedynka logiczna na wyjściu H1 i wyzerowane zostanie wyjście H2.
C. Wyzerowane zostaną wyjścia H1 i H2.
D. Wyzerowane zostanie wyjście H1 i ustawiona jedynka logiczna na wyjściu H2.
Odpowiedzi, które wskazują, że na wyjściu H1 zostanie ustawiona jedynka, a H2 będzie wyzerowane, błędnie interpretują zasady działania bramek logicznych. W systemach cyfrowych, gdzie stosowane są bramki AND, wyjście może być w stanie wysokim tylko wtedy, gdy wszystkie wejścia są w stanie wysokim. W analizowanym przypadku na S2 podano zero, co w konsekwencji powoduje, że H1 nie może przyjąć wartości jedynki. Ważne jest zrozumienie, że bramka AND wymaga spełnienia wszystkich warunków, aby mogła działać poprawnie. Z kolei w odpowiedziach, które sugerują, że H2 będzie wyzerowane, pojawia się mylne założenie, że negacja na wejściu S2 nie ma wpływu na działanie drugiej sieci. W rzeczywistości, w przypadku bramek OR z negacją, wystarczy, że jedno z wejść jest w stanie wysokim, aby uzyskać jedynkę na wyjściu. Zrozumienie koncepcji działania bramek logicznych i ich zastosowania w rzeczywistych układach elektronicznych jest kluczowe dla uniknięcia takich błędów. Podejście do tego zagadnienia wymaga głębszej analizy i przemyślenia, jak różne typy połączeń wpływają na wynik końcowy.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Na rysunku przedstawiono model magazynu grawitacyjnego oraz fragment algorytmu jego działania. W celu przetestowania działania układu należy sprawdzić, czy wysunięcie detalu z magazynu nastąpi, gdy wciśnięty zostanie przycisk _S1 oraz czy

Ilustracja do pytania
A. tłoczysko siłownika znajduje się w pozycji wsuniętej.
B. nieaktywny jest czujnik wykrywania pustego magazynu.
C. aktywny jest czujnik wykrywania pustego magazynu.
D. tłoczysko siłownika znajduje się w pozycji wysuniętej.
Poprawna odpowiedź wskazuje na kluczowy warunek, który musi być spełniony dla prawidłowego działania układu. Zgodnie z algorytmem, wysunięcie detalu z magazynu jest możliwe, gdy przycisk S1 jest wciśnięty, a czujnik wykrywania pustego magazynu (B4) jest nieaktywny. Taki mechanizm zapewnia, że detal nie zostanie wysunięty, gdy magazyn jest pusty, co mogłoby prowadzić do błędów w procesie automatyzacji i obniżenia efektywności operacji. Systemy grawitacyjne w automatyce, w których wykorzystuje się czujniki do monitorowania poziomu materiałów, są powszechnie stosowane w magazynach oraz liniach produkcyjnych. Przykładowo, w przemysłowym systemie transportu materiałów, odpowiednie zastosowanie czujników i przycisków może znacząco zredukować ryzyko awarii, a także zwiększyć bezpieczeństwo operacji. Kluczowe jest, aby przy projektowaniu takich systemów stosować praktyki inżynieryjne, które zapewniają zarówno wydajność, jak i bezpieczeństwo. Zrozumienie tej logiki działania jest niezbędne dla inżynierów w obszarze automatyki oraz robotyki.

Pytanie 5

Jaką czynność należy wykonać jako pierwszą przed rozpoczęciem instalacji oprogramowania dedykowanego do programowania sterowników PLC?

A. Usunąć starszą wersję oprogramowania, które ma być zainstalowane
B. Zweryfikować minimalne wymagania, które powinien spełniać komputer, na którym oprogramowanie będzie instalowane
C. Zaktualizować system operacyjny komputera, na którym będzie przeprowadzana instalacja oprogramowania
D. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
Acty wyboru pierwszej czynności przed instalacją oprogramowania do programowania sterowników PLC często prowadzą do nieporozumień. Wiele osób uważa, że przed zainstalowaniem oprogramowania należy najpierw zaktualizować system operacyjny lub odinstalować starsze wersje oprogramowania. Tego rodzaju podejście jest mylne, ponieważ takie działania nie są zależne od tego, czy komputer spełnia minimalne wymagania systemowe. Bez odpowiednich zasobów, jak procesor czy pamięć, aktualizacja systemu operacyjnego nie przyniesie oczekiwanych rezultatów, a użytkownik może zmarnować czas na proces, który jest nieefektywny. Ponadto, odinstalowanie starszej wersji oprogramowania, nawet jeśli jest to ważny krok, powinno być realizowane po upewnieniu się, że nowa wersja zadziała prawidłowo. Ważne jest, aby zrozumieć, że wykonanie tych czynności bez wcześniejszego sprawdzenia wymagań może prowadzić do poważnych problemów, jak na przykład niekompatybilność z nowym oprogramowaniem, co może skutkować błędami podczas uruchamiania lub, co gorsza, awarią systemu. Dobre praktyki sugerują, aby zawsze zaczynać od analizy wymagań systemowych, co jest fundamentalnym krokiem w procesie instalacji oprogramowania, zwłaszcza w kontekście specjalistycznych narzędzi do programowania, jak PLC.

Pytanie 6

Jaka jest zależność logiczna sygnału Y od sygnałów A i B w przedstawionym układzie pneumatycznym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Analizując sam układ pneumatyczny, trzeba zwrócić uwagę, że sygnał Y działa na zasadzie AND. To znaczy, że siłownik Y zacznie działać dopiero wtedy, gdy obydwa zawory A i B będą włączone. To jest ważna zasada w automatyce i w systemach sterowania. Na przykład, w produkcji, żeby coś ruszyło do przodu, muszą być działające wszystkie niezbędne elementy. W praktyce to zwiększa bezpieczeństwo, bo zapobiega przypadkowemu uruchomieniu siłowników, gdy coś jest nie tak. W branży zwraca się uwagę na te zasady, bo w systemach pneumatycznych precyzyjna kontrola jest kluczowa. Im lepiej przestrzegamy tych zasad, tym bardziej efektywny i niezawodny jest cały system.

Pytanie 7

Na podstawie tabeli z dokumentacji techniczno-ruchowej przekładni napędu wskaż wszystkie czynności konserwacyjne, które należy przeprowadzić po upływie 4 lat i 3 miesięcy od przyjęcia jednostki napędowej do eksploatacji.

Lp.CzynnośćOdstępy czasu
1Sprawdzenie odgłosów z kół zębatych, łożyskco 1 miesiąc
2Sprawdzenie temperatury obudowy (maksymalna 90°C)
3Wizualne sprawdzenie uszczelnień
4Usunięcie kurzu, pyłu z powierzchni napędu
5Oczyszczenie korka odpowietrzającego i jego bezpośredniego otoczeniaco 3 miesiące
6Sprawdzenie śrub montażowych korpusu napęduco 6 miesięcy
7Sprawdzenie amortyzatorów gumowychco 48 miesięcy
8Wizualne sprawdzenie uszczelnień wału i ewentualnie wymiana
A. 1, 2, 3, 4, 5
B. 5, 8
C. 1, 2, 3, 4, 5, 8
D. 1, 2, 3, 4, 5, 6, 7
Niepoprawne odpowiedzi opierają się na mylnych założeniach dotyczących wymagań konserwacyjnych jednostki napędowej. Wybranie tylko niektórych czynności konserwacyjnych, jak w przypadku odpowiedzi 5, 8 czy 1, 2, 3, 4, 5, 6, 7, sugeruje niedostateczne zrozumienie całościowego podejścia do utrzymania tych systemów. Ważne jest, aby dostrzegać, że każda czynność konserwacyjna ma swoje uzasadnienie wynikające z długofalowych obserwacji, które pokazują, że niedoszacowanie potrzebnych działań może prowadzić do poważnych awarii. Na przykład, pomijając regularną kontrolę smarów i materiałów eksploatacyjnych, można nieświadomie doprowadzić do ich degradacji, co w efekcie zwiększa tarcie i obciążenie komponentów, a to może skutkować ich uszkodzeniem. Ponadto, odpowiedzi takie jak 5, 8 czy 1, 2, 3, 4, 5, 6, 7 nie uwzględniają cykliczności niektórych działań konserwacyjnych, które są kluczowe dla prawidłowego funkcjonowania przekładni. Niezrozumienie tych aspektów prowadzi do koncepcji, które mogą zagrażać bezpieczeństwu operacyjnemu i mogą narazić jednostkę na nieplanowane przestoje. Rekomendacje dotyczące utrzymania powinny być więc zgodne z najlepszymi praktykami i normami branżowymi, aby zapewnić wysoką efektywność i niezawodność urządzeń.

Pytanie 8

Które działanie wykonywane jest przez przedstawiony blok FBD?

Ilustracja do pytania
A. Odejmowanie.
B. Dodawanie.
C. Mnożenie.
D. Dzielenie.
Blok FBD (Function Block Diagram) oznaczony jako "ADD" wskazuje, że jego funkcją jest dodawanie. W kontekście programowania i automatyki, dodawanie jest podstawowym działaniem arytmetycznym, które pozwala na sumowanie wartości. W praktyce, bloki dodawania są powszechnie używane w różnych aplikacjach przemysłowych, takich jak obliczanie sumy otrzymanych sygnałów z czujników, co może być istotne na przykład w systemach kontrolnych lub w analizie danych procesowych. Dodawanie może być również kluczowe w algorytmach regulacji, gdzie suma błędów kontrolnych jest wykorzystywana do obliczenia odpowiedzi systemu. Zrozumienie działania bloków matematycznych, takich jak dodawanie, jest niezbędne dla inżynierów zajmujących się automatyzacją procesów, ponieważ pozwala na efektywne projektowanie systemów logicznych i kontrolnych zgodnie z najnowszymi standardami branżowymi, takimi jak IEC 61131-3.

Pytanie 9

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. spadku ciśnienia czynnika roboczego
B. zwiększenia tempa działania układu
C. intensywnych drgań układu
D. uszkodzenia pompy hydraulicznej
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Osuszenia w wysokiej temperaturze
B. Przedmuchania sprężonym powietrzem
C. Przemycia wodą
D. Przetarcia rozpuszczalnikiem
Metoda przedmuchania sprężonym powietrzem jest kluczowym etapem w montażu elementów hydraulicznych, ponieważ pozwala na skuteczne usunięcie wszelkich drobnych zanieczyszczeń, które mogłyby wpłynąć na prawidłowe funkcjonowanie systemu. Zastosowanie sprężonego powietrza umożliwia dotarcie do trudno dostępnych miejsc, gdzie mogą gromadzić się pyły i cząstki stałe. Dobrą praktyką w branży hydraulicznej jest wykonywanie przedmuchania na zakończenie montażu, aby upewnić się, że wszystkie elementy są wolne od zanieczyszczeń przed ich uruchomieniem. W wielu przypadkach, zanieczyszczenia mogą prowadzić do awarii systemu, co z kolei może generować niepotrzebne koszty związane z naprawą i przestojem. Warto również pamiętać, że przedmuchanie sprężonym powietrzem powinno być przeprowadzane zgodnie z odpowiednimi normami BHP, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Ponadto, technika ta jest często stosowana w połączeniu z innymi metodami oczyszczania, co pozwala na uzyskanie jeszcze lepszych rezultatów, zapewniając długowieczność i niezawodność systemów hydraulicznych.

Pytanie 12

Przedstawiony na rysunku element układu zasilającego urządzenie mechatroniczne jest pompą

Ilustracja do pytania
A. śrubową.
B. mimośrodową.
C. rotacyjną.
D. łopatkową.
Pompa śrubowa, którą wskazałeś, jest typowym rozwiązaniem w przemyśle ze względu na swoją efektywność w przetłaczaniu różnych rodzajów cieczy, w tym tych o dużej lepkości. Dzięki zastosowaniu dwóch śrub obracających się w przeciwnych kierunkach, pompa ta zapewnia stabilny przepływ medium, co jest kluczowe w aplikacjach, gdzie wymagana jest precyzyjna kontrola dozowania. Przykładowe zastosowanie pompy śrubowej można znaleźć w przemyśle chemicznym, gdzie często przetwarzane są agresywne substancje. Dodatkowo, pompy te charakteryzują się niskim poziomem pulsacji, co minimalizuje ryzyko uszkodzenia przetłaczanego medium oraz komponentów systemu. Warto wspomnieć, że pompy śrubowe są zgodne z wieloma standardami branżowymi, co zapewnia ich wysoką jakość i niezawodność. Użycie takich urządzeń w zastosowaniach przemysłowych nie tylko zwiększa wydajność procesów, ale również przyczynia się do zmniejszenia kosztów operacyjnych, przez co zyskują coraz większe uznanie wśród inżynierów i techników.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Która z wymienionych zasad wymiarowania nie została zachowana na rysunku?

Ilustracja do pytania
A. Niepowtarzania wymiarów.
B. Pomijania wymiarów oczywistych.
C. Pomijania wymiarów koniecznych.
D. Niezamykania łańcuchów wymiarowych.
Wybór odpowiedzi związanych z pomijaniem wymiarów koniecznych, niepowtarzaniem wymiarów czy niezamykanie łańcuchów wymiarowych może wynikać z nieporozumienia dotyczącego podstawowych zasad wymiarowania w rysunkach technicznych. Pomijanie wymiarów koniecznych, na przykład, może prowadzić do sytuacji, w której wykonawca nie posiada wystarczających informacji do odtworzenia zamierzonego kształtu elementu, co w konsekwencji skutkuje wyrobem niezgodnym z projektem. Z kolei zasada niepowtarzania wymiarów dotyczy unikania podawania tych samych wymiarów w różnych miejscach rysunku, co ma na celu eliminację ewentualnych błędów i nieporozumień. W kontekście niezamykania łańcuchów wymiarowych, można powiedzieć, że jest to kluczowe dla obliczeń tolerancji oraz zapewnienia, że wszystkie wymiary są ze sobą spójne, co jest istotne dla precyzyjnego procesu produkcyjnego. Problemy te ilustrują typowe błędy, które wynikają z braku świadomości na temat fundamentalnych zasad rysunków technicznych i mogą prowadzić do kosztownych pomyłek. Dlatego istotne jest, aby inżynierowie i projektanci dokładnie zapoznali się z normami i praktykami branżowymi, aby skutecznie komunikować swoje zamierzenia i uniknąć nieporozumień w procesie produkcji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Pomiar natężenia prądu zasilającego silnik przeprowadza się w celu ustalenia

A. temperatury pracy silnika
B. prędkości obrotowej silnika
C. obciążenia silnika
D. poślizgu silnika
Pomiar natężenia prądu zasilania silnika jest kluczowym elementem w ocenie obciążenia, które silnik musi pokonać w trakcie pracy. W praktyce, jeśli silnik napotyka na większy opór, na przykład przy rozpoczęciu pracy przy pełnym obciążeniu, natężenie prądu wzrasta, co skutkuje koniecznością dostarczenia większej mocy. Zrozumienie relacji między natężeniem prądu a obciążeniem silnika jest istotne, szczególnie w kontekście monitorowania wydajności i optymalizacji pracy maszyn. W standardach branżowych, takich jak IEC 60034 dotyczących silników elektrycznych, uwzględnia się pomiary prądowe jako część regularnych inspekcji. Gromadzenie takich danych pozwala na przewidywanie awarii i planowanie konserwacji, co przekłada się na dłuższą żywotność sprzętu oraz efektywność energetyczną. Prawidłowe pomiary natężenia prądu umożliwiają również dostosowanie parametrów pracy silnika do aktualnych potrzeb roboczych, co jest kluczowe w automatyzacji procesów przemysłowych.

Pytanie 24

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MW14
B. ML14
C. MD14
D. MB14
Podczas analizy niepoprawnych odpowiedzi, warto zwrócić uwagę na różnice między typami zmiennych oraz ich odpowiednimi prefiksami. MD14, oznaczające zmienną 32-bitową, jest błędne, ponieważ zmienna 64-bitowa wymaga innego adresowania. Programowanie w środowisku PLC wymaga zrozumienia, że zmienne 32-bitowe są stosowane do przechowywania danych mniejszych niż długość 64 bitów. Wybierając MD14, użytkownik sugeruje, że zmienna zajmuje jedynie połowę dostępnej przestrzeni pamięci, co prowadzi do niewłaściwego wykorzystania zasobów. Z kolei MW14, odnoszące się do zmiennych 16-bitowych, również nie pasuje do kontekstu 64-bitowego przechowywania. Przyjęcie takiego oznaczenia zafałszowuje rzeczywistość pamięci, ponieważ 16 bity to zdecydowanie za mało dla zmiennej, która potrzebuje 64 bitów pamięci. MB14, z kolei, wiąże się z 8-bitowymi zmiennymi i jest zupełnie nieadekwatne dla złożoności zmiennej 64-bitowej. Zrozumienie, jakie prefiksy są używane dla różnych typów zmiennych, jest podstawą programowania w PLC. Stosowanie niewłaściwych prefiksów może prowadzić nie tylko do błędów w adresowaniu, ale także do poważnych problemów z wydajnością i stabilnością całego systemu. Dlatego kluczowe jest, aby programiści PLC byli dobrze zaznajomieni z tymi zasadami oraz ich praktycznym zastosowaniem w codziennej pracy.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).
A. Za małe obciążenie na wale silnika.
B. Za duża moc silnika.
C. Za duża temperatura otoczenia.
D. Za mała częstotliwość.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 27

Jaki symbol literowy jest używany w programie kontrolnym dla PLC, który spełnia normy IEC 61131, aby adresować jego fizyczne wyjścia?

A. S
B. I
C. Q
D. R
Odpowiedź "Q" jest poprawna, ponieważ w kontekście programowania sterowników PLC zgodnie z normą IEC 61131-3, litera "Q" jest bezpośrednio przypisana do fizycznych wyjść systemu. Każde wyjście w programie sterującym jest identyfikowane przez ten symbol, co umożliwia jednoznaczne rozróżnienie wyjść od wejść, które są oznaczane literą "I". Przykładowo, jeżeli programujesz układ, który steruje silnikiem elektrycznym, to odpowiednie wyjście do załączenia silnika zostanie oznaczone właśnie literą "Q". Taka konwencja jest nie tylko zgodna z normą, ale również ułatwia czytelność i utrzymanie kodu, co jest kluczowe w profesjonalnych zastosowaniach. Ponadto, posługiwanie się ustalonymi standardami, takimi jak IEC 61131-3, zwiększa interoperacyjność różnych urządzeń i ułatwia współpracę między inżynierami oraz poprawia efektywność projektowania systemów automatyki przemysłowej.

Pytanie 28

Symbolem graficznym przedstawionym na rysunku oznaczany jest łącznik krańcowy ze stykiem

Ilustracja do pytania
A. NO, w stanie wysterowanym.
B. NC, w stanie niewysterowanym.
C. NO, w stanie niewysterowanym.
D. NC, w stanie wysterowanym.
Odpowiedzi wskazujące na stan wysterowany mogą być mylące z kilku powodów. Ogólnie styk oznaczony jako NC (Normally Closed) pokazuje, że w normalnych warunkach (czyli jak nie jest wysterowany) jest zamknięty. A jak jest wysterowany, to NC przełącza na otwarte, dlatego odpowiedzi, które mówią, że NC jest w stanie wysterowanym, są błędne. Z kolei styk NO (Normally Open) działa odwrotnie - w normalnym stanie jest otwarty i zamyka się przy wysterowaniu. Warto zwrócić uwagę na te typowe błędy myślowe, które mogą prowadzić do pomyłek; często uczniowie mylą działanie tych styków, bo nie do końca rozumieją, jak to działa. Standardy jak IEC 60947 pokazują, jak różne typy styków wpływają na działanie obwodu. Niedostateczne zrozumienie podstawowych zasad może prowadzić do złego doboru elementów w projektach automatyki, co może być niebezpieczne dla instalacji. Dlatego dobrze zrozumieć różnice między NC a NO oraz ich praktycznym zastosowaniem.

Pytanie 29

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. DIV
B. MOVE
C. ADD
D. SUB
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 30

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CNC
B. CAE
C. CAD
D. CAM
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby szybko zmienić rozmiary projektowanego elementu w programie CAD, należy zastosować metodę modelowania

A. powierzchniowego
B. bezpośredniego
C. parametrycznego
D. bryłowego
Wybór technik modelowania w oprogramowaniu CAD jest istotny dla efektywności procesu projektowania. Technika modelowania powierzchniowego, chociaż użyteczna w niektórych kontekstach, nie oferuje tej samej elastyczności co modelowanie parametryczne. W przypadku modelowania powierzchniowego, projektant musi ręcznie modyfikować kształty i krzywe, co jest czasochłonne i bardziej podatne na błędy. Ponadto nie pozwala to na automatyczne dostosowanie wymiarów do zmieniających się wymagań, co może prowadzić do konieczności wprowadzania wielu poprawek w różnych częściach modelu. Z kolei podejście bezpośrednie, polegające na modyfikacji modelu w trybie rzeczywistym, również nie zapewnia spójności i efektywności, z jaką można pracować w metodzie parametrycznej. Takie podejście może prowadzić do powstawania niezamierzonych konsekwencji w geometrii modelu, co z kolei wiąże się z ryzykiem błędów w dalszych etapach produkcji. Na koniec, modelowanie bryłowe, choć może być użyteczne, nie oferuje takiej elastyczności w zakresie szybkich zmian wymiarów jak modelowanie parametryczne. Typowym błędem myślowym jest założenie, że wszystkie techniki mogą być stosowane zamiennie, podczas gdy każda z nich ma swoje specyficzne zastosowania i ograniczenia. Używanie nieodpowiedniej techniki w niewłaściwym kontekście może znacząco obniżyć wydajność pracy oraz jakość końcowego produktu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MW102.
B. MD102.
C. MB102
D. ML102.
Wybór odpowiedzi MB102, MW102 lub ML102 jest wynikiem niepełnego zrozumienia zasad adresowania w systemach PLC. Oznaczenie MB odnosi się do markerów bajtowych, które są jedynie 8-bitowymi zmiennymi, co jest niewłaściwe w kontekście pytania, które wymaga wskazania zmiennej 32-bitowej. Zastosowanie MB102 prowadziłoby do błędnych odczytów i zapisu, ponieważ system odczytuje tylko pierwszy bajt, co w przypadku zmiennej 32-bitowej może skutkować utratą danych. Podobnie, MW102 oznacza marker słowny, czyli zmienną 16-bitową; takie podejście również nie zapewnia pełnego dostępu do wszystkich czterech bajtów zmiennej 32-bitowej. Ostatecznie, ML102 nie jest standardowym oznaczeniem w kontekście adresowania pamięci w PLC i nie jest powszechnie używane w tej branży. Te pomyłki mogą wynikać z braku znajomości różnych typów zmiennych w programowaniu PLC, co jest kluczowe dla poprawnej implementacji systemów automatyki. W praktyce, niewłaściwe adresowanie zmiennych może prowadzić do poważnych błędów w działaniu systemu, co naraża na szwank efektywność oraz bezpieczeństwo procesów przemysłowych.

Pytanie 35

Stan wyjścia Q0.0

Ilustracja do pytania
A. zależy wyłącznie od wartości iloczynu wejść I0.1, I2.1
B. zależy od wartości sumy wejść I0.0, I0.1, I2.1
C. jest równy 1
D. jest równy 0
Stan wyjścia Q0.0 jest równy 0, co wynika z elementów logicznych w schemacie. W szczególności, gdy na wejciu I0.0 jest zastosowana bramka NOT, wpływa to na to, że wyjście Q0.0 jest zawsze nieaktywne. Nawet jeśli inne wejścia, takie jak I0.1 i I2.1, są w stanie wysokim (1), bramka NOT na I0.0 zmienia ten stan na niski (0). To fundamentalna zasada działania układów cyfrowych, gdzie bramki logiczne manipulują stanami na podstawie logiki boole’a. W praktyce, zrozumienie działania bramek logicznych jest kluczowe w projektowaniu systemów automatyki i sterowania. Na przykład, w automatycznych systemach sterowania, jeśli chcemy, aby pewne urządzenie działało tylko w określonych warunkach, możemy użyć bramek logicznych do zrealizowania tej logiki. Stosowanie standardów takich jak IEC 61131-3 w programowaniu PLC, gdzie bramki logiczne są podstawowymi komponentami, podkreśla znaczenie zrozumienia tych pojęć w kontekście przemysłowym.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Z jakiego systemu zasilania powinno korzystać urządzenie mechatroniczne, jeśli na schemacie sieci energetycznej zaznaczono symbol 400 V ~ 3/N/PE?

A. TN - S
B. TT
C. TI
D. TN - C
Odpowiedź TN-S jest poprawna, ponieważ układ sieciowy TN-S charakteryzuje się oddzielnym przewodem ochronnym (PE) oraz oddzielnym przewodem neutralnym (N). Oznaczenie 400 V ~ 3/N/PE w pytaniu wskazuje na istnienie trzech faz oraz oddzielny przewód neutralny i ochronny, co jest zgodne z normami bezpieczeństwa i stabilności zasilania dla urządzeń mechatronicznych. W praktyce, zasilanie w układzie TN-S jest rekomendowane dla urządzeń wymagających wysokiego poziomu bezpieczeństwa, takich jak maszyny przemysłowe, gdzie niezawodność zasilania jest kluczowa. Układ ten minimalizuje ryzyko wystąpienia prądów błądzących, co jest istotne w kontekście ochrony ludzi i sprzętu. Dodatkowo, zgodność z normami IEC 60364 oraz różnymi krajowymi regulacjami w zakresie instalacji elektrycznych potwierdza, że TN-S jest preferowanym rozwiązaniem dla nowoczesnych aplikacji mechatronicznych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.