Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 grudnia 2025 18:08
  • Data zakończenia: 7 grudnia 2025 18:23

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką ilość zaprawy należy przygotować do otynkowania sufitu o wymiarach 4,0 m x 5,0 m, jeśli zapotrzebowanie na zaprawę tynkarską wynosi 4,5 kg na 1 m2?

A. 18,0 kg
B. 90,0 kg
C. 22,5 kg
D. 94,5 kg
Aby obliczyć ilość zaprawy potrzebnej do otynkowania sufitu, najpierw musimy obliczyć jego powierzchnię. Sufit o wymiarach 4,0 m x 5,0 m ma powierzchnię równą 20 m². Następnie, wiedząc, że zużycie zaprawy tynkarskiej wynosi 4,5 kg na 1 m², możemy pomnożyć tę wartość przez powierzchnię sufitu. Wzór na obliczenie zaprawy to: 20 m² x 4,5 kg/m² = 90 kg. Takie obliczenia są kluczowe w pracy budowlanej, ponieważ pozwalają na precyzyjne planowanie materiałów, co z kolei wpływa na efektywność i oszczędności w projekcie. W praktyce, znajomość kosztów materiałów i ich ilości pozwala na lepsze zarządzanie budżetem oraz uniknięcie nadmiarowych wydatków na niepotrzebne zakupy. Ważne jest także, aby przy planowaniu zaprawy tynkarskiej uwzględnić dodatkowe czynniki, takie jak rodzaj podłoża czy technika tynkowania, które mogą wpływać na rzeczywiste zużycie zaprawy. W związku z tym, zawsze warto konsultować się z fachowcami w tej dziedzinie oraz korzystać z wytycznych producentów materiałów budowlanych.

Pytanie 2

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. wiszące
B. stojakowe
C. na kozłach
D. ramowe
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowanie na kozłach zapewnia stabilną i bezpieczną platformę roboczą, co jest kluczowe podczas rozbiórki ścianek działowych. Rusztowania tego typu są łatwe do ustawienia i można je łatwo dostosować do różnych wysokości, co czyni je idealnym rozwiązaniem w przypadku prac w pomieszczeniach o zróżnicowanej wysokości. Wysokość rusztowania może być regulowana, co daje możliwość pracy na różnych poziomach bez konieczności przestawiania całej konstrukcji. Przykładem zastosowania rusztowania na kozłach może być praca w biurze, gdzie konieczne jest usunięcie przestarzałych ścianek działowych w celu otwarcia przestrzeni. Dodatkowo, rusztowania na kozłach są zgodne z normą PN-EN 12811, która określa wymagania dotyczące bezpieczeństwa konstrukcji rusztowań. W praktyce, ich użycie minimalizuje ryzyko wypadków związanych z upadkiem podczas pracy na wysokości, co jest kluczowe w branży budowlanej. Użycie takiego rusztowania sprzyja efektywności pracy oraz zwiększa komfort osób pracujących w trudnych warunkach budowlanych.

Pytanie 3

Przed dodaniem płynnych dodatków chemicznych, takich jak przeciwmrozowe, do zaprawy, należy je wcześniej wymieszać

A. z kruszywem
B. ze spoiwem i wodą
C. ze spoiwem
D. z wodą
Dodawanie płynnych dodatków chemicznych, takich jak środki przeciwmrozowe, do zaprawy budowlanej powinno odbywać się poprzez ich wcześniejsze wymieszanie z wodą. Taki proces jest kluczowy, ponieważ pozwala na równomierne rozprowadzenie dodatku w całej objętości wody, co zwiększa skuteczność jego działania. Dodatki chemiczne są często skoncentrowane, a ich bezpośrednie dodawanie do suchych składników, takich jak kruszywo czy spoiwo, może prowadzić do ich nierównomiernego rozkładu, co z kolei może osłabić właściwości zaprawy. W praktyce, na przykład przy przygotowywaniu zaprawy do muru w zimnych warunkach, dokładne wymieszanie dodatku z wodą zapewnia, że wszystkie składniki są odpowiednio aktywowane i zapobiega tworzeniu się lokalnych stref o różnej wytrzymałości. To podejście jest zgodne z zasadami stosowanymi w budownictwie, które podkreślają konieczność dokładnego przygotowania materiałów budowlanych dla zapewnienia ich funkcjonalności oraz trwałości.

Pytanie 4

W jakim wiązaniu wykonano mur przedstawiony na rysunku?

Ilustracja do pytania
A. Krzyżykowym.
B. Wozówkowym.
C. Pospolitym.
D. Główkowym.
W przypadku błędnych odpowiedzi, takich jak pospolite wiązanie, wozówkowe czy główkowe, istnieją istotne różnice, które należy zrozumieć. Pospolite wiązanie cechuje się tym, że cegły są układane jedna na drugiej w linii, co prowadzi do powstawania długich spoin pionowych. Taki sposób układania jest mniej stabilny i może prowadzić do pęknięć w murze, zwłaszcza w przypadku dużych obciążeń. Wiązanie wozówkowe z kolei, gdzie cegły są układane w sposób naprzemienny, również nie zapewnia takiej stabilności jak krzyżykowe, ponieważ nie przeciwdziała rozwojowi pęknięć. Główkowe wiązanie, polegające na układaniu cegieł wzdłuż krawędzi, jest stosowane w specyficznych konstrukcjach, ale nie ma zastosowania w typowych murach, jak te przedstawione na rysunku. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują mylenie różnych typów wiązań oraz niedocenianie znaczenia rozkładu obciążeń w konstrukcjach murowanych. Znajomość i umiejętność rozróżniania tych technik jest kluczowa dla każdego fachowca w dziedzinie budownictwa, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 5

Na podstawie danych zawartych w tablicy z KNR oblicz, ile cementu potrzeba do wykonania 2 m3 zaprawy cementowej marki 5.

KNR 2-02 Zaprawy cementowe

Nakłady na 1 m³ zaprawyTablica1753
Lp.WyszczególnienieJednostki miaryMarka zaprawy i stosunek objętościowy
składników
symbole
eto
Rodzaje zawodów,
materiałów i maszyn
cyfroweliterowe3
1 : 5
5
1 : 4
8
1 : 3
10
1 : 2
abcde01020304
01343Betoniarze - grupa II149r-g2,252,252,252,25
Razem149r-g2,252,252,252,25
201800199Cement 32,5 z dodatkami034t0,2680,3270,4120,539
211800200Ciasto wapienne0600,0520,0640,040
221810099Piasek do zapraw0,601,2901,2501,1901,030
232380899Woda0600,3400,3500,3600,420
7034312Betoniarka 250 l148m-g0,680,680,680,68
A. 327 kg
B. 654 kg
C. 536 kg
D. 824 kg
Aby prawidłowo obliczyć ilość cementu potrzebną do wykonania zaprawy cementowej, istotne jest zrozumienie danych zawartych w tabelach KNR (Katalog Norm Rad) oraz przeliczeń jednostkowych. W przypadku zaprawy marki 5, według tabeli KNR, na 1 m³ zaprawy potrzeba 0,327 t cementu. Przekształcając tony na kilogramy, uzyskujemy 327 kg na m³. W naszym przypadku, gdy zaprawa ma objętość 2 m³, wystarczy pomnożyć 327 kg przez 2, co daje 654 kg. Dokładne obliczenia są kluczowe w praktyce budowlanej, ponieważ niewłaściwe ilości materiałów mogą prowadzić do nieefektywnego wykorzystania surowców, a także negatywnie wpływać na jakość i trwałość konstrukcji. Przestrzeganie tych norm jest zgodne z dobrymi praktykami w inżynierii budowlanej, gdzie precyzyjne obliczenia materiałowe są fundamentalne dla osiągnięcia optymalnych rezultatów w procesach budowlanych.

Pytanie 6

Jaka jest proporcja objętościowa gipsu i piasku w zaprawie gipsowej M 4?

Marka zaprawyZaprawa gipsowa
gips : piasek
Zaprawa gipsowo-wapienna
gips : wapno : piasek
M11: 41: 1,5: 4,5
M21: 31: 1: 3
M31: 21: 0,5: 2
M41: 11: 0,5: 1
A. 1:2
B. 1:4
C. 1:1
D. 1:0,5
Proporcja objętościowa gipsu i piasku w zaprawie gipsowej M4 wynosi 1:1, co oznacza, że na jedną jednostkę objętości gipsu przypada jedna jednostka objętości piasku. Taki dobór składników jest kluczowy dla uzyskania optymalnych właściwości zaprawy, w tym jej wytrzymałości i elastyczności. W praktyce, równomierne połączenie tych dwóch materiałów pozwala na uzyskanie jednorodnej masy, która dobrze przylega do powierzchni oraz zapewnia odpowiednią trwałość. Zgodnie z normami budowlanymi, szczególnie tymi związanymi z wykończeniem wnętrz, zachowanie tej proporcji jest istotne dla efektywności procesu aplikacji oraz trwałości powłok gipsowych. Przykładowo, stosując tę proporcję w renowacji starych budynków, można uzyskać lepsze rezultaty estetyczne i funkcjonalne, niż w przypadku stosowania innych proporcji, co potwierdzają liczne badania i doświadczenia specjalistów w dziedzinie budownictwa.

Pytanie 7

Cena jednego 25-kilogramowego worka suchej zaprawy tynkarskiej wynosi 9 zł. Jaka będzie suma wydatków na zaprawę potrzebną do otynkowania 52 m2ściany, jeśli jeden worek wystarcza na wykonanie tynku na powierzchni 1,3 m2ściany?

A. 360 zł
B. 625 zł
C. 225 zł
D. 468 zł
Koszt zaprawy tynkarskiej obliczamy na podstawie powierzchni ściany, którą chcemy otynkować, oraz wydajności jednego worka. W tym przypadku mamy 52 m² do otynkowania, a jeden worek wystarcza na 1,3 m². Aby obliczyć liczbę worków potrzebnych do pokrycia całej powierzchni, dzielimy 52 m² przez 1,3 m²: 52 / 1,3 ≈ 40 worków. Koszt jednego worka wynosi 9 zł, więc całkowity koszt uzyskujemy mnożąc liczbę worków przez cenę jednego worka: 40 * 9 zł = 360 zł. W praktyce, przy zakupach materiałów budowlanych, zazwyczaj warto uwzględnić dodatkową ilość materiału na ewentualne straty, co również potwierdza, że dobrze jest mieć zapas. Warto także zwrócić uwagę na to, że ceny materiałów budowlanych mogą się różnić w zależności od dostawcy i lokalizacji, dlatego zawsze warto porównać oferty przed zakupem. Standardy budowlane wskazują na konieczność przemyślanej kalkulacji kosztów, co jest kluczowym elementem zarządzania projektem budowlanym.

Pytanie 8

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Keramzyt
B. Żwir
C. Baryt
D. Łupkoporyt
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 9

Pomieszczenie o wymiarach przedstawionych na rysunku i o wysokości 2,5 m należy przedzielić ścianką działową o grubości 1/2 cegły na zaprawie cementowo-wapiennej. Ile m2 ścianki działowej ma wykonać murarz?

Ilustracja do pytania
A. 10,0 m2
B. 5,0 m2
C. 15,0 m2
D. 24,0 m2
Poprawna odpowiedź wynika z zastosowania wzoru na obliczenie powierzchni prostokąta. W tym przypadku wysokość pomieszczenia wynosi 2,5 m, a długość ścianki działowej jest równa 4 m. Powierzchnię ścianki działowej obliczamy jako iloczyn długości i wysokości: 4 m x 2,5 m = 10 m2. Grubość ścianki nie jest istotna przy obliczeniach powierzchni, co jest kluczowym aspektem w pracach budowlanych. Ważne jest, aby podczas planowania i realizacji tego rodzaju zadań brać pod uwagę normy budowlane, które definiują m.in. minimalne wymagania dotyczące grubości i wytrzymałości ścian działowych. Przykładem praktycznego zastosowania wiedzy na temat obliczania powierzchni jest przygotowanie kosztorysu materiałów budowlanych, co jest niezbędne dla uzyskania dokładnych wyliczeń i uniknięcia zbędnych kosztów. To także ważny krok w procesie projektowania, który powinien być zgodny z dobrymi praktykami branżowymi w zakresie budownictwa.

Pytanie 10

W przypadku, gdy nierównomierna praca podłoża prowadzi do rozłączenia ścian konstrukcyjnych, jakie działania można podjąć, aby je ponownie połączyć?

A. zastosowanie ściągów metalowych
B. wypełnienie pęknięć zaczynem cementowym
C. wypełnienie środkami bitumicznymi
D. iniekcję środka wiążącego
Ściągi metalowe to naprawdę świetny sposób na to, żeby naprawić ściany, które się rozdzieliły przez nierówne podłoże. Działają jak mostki między górną a dolną częścią ścian, co fajnie stabilizuje całą konstrukcję. W sytuacjach, gdy budynek osiada na fundamentach, takie ściągi mogą pomóc wzmocnić całość, zwiększając wytrzymałość. Z tego, co widziałem, często używa się stali do ich wykonania, bo jest odporna na różne trudne warunki. W dodatku, według norm budowlanych, jak Eurokod 3, ważne jest, żeby projektować je z myślą o różnych obciążeniach, żeby były skuteczne i bezpieczne. Dobrze dobrane ściągi nie tylko przywracają dawną integralność konstrukcji, ale też pomagają w przyszłości znieść możliwe przemieszczenia. Ich instalacja zazwyczaj nie jest jakoś bardzo inwazyjna, co jest dużym plusem, bo pozwala zachować estetykę budynku.

Pytanie 11

Przy ręcznym sporządzaniu zaprawy cementowo-wapiennej z wykorzystaniem wapna hydratyzowanego, należy łączyć poszczególne składniki w następującym porządku:

A. piasek + cement + woda + wapno
B. piasek + cement + wapno + woda
C. wapno + woda + piasek + cement
D. woda + cement + wapno + piasek
Kolejność składników w przygotowywaniu zaprawy cementowo-wapiennej jest kluczowa, a nieprawidłowe podejścia mogą prowadzić do poważnych problemów. Dodawanie piasku jako pierwszego składnika, jak sugeruje jedna z odpowiedzi, może skutkować niejednolitym wymieszaniem materiałów i obniżeniem jakości zaprawy. Piasek, jako materiał sypki, wymaga dokładnego połączenia z innymi składnikami, co jest trudne do osiągnięcia, jeśli nie są one odpowiednio rozpuszczone w wodzie. Z kolei dodanie wapna przed cementem może zakłócić proces hydratacji, gdyż wapno nie wchodzi w reakcję z wodą tak efektywnie, jak cement. Ważne jest, aby zrozumieć, że cement jest odpowiedzialny za uzyskanie twardości zaprawy, a woda działa jako aktywator tego procesu. Złe proporcje lub niewłaściwa kolejność mogą prowadzić do pęknięć, zmniejszenia przyczepności oraz długoterminowych uszkodzeń strukturalnych. Takie błędy są często wynikiem niepełnej wiedzy na temat chemii materiałów budowlanych, dlatego kluczowe jest przestrzeganie standardów budowlanych oraz praktyk zalecanych przez specjalistów, aby osiągnąć optymalne wyniki w budownictwie. Właściwe przygotowanie zaprawy cementowo-wapiennej wpływa na jej funkcjonalność i trwałość, co ma bezpośredni wpływ na niezawodność całego obiektu budowlanego.

Pytanie 12

Na której ilustracji przedstawiono cegłę, którą należy zastosować do wykonania zewnętrznych ścian nośnych piwnicy?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 3.
Wybór cegły do budowy zewnętrznych ścian nośnych piwnicy to kluczowy element, który wymaga uwzględnienia wielu aspektów technicznych. Cegły przedstawione na ilustracjach 1, 2 oraz 4 mają otwory, co negatywnie wpływa na ich wytrzymałość oraz właściwości izolacyjne. Często popełnianym błędem jest przekonanie, że cegły z otworami są wystarczające do budowy ścian nośnych. W rzeczywistości jednak, otwory w cegłach osłabiają strukturę, co może prowadzić do dewiacji w obliczeniach statycznych oraz do podwyższonego ryzyka uszkodzeń podczas eksploatacji. Ponadto, cegły z otworami mogą być bardziej narażone na wnikanie wilgoci, co jest szczególnie groźne w piwnicach – obszarach, gdzie problem ten występuje najczęściej. Wilgoć może prowadzić do rozwoju pleśni i grzybów, a także poważnych uszkodzeń strukturalnych, co jest niezgodne z dobrymi praktykami budowlanymi. Warto również zauważyć, że przy projektowaniu budynków należy kierować się obowiązującymi normami budowlanymi, które często wskazują na preferencje dotyczące wykorzystania pełnych materiałów budowlanych w konstrukcjach nośnych. Wybór niewłaściwej cegły to nie tylko problem estetyczny, ale przede wszystkim praktyczny, mający wpływ na trwałość i bezpieczeństwo całej budowli.

Pytanie 13

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Mrozoodporność
B. Podatność na ścieranie
C. Wytrzymałość na ściskanie
D. Urabialność
Urabialność świeżo zarobionej zaprawy jest kluczowym parametrem, który determinuje jej łatwość w obróbce i formowaniu. Oznacza to, że zaprawa powinna być odpowiednio plastyczna, co ułatwia jej rozprowadzanie, wypełnianie form oraz przyczepność do podłoża. W praktyce, dobra urabialność wpływa na efektywność pracy budowlanej, pozwalając na łatwiejsze nakładanie zaprawy na różne powierzchnie oraz zapewniając równomierne wypełnienie fug. W standardach branżowych, takich jak PN-EN 998-1, urabialność jest jednym z kluczowych kryteriów oceny jakości zapraw murarskich. Przykładowo, w przypadku zapraw stosowanych do klinkieru czy kamienia naturalnego, konieczne jest, aby ich urabialność była dostosowana do konkretnych warunków aplikacji. W kontekście budownictwa, urabialność ma również wpływ na ostateczną wytrzymałość mechaniczną materiału, ponieważ nieodpowiednio urabiana zaprawa może prowadzić do powstania pustek lub nierówności, co negatywnie wpływa na trwałość konstrukcji.

Pytanie 14

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4920 zł
B. 5412 zł
C. 4400 zł
D. 4000 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 15

Wylicz koszt wymiany pięciu okien o wymiarach 120×150 cm każde, jeśli cena jednostkowa tej usługi to 65,00 zł/m.

A. 1950,00 zł
B. 1560,00 zł
C. 1755,00 zł
D. 1404,00 zł
Żeby obliczyć, ile kosztuje wymiana pięciu okien o wymiarach 120x150 cm, najpierw trzeba policzyć pole jednego okna. To proste – 120 cm razy 150 cm daje nam 18000 cm². Potem przeliczamy to na metry kwadratowe, dzieląc przez 10000, co daje 1,8 m² na jedno okno. Jak już mamy pięć okien, to całkowite pole wychodzi 5 razy 1,8 m², czyli 9 m². Koszt za metr kwadratowy to 65 zł, więc całkowity koszt wymiany tych okien to 9 m² razy 65 zł, co daje 585 zł. Pamiętaj, że zawsze musisz sprawdzić jednostki, żeby uniknąć błędów. To może się wydawać nudne, ale w praktyce wiedza o kosztach materiałów i robocizny jest kluczowa do dobrego planowania budżetu. Precyzyjne obliczenia pomagają lepiej zarządzać finansami w budownictwie.

Pytanie 16

Jeśli w dokumentacji technicznej stwierdzono: "(...) ściany zewnętrzne jednowarstwowe z ceramiki poryzowanej łączonej na pióro i wpust na zaprawie ciepłochronnej (T)(...)", to co to oznacza dla wykonywanego muru w kontekście spoin?

A. pionowe w każdej warstwie
B. poziome oraz pionowe w pierwszej warstwie, a w wyższych jedynie pionowe
C. poziome w każdej warstwie
D. poziome oraz pionowe w miejscach łączenia bloczków
W odpowiedzi wskazano, że w miejscach docięcia bloczków należy wykonać zarówno spoiny poziome, jak i pionowe, co jest zgodne z zasadami budowy murów z ceramiki poryzowanej. W przypadku jednowarstwowych ścian zewnętrznych wykonanych z bloczków łączonych na pióro i wpust, szczególne znaczenie ma prawidłowe wykonanie spoin, aby zapewnić odpowiednią nośność oraz szczelność muru. Spoiny poziome w miejscach docięcia bloczków są niezbędne, aby zminimalizować ryzyko powstawania mostków termicznych, które mogą negatywnie wpływać na efektywność energetyczną budynku. W miejscach, gdzie bloczki są cięte, spoiny pionowe również powinny być wykonane, aby zachować integralność muru oraz zapewnić odpowiednią stabilność konstrukcji. Dobre praktyki budowlane, takie jak te opisane w normie PN-EN 1996, zalecają stosowanie zaprawy ciepłochronnej w takich połączeniach, co dodatkowo poprawia właściwości izolacyjne i akustyczne ściany. Przykładem zastosowania tej zasady może być budowa domów jednorodzinnych, gdzie poprawne wykonanie spoin wpływa na komfort cieplny mieszkańców.

Pytanie 17

Jakie ściany powinny być zbudowane z materiałów charakteryzujących się niskim współczynnikiem przewodzenia ciepła oraz niewielką gęstością pozorną?

A. Fundamentowe
B. Nośne
C. Osłonowe
D. Piwniczne
Ściany osłonowe to w sumie dość ważny element budynków. Dają nam izolację, co oznacza, że chronią wnętrze przed złymi warunkami pogodowymi. Jak to działa? Jeśli zrobimy je z materiałów, które słabo przewodzą ciepło i mają niską gęstość, to jest to świetny sposób na to, żeby nie tracić ciepła zimą i nie nagrzewać się za mocno latem. Wełna mineralna, styropian, różne panele izolacyjne – to przykłady takich materiałów. Używanie ich w ścianach osłonowych to też zgodne z normami budowlanymi, które mówią, jakie powinny być wymagania dotyczące izolacji cieplnej. Moim zdaniem, dobra izolacja może naprawdę obniżyć koszty ogrzewania i poprawić komfort w pomieszczeniach. Warto też wspomnieć, że efektywność izolacji wpływa na klasę energetyczną budynku, co teraz jest dość istotne, patrząc na przepisy o zrównoważonym budownictwie. Dobrze zaprojektowane ściany osłonowe nie tylko poprawiają efektywność energetyczną, ale też wpływają na trwałość i estetykę budynku.

Pytanie 18

Bloczek z betonu komórkowego został przedstawiony na rysunku

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybierając odpowiedzi inne niż A, można napotkać poważne nieporozumienia związane z identyfikacją materiałów budowlanych. Bloczek z betonu komórkowego ma specyficzną strukturę z pustkami, co jest istotnym elementem jego charakterystyki. Wiele osób może błędnie rozpoznać inne materiały, takie jak bloczki z betonu zwykłego lub silikatowego, które mają zupełnie inną budowę. Bloki betonowe posiadają gęstą, jednolitą strukturę, która nie zawiera pustek, co sprawia, że są znacznie cięższe i mają inne zastosowanie w budownictwie. Z kolei silikaty charakteryzują się wyższą wytrzymałością, ale nie oferują tak dobrych właściwości izolacyjnych jak beton komórkowy. Błędy w identyfikacji mogą pochodzić z braku wiedzy na temat procesów produkcyjnych i właściwości materiałów budowlanych. Na przykład, niewłaściwa analiza wizualna prowadzi do wniosku, że materiały o podobnych kolorach lub fakturach mogą być tymi samymi produktami, co jest mylne. Warto pamiętać, że dobór odpowiednich materiałów budowlanych powinien opierać się na ich parametrach technicznych oraz zastosowaniach zgodnych z obowiązującymi normami, takimi jak PN-EN 771-4. Dlatego istotne jest zrozumienie różnic między tymi materiałami oraz ich zastosowania w praktyce budowlanej.

Pytanie 19

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
B. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych
C. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
D. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
W analizie niepoprawnych odpowiedzi dostrzegamy kilka kluczowych błędów w podejściu do kolejności prac rozbiórkowych. Pierwszym z nich jest pomijanie znaczenia demontażu instalacji budowlanych na samym początku. Zignorowanie tego etapu może prowadzić do niebezpieczeństw związanych z prądem elektrycznym lub wyciekami substancji. Każde z wymienionych podejść zaczyna od rozbiórki dachu lub innych elementów konstrukcyjnych, co jest niewłaściwe, gdyż może to stwarzać ryzyko przygniecenia pracowników przez opadające materiały. Kolejnym błędem jest niezrozumienie, że odpowiednia kolejność prac wpływa na efektywność całego procesu. Demontaż okien i drzwi przed rozbiórką dachu czy ścianek działowych spowodowałby, że z wnętrza budynku wydostaje się kurz i zanieczyszczenia, co dodatkowo komplikowałoby prace. W kontekście praktycznym, doświadczenia na budowach pokazują, że niewłaściwa kolejność może prowadzić do niepotrzebnych opóźnień oraz wzrostu kosztów. Kluczowym aspektem w planowaniu rozbiórek jest nie tylko przestrzeganie przepisów prawa budowlanego, ale także wytycznych dotyczących bezpieczeństwa, które jasno określają, jak powinny przebiegać te etapy, aby zminimalizować ryzyko wypadków oraz maksymalizować efektywność pracy zespołu budowlanego.

Pytanie 20

Na rysunku przedstawiono układ 2 warstw cegieł w murze w wiązaniu

Ilustracja do pytania
A. pospolitym.
B. krzyżykowym.
C. polskim.
D. wozówkowym.
Odpowiedź pospolitym jest poprawna, ponieważ w przedstawionym rysunku układ cegieł odzwierciedla charakterystykę wiązania pospolitego. W tym typie wiązania, warstwy cegieł są przesunięte o połowę długości cegły względem warstwy bezpośrednio poniżej, co zapewnia stabilność i wytrzymałość muru. Wiązanie pospolite jest jednym z najczęściej stosowanych w budownictwie, zwłaszcza w murach nośnych, gdzie wymagana jest duża stabilność konstrukcyjna. Praktyczne zastosowanie tego typu wiązania można zaobserwować w wielu budynkach mieszkalnych oraz obiektach użyteczności publicznej, gdzie łączenie cegieł w ten sposób nie tylko wspiera nośność, ale także estetykę elewacji. Dobrym przykładem może być klasyczna architektura, gdzie wiązanie pospolite było wykorzystywane od wieków, a jego trwałość i prostota wykonania przyczyniły się do jego powszechności. Warto również zauważyć, że zgodnie z normami budowlanymi, takie układy powinny być stosowane w szczególności w miejscach narażonych na działanie obciążeń pionowych oraz w konstrukcjach wymagających dużej odporności na drgania i wstrząsy.

Pytanie 21

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 30 zł
B. 45 zł
C. 60 zł
D. 48 zł
Wynagrodzenie za zamurowanie otworu w ścianie działowej wymaga zastosowania odpowiednich wzorów i przemyślenia danych parametrów. Błędne podejście do rozwiązania tego problemu często opiera się na pominięciu kluczowej informacji dotyczącej nakładu robocizny. Niektóre odpowiedzi mogą wynikać z mylnego przeliczenia powierzchni lub z niewłaściwego zastosowania stawek robocizny. Na przykład, jeżeli ktoś obliczyłby wynagrodzenie, mnożąc powierzchnię otworu przez stawkę, bez uwzględnienia nakładu robocizny, przyjąłby błędne założenie, że wynagrodzenie można obliczyć bezpośrednio proporcjonalnie do powierzchni. Tego rodzaju uproszczenia mogą prowadzić do znacznych różnic w oszacowaniach kosztów. Kluczowe jest również zrozumienie, że wynagrodzenie murarza musi opierać się na rzeczywistym czasie pracy potrzebnym do wykonania danej usługi. W praktyce budowlanej, każdy projekt wymaga szczegółowego planowania i dokładnego obliczenia wszystkich związanych z nim kosztów, aby uniknąć nieporozumień i przekroczenia budżetu. Właściwe zarządzanie kosztami robocizny oraz ich odpowiednie oszacowanie są standardem w profesjonalnych projektach budowlanych, co pozwala na lepsze zarządzanie czasem i zasobami oraz minimalizację ryzyka finansowego.

Pytanie 22

Element budowlany przedstawiony na rysunku służy do wykonania

Ilustracja do pytania
A. belki stropowej.
B. podciągu.
C. żebra rozdzielczego.
D. nadproża.
Element budowlany przedstawiony na zdjęciu to nadproże, które odgrywa kluczową rolę w konstrukcjach budowlanych. Jako element prefabrykowany, nadproże jest projektowane w taki sposób, aby przenosić obciążenia z nadległych struktur, takich jak ściany czy stropy, nad otworami okiennymi i drzwiowymi. W praktyce, nadproża często wykonuje się z betonu zbrojonego, co zapewnia im wysoką wytrzymałość na ściskanie oraz zgniatanie. W przypadku budynków mieszkalnych, nadproża są niezbędne do zapewnienia stabilności konstrukcji, a ich rozmieszczenie powinno być zgodne z normami budowlanymi, takimi jak PN-EN 1992-1-1. Dobrze zaprojektowane nadproża pozwalają na efektywne rozkładanie obciążeń, co wpływa na bezpieczeństwo całej budowli. Wybór odpowiednich materiałów oraz wymiarów nadproża jest kluczowy, aby sprostać wymaganiom obliczeniowym oraz normatywnym, co w praktyce oznacza, że nie można ich zastąpić innymi elementami, takimi jak belki stropowe czy podciągi, które pełnią zupełnie inne funkcje w architekturze budowlanej.

Pytanie 23

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 10 mm
B. 12 mm
C. 6 mm
D. 20 mm
Wybór 6 mm, 10 mm czy 12 mm jako dopuszczalnego odchylenia to nietrafiony pomysł. Nie bierze on pod uwagę kluczowych norm budowlanych, które mówią, że dla dwukondygnacyjnych budynków odchylenie musi być co najmniej 20 mm. Dlaczego te odpowiedzi są błędne? Bo wynikają z niezrozumienia wymagań budowlanych i praktycznych aspektów. Choć czasami niewielkie odchylenia mogą być dopuszczalne, w przypadku murów spoinowanych precyzja jest kluczowa, więc te wartości są za małe, żeby zapewnić stabilność na dłużej. Takie myślenie może prowadzić do poważnych problemów w konstrukcji, których naprawa będzie kosztowna. Dlatego każdy, kto pracuje w budownictwie, powinien znać te normy i mieć pojęcie, jak je stosować praktycznie. Większe odchylenia są zgodne z wymaganiami, co pozwala utrzymać jakość budowy. Ważne, żeby zrozumieć te różnice, bo to klucz do dobrze wykonanej pracy.

Pytanie 24

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
B. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
C. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
D. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
Wskazanie organizacji stanowiska roboczego w robót murarskich jako podziału na prostopadłe pasma może prowadzić do poważnych błędów w praktyce budowlanej. W kontekście wykonywania robót murarskich, pasma prostopadłe do muru mogą ograniczać przestrzeń roboczą i powodować chaos w organizacji pracy. W sytuacji, gdy pasmo robocze jest prostopadłe do muru, wykonawcy mogą napotykać trudności z dostępem do materiałów budowlanych i narzędzi, co prowadzi do nieefektywności i opóźnień w realizacji projektu. Dodatkowo, nieprawidłowe zorganizowanie przestrzeni roboczej zwiększa ryzyko wypadków, ponieważ zatory i przeszkody mogą powodować potknięcia lub upadki. Podobnie, koncepcja czterech pasm, w tym pasma narzędziowego, może być myląca, ponieważ nadmiar podziałów w ograniczonej przestrzeni prowadzi do zamieszania i trudności w lokalizacji potrzebnych zasobów. W praktyce budowlanej ważne jest, aby zorganizować stanowisko pracy w sposób, który sprzyja płynności wykonywania robót, a nie utrudnia je. Kluczem do sukcesu jest więc utrzymanie trzech równoległych pasm, co jest powszechnie uznawane za najlepszą praktykę w branży budowlanej.

Pytanie 25

Na ilustracji przedstawiono fragment naroża ściany

Ilustracja do pytania
A. trójwarstwowej.
B. szczelinowej.
C. dwuwarstwowej.
D. jednowarstwowej.
Wybór odpowiedzi związanych z konstrukcją trójwarstwową, dwuwarstwową czy szczelinową jest nieprawidłowy ze względu na charakterystykę przedstawionej ściany. Ściany trójwarstwowe składają się z trzech odrębnych warstw: wewnętrznej, izolacyjnej oraz elewacyjnej, co nie znajduje odzwierciedlenia w widocznych elementach na zdjęciu, gdzie brak jest dodatkowych warstw. Z kolei dwuwarstwowe konstrukcje angażują dwa różne materiały, z których jedna warstwa pełni rolę nośną, a druga izolacyjną, co również nie ma miejsca w analizowanym przypadku. Odpowiedź "szczelinowa" może wprowadzać w błąd, gdyż odnosi się do specyficznych konstrukcji z przestrzeniami powietrznymi, które mają na celu poprawę izolacji akustycznej lub termicznej, co nie jest zgodne z przedstawionym materiałem. Te błędne odpowiedzi wskazują na typowe nieporozumienia związane z różnicowaniem typów konstrukcji ścian, gdzie kluczem jest zrozumienie, że jednowarstwowe ściany wznoszone z odpowiednich materiałów mogą spełniać zarówno zadania nośne, jak i izolacyjne, eliminując konieczność stosowania bardziej skomplikowanych rozwiązań w wielu zastosowaniach budowlanych.

Pytanie 26

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 1 680 zł
B. 3 600 zł
C. 1 800 zł
D. 2 520 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 27

Przed przystąpieniem do naprawy tynku, który jest odparzony i silnie zawilgocony, co należy zrobić?

A. pokryć całą powierzchnię tynku preparatem hydrofobowym
B. skuć tynk w miejscach zawilgoconych oraz odparzonych i osuszyć mur
C. pokryć całą powierzchnię tynku mleczkiem cementowym
D. osuszyć miejsca zawilgocone oraz odparzone i zagruntować je emulsją gruntującą
Zastosowanie preparatów hydrofobowych na całej powierzchni tynku jest nieodpowiednią reakcją na problem zawilgocenia i odparzania. Tego typu środki są projektowane do zabezpieczania od zewnątrz, jednak w przypadku już uszkodzonego tynku nie zaadoptują się one do struktury, co może prowadzić do dalszych uszkodzeń. Hydrofobizacja nie usunie istniejącej wilgoci, a jedynie zatrzyma ją wewnątrz, co zwiększa ryzyko powstawania pleśni i grzybów. Z kolei pokrycie tynku mleczkiem cementowym może wydawać się rozwiązaniem, ale również nie rozwiązuje problemu wilgoci, a właściwie może prowadzić do zaparcia wilgoci w murze, co w dłuższej perspektywie prowadzi do zniszczenia struktury tynku. Dodatkowo, osuszanie miejsc zawilgoconych oraz odparzonych i gruntowanie ich emulsją gruntującą jest niewłaściwe, jeśli nie zostanie przeprowadzone skucie tynku. Tego typu podejście pomija kluczowy krok w procesie naprawy, jakim jest usunięcie uszkodzonej warstwy, a tym samym zwiększa ryzyko niepowodzenia całej reperacji. W praktyce budowlanej nie ma efektywnego sposobu na naprawę tynku bez wcześniejszego usunięcia jego zniszczonej warstwy.

Pytanie 28

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 10 - 17 mm
B. 6 - 9 mm
C. 3 - 5 mm
D. 15 - 20 mm
Spoiny wsporne w murach tradycyjnych z cegły ceramicznej powinny mieć grubość od 10 do 17 mm, co wynika z różnych standardów budowlanych oraz praktycznych aspektów konstrukcyjnych. Grubość spoiny ma kluczowe znaczenie dla właściwego łączenia elementów murarskich, co wpływa na stabilność i wytrzymałość całej konstrukcji. Między innymi, każda spoiny powinny być wystarczająco szerokie, aby umożliwić odpowiednią aplikację zaprawy, co z kolei zapewnia solidne połączenie pomiędzy cegłami. W praktyce, zbyt wąskie spoiny mogą prowadzić do nieprawidłowego wypełnienia, co skutkuje słabszą jakością murów oraz zwiększoną podatnością na uszkodzenia. Standardy branżowe, takie jak PN-EN 1996-1-1 dotyczący projektowania murów, wskazują, że optymalna grubość spoiny wspornych zapewnia nie tylko funkcjonalność, ale także estetykę, co jest istotne w kontekście końcowego wykończenia budynków. W związku z tym, należy przestrzegać zalecanych wartości, aby uzyskać odpowiednią jakość i trwałość konstrukcji.

Pytanie 29

Rzeczywiste wymiary pomieszczenia biurowego wynoszą 8 x 5 m. Jakie będą jego wymiary na rysunku sporządzonym w skali 1:200?

A. 40,0 x 25,0 cm
B. 16,0 x 10,0 cm
C. 4,0 x 2,5 cm
D. 8,0 x 5,0 cm
Aby obliczyć wymiary pomieszczenia biurowego w skali 1:200, należy najpierw zrozumieć, że skala ta oznacza, iż 1 jednostka na rysunku odpowiada 200 jednostkom w rzeczywistości. Wymiary pomieszczenia wynoszą 8 m x 5 m, co w centymetrach daje 800 cm x 500 cm. Przy zastosowaniu skali 1:200, obliczamy wymiary na rysunku, dzieląc rzeczywiste wymiary przez 200. Tak więc: 800 cm / 200 = 4 cm, a 500 cm / 200 = 2,5 cm. Zatem wymiary przedstawione na rysunku wynoszą 4,0 x 2,5 cm. W praktyce, umiejętność przeliczania wymiarów na rysunkach technicznych jest kluczowa w architekturze, inżynierii i projektowaniu wnętrz. Przy projektowaniu biur, poprawne odwzorowanie wymiarów budynków w rysunkach technicznych zapewnia dokładność i zgodność z rzeczywistością, co jest zgodne z normami branżowymi i wspomaga procesy konstrukcyjne oraz weryfikację planów budowlanych.

Pytanie 30

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany nośnej wewnętrznej w pokoju, jeżeli wysokość pomieszczenia wynosi 2,90 m.

Ilustracja do pytania
A. 9,42 m2
B. 10,49 m2
C. 11,02 m2
D. 9,22 m2
Aby obliczyć powierzchnię ściany nośnej wewnętrznej, kluczowe jest zrozumienie, że powierzchnia ta jest wynikiem pomnożenia długości ściany przez jej wysokość. W tym przypadku, długość ściany wynosi 3,80 m, a wysokość pomieszczenia to 2,90 m. Stosując wzór: powierzchnia = długość × wysokość, otrzymujemy: 3,80 m × 2,90 m = 11,02 m2, co jest wartością prawidłową. W kontekście architektonicznym, znajomość takich obliczeń jest niezbędna nie tylko dla estetyki, ale także dla stabilności i efektywności energetycznej budynków. W obliczeniach tych uwzględnia się również materiały budowlane oraz ich właściwości, co jest istotne podczas planowania prac budowlanych. Należy pamiętać, że poprawne pomiary oraz obliczenia wpływają na późniejsze etapy budowy, takie jak wykończenie wnętrz czy montaż instalacji. Warto również zwrócić uwagę, że zgodność z normami budowlanymi i standardami, takimi jak PN-EN 1991-1-1, jest niezbędna dla zapewnienia bezpieczeństwa i trwałości konstrukcji.

Pytanie 31

Ile maksymalnie godzin od momentu przygotowania należy wykorzystać zaprawę cementowo-wapienną?

A. 5 godzin
B. 8 godzin
C. 3 godzin
D. 2 godzin
Odpowiedź '3 godzin' jest prawidłowa, ponieważ zaprawa cementowo-wapienna powinna być zużyta w ciągu maksymalnie trzech godzin od momentu jej przygotowania. W tym czasie zachowuje odpowiednią konsystencję oraz właściwości robocze, co jest kluczowe dla osiągnięcia wymaganej wytrzymałości i trwałości. Po upływie tego terminu zaprawa zaczyna twardnieć, co skutkuje utratą zdolności do dalszego formowania i aplikacji. W praktyce, w przypadku wykonywania tynków, murów czy wypełnień, zachowanie tego czasu ma kluczowe znaczenie dla jakości finalnego produktu. Warto również pamiętać, że w warunkach wysokiej temperatury lub przy intensywnej wentylacji czas ten może być skrócony, dlatego zaleca się bieżące monitorowanie warunków pracy. Dobrą praktyką jest przygotowanie mniejszych ilości zaprawy, które można wykorzystać w pełni w wyznaczonym czasie, co minimalizuje straty materiałowe i zapewnia lepsze wyniki zastosowania. W zgodzie z normami PN-EN 998-1, które regulują zastosowanie zapraw murarskich, należy ściśle przestrzegać zalecanych terminów wykorzystania materiałów budowlanych.

Pytanie 32

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. 15o - 20o
B. w dowolnej
C. 25o - 30o
D. < 10o
Odpowiedź 15o - 20o jest uważana za optymalną temperaturę do prowadzenia robót tynkarskich, ponieważ w tym zakresie można zapewnić odpowiednią plastyczność zaprawy tynkarskiej. W zbyt niskich temperaturach, poniżej 10o, proces wiązania zaprawy jest spowolniony, co może prowadzić do problemów z przyczepnością oraz pęknięć. Z kolei przy temperaturach przekraczających 20o, zwłaszcza w zakresie 25o - 30o, woda w zaprawie może zbyt szybko parować, co skutkuje niepełnym wiązaniem i osłabieniem struktury tynku. Dobry praktyką jest także monitorowanie wilgotności powietrza oraz stosowanie odpowiednich dodatków, które mogą poprawić właściwości zaprawy w trudnych warunkach atmosferycznych. Warto również pamiętać, że zgodnie z normą PN-B-10101, minimalne i maksymalne temperatury dla robót tynkarskich powinny być przestrzegane, aby zapewnić długotrwałość i jakość wykonania.

Pytanie 33

Na podstawie przedstawionego rysunku oblicz powierzchnię dłuższej ściany bez otworów okiennych i drzwiowych w pokoju 3 zakładając, że wysokość pomieszczenia wynosi 3,00 m.

Ilustracja do pytania
A. 5,16 m2
B. 8,55 m2
C. 48,63 m2
D. 17,07 m2
Powierzchnia dłuższej ściany bez otworów okiennych i drzwiowych w pokoju 3 wynosi 17,07 m2, co możemy obliczyć, mnożąc szerokość ściany (5,69 m) przez wysokość pomieszczenia (3,00 m). Tego typu obliczenia są kluczowe w architekturze i budownictwie, gdzie precyzyjne określenie powierzchni pomaga w planowaniu i wykonaniu różnych prac, takich jak malowanie, tapetowanie czy instalacja materiałów wykończeniowych. Ustalanie powierzchni ścian jest również istotne przy obliczaniu ilości materiałów potrzebnych do izolacji czy montażu systemów wentylacyjnych. Вartości te powinny być zawsze zaokrąglane do dwóch miejsc po przecinku, aby zachować spójność w dokumentacji budowlanej. Zastosowanie standardów, takich jak PN-EN 1991-1-1, które dotyczą obliczeń budowlanych, oraz ściśle określone normy dotyczące materiałów budowlanych, pozwala na skuteczną kontrolę jakości i bezpieczeństwa budowli. W praktyce, znajomość zasad obliczania powierzchni pomieszczeń jest niezbędna dla architektów oraz projektantów wnętrz, co umożliwia im efektywne zarządzanie przestrzenią.

Pytanie 34

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ścian działowych przedstawionego na rysunku pomieszczenia, jeżeli jego wysokość wynosi 2,8 m.

Ilustracja do pytania
A. 19,54 m2
B. 14,46 m2
C. 12,04 m2
D. 10,44 m2
Poprawna odpowiedź wynika z właściwego zastosowania zasad przedmiarowania robót murarskich, które nakazują odjąć od powierzchni ścian działowych powierzchnię otworów większych od 0,5 m². W tym przypadku, aby uzyskać całkowitą powierzchnię ścian, należy najpierw obliczyć powierzchnię każdej z nich, mnożąc ich długość przez wysokość pomieszczenia, która wynosi 2,8 m. Warto pamiętać, że standardowe wytyczne dotyczące przedmiarowania podkreślają konieczność uwzględnienia wszystkich otworów w ścianach, co pozwala na dokładniejsze oszacowanie ilości materiałów budowlanych potrzebnych do realizacji projektu. W praktyce, taka kalkulacja jest niezbędna nie tylko dla określenia kosztów robót, ale także dla zminimalizowania odpadów materiałowych. Umiejętność dokładnego przedmiarowania jest kluczowa w branży budowlanej i wpływa na efektywność procesów budowlanych.

Pytanie 35

Do wyrównywania powierzchni tynku służy narzędzie przedstawione na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź B jest strzałem w dziesiątkę, bo narzędzie na zdjęciu to właśnie szpachla tynkarska. Bez niej ciężko wyobrazić sobie wyrównywanie tynku. Dzięki szpachli da się naprawdę fajnie nałożyć i wygładzić tynk, co jest mega ważne, jeśli chce się, żeby ściany wyglądały ładnie. Używając szpachli, można uzyskać gładką powierzchnię, co później ma duże znaczenie przy malowaniu albo tapetowaniu. W ekipach budowlanych często korzysta się z szpachek o różnych szerokościach, bo to zależy od tego, co trzeba wyrównać. I jeszcze jedno – obsługa szpachli wymaga trochę wprawy i znajomości technik tynkarskich, co jest super ważne w budowlance. Szpachla jest też przydatna do drobnych napraw, więc naprawdę jest to narzędzie, które warto mieć zawsze pod ręką.

Pytanie 36

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284
A. 160,5 kg cementu, 1,410 m3 piasku
B. 145,5 kg cementu, 1,410 m3 piasku
C. 186,0 kg cementu, 1,425 m3 piasku
D. 107,0 kg cementu, 1,425 m3 piasku
Odpowiedź "160,5 kg cementu, 1,410 m3 piasku" jest prawidłowa, ponieważ została obliczona zgodnie z proporcjami podanymi w tabeli dla zaprawy cementowo-wapiennej M2. W celu określenia ilości cementu i piasku potrzebnych do wykonania 1,5 m3 zaprawy, należy najpierw ustalić wartości dla 1 m3, a następnie przemnożyć je przez 1,5. Dla zaprawy M2 standardowe proporcje to 107 kg cementu na 1 m3 i 0,94 m3 piasku. Przemnażając te wartości przez 1,5, uzyskujemy 160,5 kg cementu oraz 1,410 m3 piasku. Tego typu obliczenia są fundamentalne w budownictwie, gdzie precyzyjne określenie proporcji materiałów ma kluczowe znaczenie dla jakości i trwałości konstrukcji. Stosowanie odpowiednich norm, takich jak PN-EN 197-1, gwarantuje, że zaprawa osiągnie wymagane właściwości mechaniczne i trwałość. W praktyce, dokładne obliczenia i właściwe proporcje składników wpływają na zachowanie zaprawy w różnych warunkach atmosferycznych oraz jej odporność na czynniki zewnętrzne. Istotne jest również, aby przed rozpoczęciem prac budowlanych zasięgnąć porady specjalistów, którzy mogą wskazać właściwe proporcje i metody mieszania.

Pytanie 37

Który z elementów budynku przedstawiono na zdjęciu?

Ilustracja do pytania
A. Nadproże.
B. Gzyms.
C. Cokół.
D. Wieniec.
Gzyms to naprawdę ważny element w architekturze. W sumie nie tylko ładnie wygląda, ale ma też swoje konkretne zadania. Na tym zdjęciu widać gzyms, który jest takim poziomym paskiem na krawędzi ściany. Może mieć różne kształty, na przykład prostokątne albo bardziej krągłe. Gzymsy nie tylko zdobią budynki, ale też chronią dolną część ściany przed deszczem, co jest kluczowe, żeby budynek był trwały. Często można je zobaczyć w starych i nowoczesnych budynkach, bo dodają charakteru. Ważne jest, żeby robić je z materiałów odpornych na pogodę, a projektując gzymsy, trzeba też myśleć o tym, jak będą chronić przed wodą. W architekturze gzymsy też wpływają na proporcje budynku i to, jak go postrzegamy - co ma znaczenie zwłaszcza w miastach.

Pytanie 38

Oblicz powierzchnię ściany przedstawionej na rysunku, jeżeli zgodnie z zasadami przedmiarowania od powierzchni ścian należy odjąć powierzchnię otworów większych od 0,5 m2.

Ilustracja do pytania
A. 22,40 m2
B. 22,04 m2
C. 18,55 m2
D. 18,91 m2
Poprawna odpowiedź to 18,91 m2, co wynika z zastosowania właściwych zasad przedmiarowania powierzchni ścian. Podczas obliczeń należy uwzględnić całkowitą powierzchnię ściany, a następnie odjąć powierzchnię otworów, które są większe niż 0,5 m². W praktyce, aby uzyskać dokładne wyniki, kluczowe jest precyzyjne zmierzenie wszystkich otworów oraz ich uwzględnienie w obliczeniach. Przykładowo, jeśli ściana ma wymiar 25 m2, a dwa otwory o powierzchni 3 m2 i 2 m2, to łączna powierzchnia otworów wynosi 5 m2, co prowadzi do obliczenia 25 m2 - 5 m2 = 20 m2. Jak widać, kluczowe jest zrozumienie, które otwory należy odjąć. Standardy branżowe, takie jak PN-ISO 6707-1, podkreślają znaczenie precyzyjnego pomiaru w procesie przedmiarowania, co ma bezpośredni wpływ na koszty budowy oraz efektywność realizacji projektu.

Pytanie 39

Z ilustracji wynika, że szerokość filarka międzyokiennego wynosi 103 cm. Ile pełnych cegieł zmieści się na szerokości filarka?

A. 5
B. 4
C. 3
D. 2
Odpowiedź 4 to strzał w dziesiątkę, bo szerokość filarka, czyli 103 cm, dobrze się dzieli przez standardową szerokość cegły, która wynosi 25 cm. Jak podzielisz 103 przez 25, to dostajesz 4,12. To znaczy, że w filarze zmieści się 4 całe cegły, a te pozostałe 3 cm to za mało na kolejną. W budownictwie używamy całych cegieł, bo to stabilniejsze i praktyczniejsze. Pamiętaj też, że przy projektowaniu musimy myśleć o spoinach i możliwych stratach materiałowych, bo to wpływa na to, ile cegieł naprawdę potrzebujemy. Zrozumienie tych zasad jest naprawdę ważne, jeśli chcesz dobrze planować prace budowlane.

Pytanie 40

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. ognioodporność ściany
B. izolacyjność termiczną ściany
C. izolacyjność akustyczną
D. grubość ściany
Izolacyjność akustyczna, grubość ściany oraz ognioodporność to istotne aspekty konstrukcyjne, jednak nie mają bezpośredniego związku z zastosowaniem szczelin powietrznych w ścianach murowanych. Odpowiedzi sugerujące zwiększenie izolacyjności akustycznej nie uwzględniają faktu, że szczeliny powietrzne mogą działać negatywnie na właściwości akustyczne, ponieważ mogą stać się ścieżkami dla dźwięków. W kontekście grubości ściany, szczeliny powietrzne nie zwiększają rzeczywistej grubości muru, a ich zadaniem jest poprawa izolacji termicznej, co ma na celu ograniczenie kosztów ogrzewania. Ognioodporność, z kolei, jest związana z materiałami budowlanymi i ich właściwościami w zakresie odporności na wysoką temperaturę. Używanie szczelin powietrznych do zapewnienia ognioodporności jest niewłaściwym podejściem, ponieważ ognioodporność zależy przede wszystkim od jakości użytych materiałów oraz ich konstrukcji, a nie od obecności wolnej przestrzeni powietrznej. Często błędne podejście do tych zagadnień wynika z braku zrozumienia podstawowych zasad fizyki budowli oraz właściwości materiałów budowlanych. Dobrze zaprojektowane ściany murowane powinny być potwierdzone analizami technicznymi i spełniać aktualne normy budowlane, aby zapewnić odpowiednią izolacyjność termiczną, akustyczną i ognioodporność.