Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 13:40
  • Data zakończenia: 8 grudnia 2025 13:44

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie rysunku określ wymiar, który opisuje wysokość zawieszenia opraw oświetleniowych w sali lekcyjnej.

Ilustracja do pytania
A. Wymiar d
B. Wymiar b
C. Wymiar a
D. Wymiar c

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiar b jest kluczowy przy określaniu wysokości zawieszenia opraw oświetleniowych w sali lekcyjnej, ponieważ odnosi się do pionowego pomiaru od sufitu do oprawy. W kontekście planowania przestrzeni edukacyjnych, takie wysokości powinny być zgodne z normami bezpieczeństwa oraz ergonomii, aby zapewnić komfort i efektywność nauczania. Wysokość zawieszenia opraw oświetleniowych wpływa na równomierne oświetlenie całej przestrzeni, co jest istotne dla jakości procesu nauczania. Zgodnie z zaleceniami normy PN-EN 12464-1, w klasach szkolnych poziom oświetlenia powinien wynosić minimum 300 luksów na powierzchni roboczej, co można osiągnąć tylko poprzez odpowiednie rozmieszczenie i zawieszenie źródeł światła. Prawidłowe zaplanowanie wysokości opraw oświetleniowych pozwala także na minimalizację olśnień oraz cieni, co jest istotne dla uczniów, szczególnie podczas korzystania z materiałów wizualnych. Przykładowo, w przestrzeniach, gdzie uczniowie pracują przy biurkach, oprawy powinny być umieszczone na wysokości nieprzekraczającej 2,8 metra, by zapewnić optymalne warunki do nauki.

Pytanie 2

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do transformatorów
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do wzmacniaczy maszynowych
D. Do prądnic tachometrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 3

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 6 mm2
B. 10 mm2
C. 4 mm2
D. 16 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 4

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Krzyżowy
B. Świecznikowy
C. Schodowy
D. Dwubiegunowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 5

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
B. Luźne połączenie w listwie neutralnej
C. Zbyt duży przekrój uszkodzonego przewodu
D. Zbyt duża moc urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 6

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. jest uszkodzone.
B. działa prawidłowo.
C. występuje zwarcie między zwojami.
D. izolacja jest uszkodzona.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 7

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek tulejkowych.
B. do ściągania izolacji z żył przewodów.
C. do zaciskania końcówek oczkowych.
D. do docinania przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 8

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
B. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 9

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. pomiaru parametrów oświetlenia.
B. lokalizacji przewodów w instalacji elektrycznej.
C. bezdotykowego pomiaru rezystancji przewodów.
D. sprawdzania ciągłości połączeń w instalacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 10

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Oprawkę źródła światła.
B. Wkładkę kalibrową.
C. Gniazdo zapłonnika.
D. Wkładkę topikową bezpiecznika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 11

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 1 rok
B. 5 lat
C. 2 lata
D. 10 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 12

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika będzie w bezruchu.
B. silnik zostanie zasilony prądem przeciwnym.
C. silnik znajdzie się w stanie jałowym.
D. wirnik silnika zostanie dogoniony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 13

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. wyłącznika różnicowoprądowego.
B. programowalnego przełącznika czasowego.
C. łącznika zmierzchowego.
D. wyłącznika schodowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest prawidłowa, ponieważ schemat przedstawiony na rysunku to typowy wyłącznik różnicowoprądowy (RCD). RCD to urządzenie, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Kluczowymi elementami, które potwierdzają tę identyfikację, są przewody oznaczone jako L (fazowy) i N (neutralny), które są niezbędne do prawidłowego działania wyłącznika. Dodatkowo, przycisk testowy, oznaczony jako „T”, umożliwia użytkownikowi regularne sprawdzanie funkcjonalności RCD, co jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa elektrycznego. W momencie, gdy różnica prądów między przewodami L a N przekracza określoną wartość, wyłącznik automatycznie odłącza zasilanie, co zapobiega potencjalnym zagrożeniom. Znajomość działania i zastosowania wyłączników różnicowoprądowych jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych, szczególnie w miejscach o dużym ryzyku, jak łazienki czy kuchnie, gdzie kontakt z wodą zwiększa ryzyko porażenia prądem.

Pytanie 14

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. amperomierzem
B. watomierzem
C. omomierzem
D. woltomierzem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 15

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
D. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDYt 3×2,5 w miejsce ADYt 3×2,5 prowadzi do wzrostu wartości prądu dopuszczalnego długotrwale oraz poprawy rezystancji izolacji. Przewód YDYt charakteryzuje się lepszymi parametrami technicznymi, w tym wyższą dopuszczalną temperaturą pracy oraz lepszą odpornością na czynniki zewnętrzne, co zwiększa jego bezpieczeństwo i trwałość. Standardy PN-IEC 60228 oraz PN-EN 50525 wskazują, że przewody YDYt mają lepszą wydajność w warunkach długotrwałego obciążenia, co pozwala na ich zastosowanie w instalacjach, gdzie przewidywane są większe obciążenia prądowe. Przykładem mogą być instalacje w budynkach mieszkalnych lub przemysłowych, gdzie przewody te mogą być używane do zasilania urządzeń wymagających większych mocy. Dodatkowo, poprawa rezystancji izolacji wpływa na zmniejszenie ryzyka wystąpienia zwarć oraz uszkodzeń instalacji, co jest kluczowe w kontekście bezpieczeństwa użytkowania. Warto również zauważyć, że wyższa jakość przewodów wpływa na ich żywotność oraz zmniejsza koszty eksploatacyjne związane z potrzebą częstych napraw lub wymiany.

Pytanie 16

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Zmieniając ustawienie dźwigni "ON-OFF"
B. Sprawdzając napięcie oraz prąd wyłącznika
C. Tworząc zwarcie w obwodzie zabezpieczonym
D. Naciskając przycisk "TEST"

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 17

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Łączy styki.
B. Reaguje na zwarcia.
C. Gasi łuk elektryczny.
D. Reaguje na przeciążenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 18

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
B. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
C. nałożyć warstwę cyny na końcówki przewodów
D. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca przyłączenia poszczególnych przewodów do właściwych zacisków gniazda jest poprawna, ponieważ jest to kluczowy krok w procesie instalacji elektrycznej. W instalacjach elektrycznych podtynkowych, szczególnie w sieci TN-S, ważne jest, aby przewody były podłączone do odpowiednich zacisków, co zapewnia zarówno bezpieczeństwo, jak i prawidłowe funkcjonowanie obwodu. Przyłączenie przewodów do właściwych zacisków gwarantuje, że neutralny przewód nie będzie pomylony z przewodem fazowym, co mogłoby prowadzić do zwarć lub uszkodzeń sprzętu. Dobór gniazda musi być zgodny z normami, takimi jak PN-EN 60309, które określają wymagania dotyczące gniazd wtykowych. Ponadto, podczas instalacji warto zwrócić uwagę na kolorystykę przewodów zgodnie z normami, co ułatwia identyfikację ich funkcji. W praktyce, prawidłowe podłączenie przewodów zwiększa bezpieczeństwo użytkowania instalacji i minimalizuje ryzyko awarii.

Pytanie 19

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 130 mA
B. 170 mA
C. 208 mA
D. 106 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 20

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. GU10
C. MR11
D. G9
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 21

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Pomiar rezystancji izolacji
D. Weryfikacja braku zwarć międzyzwojowych
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 22

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. G9
B. MR11
C. E14
D. GU10
Odpowiedzi G9, MR11 oraz E14 są nieprawidłowe, gdyż nie odpowiadają specyfikacji oprawki widocznej na ilustracji. Trzonek G9, mimo że również jest popularny w zastosowaniach oświetleniowych, charakteryzuje się inną konstrukcją, zwykle ze złączem typu wtykowego, które nie posiada bocznych wypustek. To prowadzi do błędnego wnioskowania, ponieważ G9 często bywa mylony z GU10, ale nie można ich zamieniać, ze względu na różnice w montażu i wymiarach. Z kolei MR11 to rodzaj trzonka, który jest mniejszy i stosowany w lampach o niskim napięciu, w tym w halogenowych reflektorach, co także nie ma zastosowania w przypadku oprawki przedstawionej na zdjęciu. Odpowiedź E14 wskazuje na trzonek o średnicy 14 mm, który jest szeroko stosowany w lampach i żarówkach, jednak jego konstrukcja nie pasuje do obiektu widocznego na ilustracji. Użytkownicy często popełniają błąd przy wyborze odpowiedzi, myśląc, że wszystkie trzonki są wymienne, co jest nieprawdziwe. Istnieją specyficzne normy dotyczące różnych typów trzonków, które są kluczowe dla zapewnienia poprawnego działania systemów oświetleniowych, dlatego ważne jest, aby znać różnice między tymi typami, aby skutecznie dobierać komponenty oświetleniowe.

Pytanie 23

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
B. Szczypce długie, nóż monterski, szczypce czołowe
C. Nóż monterski, szczypce boczne, zestaw wkrętaków
D. Nóż monterski, szczypce boczne, szczypce monterskie
Wybór innych zestawów narzędzi może prowadzić do trudności w prawidłowym wykonaniu instalacji elektrycznych. Na przykład, zestaw zawierający kleszcze długie, nóż monterski i kleszcze czołowe nie zapewnia wystarczającej funkcjonalności. Kleszcze długie są przydatne do chwytania i wyginania przewodów, ale nie są optymalne do precyzyjnego cięcia lub usuwania izolacji. Dodatkowo, kleszcze czołowe są bardziej przeznaczone do chwytania i manipulacji w trudnodostępnych miejscach, co nie jest kluczowe przy wykonywaniu połączeń w puszkach rozgałęźnych. Zestaw z kompletem wkrętaków, kleszczami czołowymi i prasą ręczną również nie odpowiada wymaganiom, ponieważ prasa ręczna jest narzędziem do zaciskania złączek, które nie są typowe dla połączeń typu DY w instalacjach elektrycznych. W przypadku zestawu z nożem monterskim, szczypcami bocznymi i kleszczami monterskimi, chociaż niektóre narzędzia są przydatne, to jednak brak wkrętaków sprawia, że nie można prawidłowo wykonać połączenia przy użyciu złączek śrubowych, co jest kluczowe dla bezpieczeństwa. Prawidłowe połączenia elektryczne wymagają nie tylko odpowiednich narzędzi, ale także stosowania standardów i procedur, które zapewniają bezpieczeństwo oraz trwałość instalacji. Dlatego każda decyzja dotycząca doboru narzędzi musi być dokładnie przemyślana, aby uniknąć niebezpiecznych sytuacji w przyszłości.

Pytanie 24

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 7 i 8
B. 1 i 7
C. 4 i 8
D. 1 i 4
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 25

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przepięcie
B. Zwarcie bezimpedancyjne
C. Przeciążenie
D. Prąd błądzący

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 26

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 27

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Wiertarka, wiertło, piła do cięcia, wkrętak.
C. Zestaw kluczy, wkrętarka, wiertło, przecinak.
D. Piła do cięcia, przecinak, młotek.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 28

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. analogowy omomierz
B. amperomierz oraz woltomierz
C. watomierz oraz amperomierz
D. cyfrowy watomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 29

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie probiercze i prąd znamionowy.
B. Napięcie probiercze i prąd zadziałania.
C. Napięcie znamionowe i prąd znamionowy.
D. Napięcie znamionowe i prąd zadziałania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na tym urządzeniu widzimy oznaczenia "230V AC" i "16A 250VAC cosφ=1", co jasno pokazuje jakich mamy do czynienia z parametrami. Napięcie 230V oznacza, że jest ono przystosowane do standardowego zasilania w Europie. Z kolei prąd 16A przy 250V AC pokazuje maksymalny prąd, który urządzenie może bezpiecznie obsłużyć. Zrozumienie tych wartości jest mega ważne, żeby zapewnić bezpieczeństwo i efektywność w pracy urządzeń elektrycznych. W praktyce znajomość tych danych pozwala nam na dobór odpowiednich zabezpieczeń, jak na przykład wyłączniki nadprądowe dopasowane do tych wartości. Dodatkowo, wiedza o współczynniku mocy (cosφ=1) mówi nam, że urządzenie działa w idealnych warunkach, bez strat energii. Spełnianie norm takich jak IEC 60364 jest kluczowe, bo zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 30

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 31

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,0 m
B. 2,0 m
C. 2,5 m
D. 1,5 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 32

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C faktycznie jest trafna, bo symbol podany w tej opcji świetnie pokazuje, jak powinny być prowadzone przewody w listwie przypodłogowej, co można zobaczyć na zdjęciu. Wiele instalacji elektrycznych korzysta z listew przypodłogowych, bo to nie tylko estetyczne, ale też bezpieczne. Dzięki temu przewody są dobrze schowane i nie wystają na wierzch, co na pewno jest lepsze w projektowaniu wnętrz. Z tego, co wiem, normy IEC również zalecają używanie takich kanałów kablowych, jak w symbolu C, aby zapewnić bezpieczeństwo i przestrzegać przepisów budowlanych. Takie rozwiązanie można spotkać w biurach, mieszkaniach, a nawet w miejscach publicznych, gdzie estetyka i bezpieczeństwo są bardzo ważne.

Pytanie 33

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi C jest poprawny, ponieważ przedstawiony na rysunku przewód czterordzeniowy jest typowym rozwiązaniem stosowanym do tworzenia napowietrznych przyłączy elektroenergetycznych do budynków mieszkalnych. Tego typu przewody składają się z trzech przewodów fazowych oraz jednego przewodu neutralnego (N), co pozwala na właściwe zasilanie budynków w energię elektryczną. W praktyce, przewody te charakteryzują się odpowiednią izolacją oraz wytrzymałością mechaniczną, co jest niezbędne w trudnych warunkach atmosferycznych. W Polsce, zgodnie z normami PN-EN 60502-1, przewody te powinny być projektowane w sposób zapewniający ich długotrwałą i bezpieczną eksploatację. Zastosowanie przewodów czterordzeniowych w instalacjach napowietrznych jest zgodne z najlepszymi praktykami branżowymi, ponieważ umożliwia nie tylko efektywne przesyłanie energii, ale także odpowiednie zabezpieczenie instalacji przed przeciążeniem i zwarciem. Warto również dodać, że ich montaż często wiąże się z określonymi wymaganiami dotyczącymi odległości od przeszkód oraz maksymalnych wysokości usytuowania, co wpływa na bezpieczeństwo oraz niezawodność całego systemu zasilania.

Pytanie 34

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (5÷20) · In
B. (5÷10) · In
C. (3÷5) · In
D. (2÷3) · In

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 35

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest prawidłowa, ponieważ symbol graficzny przedstawiony w tej opcji najdokładniej odwzorowuje łącznik ze schematu wieloliniowego. W standardach dotyczących projektowania instalacji elektrycznych, takich jak norma PN-EN 60617, łącznik jest reprezentowany w sposób, który zapewnia jasność i jednoznaczność w interpretacji schematów. W tym przypadku, symbol składający się z okręgu z przecinającą go linią pod kątem jest powszechnie akceptowanym sposobem graficznej reprezentacji łącznika. Zastosowanie takich symboli w praktyce inżynierskiej ułatwia komunikację pomiędzy projektantami, wykonawcami i inspektorami. Przy projektowaniu instalacji elektrycznych, znajomość tych symboli jest kluczowa dla zapewnienia bezpieczeństwa i efektywności działania systemów. Dobre praktyki wskazują, że każdy projektant powinien nie tylko znać te symbole, ale także rozumieć ich znaczenie i kontekst, w którym są używane.

Pytanie 36

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 37

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 3, N z 2, 1 z 4
B. L z 1, N z 3, 2 z 4
C. L z 1, N z 4, 2 z 3
D. L z 4, N z 1, 2 z 3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź, czyli połączenie L z 1, N z 4 oraz 2 z 3, jest zgodna z zasadami sztuki monterskiej i zapewnia prawidłowe funkcjonowanie obwodu oświetleniowego. W tej konfiguracji przewód fazowy (L) łączy się z przełącznikiem (1), co pozwala na załączanie i wyłączanie oświetlenia w sposób kontrolowany. Przewód neutralny (N), który jest kluczowy dla pełnego obiegu prądu, łączy się z oświetleniem (4), co zapewnia jego poprawne działanie. Połączenie przewodów w puszce rozgałęźnej (2 z 3) jest również istotne, gdyż umożliwia efektywne zarządzanie obwodem oraz minimalizuje straty energii. Warto zauważyć, że zgodność z normami, takimi jak PN-IEC 60364, które dotyczą instalacji elektrycznych, zapewnia bezpieczeństwo i efektywność energetyczną. Takie połączenie jest również stosowane w praktyce podczas montażu instalacji oświetleniowych w budynkach mieszkalnych i komercyjnych, co potwierdza jego praktyczną użyteczność.

Pytanie 38

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. Bezpośrednio przed licznikami.
B. W rozdzielnicy mieszkaniowej.
C. W rozdzielnicy głównej.
D. W złączu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenia nadprądowe o najwyższej wartości prądu powinny być montowane w złączu elektrycznym. To takie kluczowe miejsce, gdzie instalacja odbiorcza spotyka się z siecią elektroenergetyczną. Dzięki temu cała instalacja jest lepiej chroniona przed przeciążeniami i zwarciami. Instalując te zabezpieczenia w złączu, nie tylko broni się przewody zasilające, ale i wszystkie obwody odbiorcze. Z tego co wiem, jest to zgodne z normami, jak PN-IEC 60364, które mówią, że trzeba je stosować w złączu. W praktyce, jak już dojdzie do przeciążenia, to zabezpieczenie w złączu zadziała najszybciej, co może uratować droższe elementy instalacji. Weźmy na przykład budynki mieszkalne – tam często montuje się te zabezpieczenia w złączu, żeby cała instalacja była bezpieczniejsza dla użytkowników.

Pytanie 39

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 4.
C. Symbolem 2.
D. Symbolem 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 40

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. pojawienie się napięcia na części metalowej normalnie nieprzewodzącej.
C. zwarcie między przewodem neutralnym i ochronnym.
D. zwarcie między przewodem fazowym i ochronnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na kluczową rolę wyłącznika różnicowoprądowego, który jest zaprojektowany do monitorowania różnicy prądów płynących przez przewody fazowy i neutralny. Jego działanie opiera się na zasadzie wykrywania upływu prądu do ziemi, co może wystąpić, gdy napięcie pojawia się na metalowych częściach urządzenia, które normalnie powinny być nieprzewodzące. Przykładowo, w przypadku uszkodzenia izolacji przewodu, prąd może przepływać do obudowy urządzenia, co stwarza realne zagrożenie porażeniem prądem. Wyłącznik różnicowoprądowy, reagując na różnicę prądów, odcina zasilanie, co jest zgodne ze standardami bezpieczeństwa, takimi jak IEC 61008, które podkreślają znaczenie zabezpieczeń różnicowoprądowych w instalacjach elektrycznych. Tego typu zabezpieczenia są niezbędne w dobie wzrastającej liczby urządzeń elektrycznych, które mogą stwarzać zagrożenie dla użytkowników. Dlatego wdrożenie wyłączników różnicowoprądowych jest standardem w nowoczesnym budownictwie, co również poprawia ogólne bezpieczeństwo użytkowników.