Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 00:38
  • Data zakończenia: 17 grudnia 2025 01:09

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 37,72 A
B. 30,82 A
C. 32,66 A
D. 38,64 A
Wybór złej odpowiedzi może wynikać z różnych nieporozumień. Przede wszystkim, warto ogarnąć, że temperatura wpływa na to, jak dobrze przewody przewodzą prąd. W przypadku PVC, im wyższa temperatura, tym obciążalność jest niższa. Niektórzy ludzie mogą myśleć, że obciążalność zostaje taka sama lub spada tylko minimalnie, co nie prowadzi do dobrych obliczeń. A jak się zapomni o normach jak PN-IEC 60364, można łatwo pominąć ważne zasady przy projektowaniu. W praktyce, zwłaszcza w instalacjach przemysłowych, gdzie przewody mogą być mocno nagrzane, istotne jest, żeby dostosować obciążalność do rzeczywistych warunków. Ignorowanie tych rzeczy może skończyć się niebezpiecznie, nawet uszkodzeniami przewodów, co w skrajnych sytuacjach oznacza ryzyko pożaru. Myśląc, że temperatura powietrza nie robi dużej różnicy, można wprowadzić w błąd zabezpieczenia, więc ta wiedza o współczynnikach poprawkowych ma ogromne znaczenie dla każdego, kto działa w branży elektrycznej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. D25
B. D32
C. C32
D. C25
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 2,0
B. 0,9
C. 1,2
D. 1,1
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 8

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Zwarcie w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu wtórnym
C. Przerwa w uzwojeniu wtórnym
D. Przerwa w uzwojeniu pierwotnym
Odpowiedzi sugerujące przerwę w uzwojeniu wtórnym lub pierwotnym są błędne z kilku powodów. Przerwa w uzwojeniu wtórnym spowodowałaby brak napięcia na uzwojeniu wtórnym, co w tym przypadku nie jest zgodne z wynikami pomiarów. Zmierzona wartość napięcia wtórnego w wysokości 460 V wskazuje, że uzwojenie wtórne jest sprawne i nie ma przerwy. Podobnie, przerwa w uzwojeniu pierwotnym skutkowałaby brakiem napięcia na uzwojeniu pierwotnym, a zatem napięcie 230 V, które zmierzono, również wskazuje na jego sprawność. Dodatkowo, zwarcie w uzwojeniu wtórnym, które mogłoby występować, prowadziłoby do dużego przepływu prądu, co jest sprzeczne z obserwowanymi wynikami pomiarów. Zrozumienie działania transformatorów obniżających napięcie oraz ich struktury jest kluczowe dla diagnostyki takich uszkodzeń. Interpretacja wyników pomiarów wymaga znajomości podstawowych zasad rządzących przekładnią napięciową, które determinują stosunek napięć na uzwojeniach. Dlatego ważne jest, by przedstawić poprawne rozumienie stanu transformatora w kontekście jego funkcjonalności oraz wykonać odpowiednie testy w celu zweryfikowania stanu technicznego urządzenia.

Pytanie 9

Określ rodzaj i miejsce usterki zestyku pomocniczego stycznika, jeżeli w przedstawionym układzie podczas pracy silnika zasilanego przez stycznik K1 naciśnięcie przycisku sterującego PZ2 powoduje zadziałanie bezpieczników obwodu głównego.

Ilustracja do pytania
A. Przerwa w zestyku rozwiernym ST1
B. Zwarcie zestyku rozwiernego ST1
C. Zwarcie zestyku rozwiernego ST2
D. Przerwa w zestyku rozwiernym ST2
Zwarcie zestyku rozwiernego ST1 jest poprawną odpowiedzią, ponieważ naciśnięcie przycisku PZ2 powinno normalnie powodować rozłączenie stycznika K1, co skutkowałoby zasileniem silnika. W przypadku, gdy zadziałają bezpieczniki obwodu głównego, wskazuje to na nieprawidłowy stan obwodu, czyli zwarcie. Zestyki styczników są zaprojektowane z myślą o bezpieczeństwie i efektywności, a ich właściwe działanie jest kluczowe w systemach automatyki. W przypadku zwarcia, prąd przepływa bezpośrednio przez zestyki zamiast być przerywany, co prowadzi do przeciążenia i w rezultacie zadziałania zabezpieczeń. W praktyce, takie sytuacje mogą prowadzić do poważnych uszkodzeń urządzeń, dlatego ważne jest regularne sprawdzanie stanu zestyku oraz konserwacja układów sterowania. Zastosowanie standardów bezpieczeństwa, takich jak IEC 60204-1, podkreśla znaczenie prawidłowego funkcjonowania układów sterujących, aby minimalizować ryzyko awarii i zapewnić bezpieczne warunki pracy.

Pytanie 10

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gB
B. gR
C. aL
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 11

Jakiego rodzaju wyłączników RCD należy użyć do zabezpieczenia instalacji elektrycznej obwodu gniazd jednofazowych w pracowni komputerowej, gdzie znajdują się 15 zestawów komputerowych?

A. 25/4/300-A
B. 25/2/030-A
C. 25/2/030-AC
D. 25/4/030-AC
Wybór innych typów wyłączników RCD do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej nie jest zalecany ze względu na różnice w parametrach, które mogą prowadzić do niewystarczającego poziomu ochrony. Chociaż niektóre z tych wyłączników mają swoje zastosowania, nie spełniają one wymogów bezpieczeństwa w kontekście pracy z urządzeniami komputerowymi. Na przykład, typ 25/4/300-A, z prądem różnicowym 300 mA, jest przeznaczony głównie do ochrony przed pożarem w obwodach zasilających, a nie dla ochrony użytkowników przed porażeniem prądem. Użycie takiego wyłącznika w pracowni komputerowej mogłoby spowodować, że w przypadku awarii, prąd nie zostanie odcięty wystarczająco szybko, co zwiększa ryzyko dla osób korzystających z urządzeń. Typ 25/2/030-AC, mimo że ma prąd różnicowy 30 mA, nie jest dostosowany do ochrony przed prądami stałymi, co może być istotne w przypadku zastosowań związanych z elektroniką. Natomiast 25/2/030-AC zawiera dodatkową opcję dla prądów stałych, co czyni go bardziej uniwersalnym, ale niekoniecznie lepszym w kontekście standardowego użytkowania komputerów. Kluczowym błędem jest zatem zakładanie, że każdy wyłącznik RCD może być stosowany w każdej sytuacji, co jest sprzeczne z zasadami projektowania instalacji elektrycznych, które zalecają użycie odpowiednich urządzeń w zależności od specyfiki użytkowania i potencjalnych zagrożeń.

Pytanie 12

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. prądnicę tachometryczną
B. induktor
C. przekładnik napięciowy
D. pirometr
Przekładnik napięciowy, choć użyteczny w pomiarze napięcia, nie jest odpowiednim narzędziem do pomiaru prędkości obrotowej wału silnika. Jego funkcja polega na przetwarzaniu wysokiego napięcia na niższe, co czyni go idealnym do monitorowania i ochrony obwodów elektrycznych, ale nie do określenia prędkości obrotowej. Induktor, z drugiej strony, to element pasywny, który przechowuje energię w polu elektromagnetycznym. Jego zastosowanie w pomiarze prędkości obrotowej jest ograniczone, ponieważ nie generuje bezpośredniego sygnału odpowiadającego prędkości obrotowej. Pirometr, natomiast, jest urządzeniem do pomiaru temperatury, a jego użycie w kontekście pomiaru prędkości obrotowej jest całkowicie nieadekwatne. Wybór niewłaściwego urządzenia do pomiaru prędkości obrotowej często wynika z błędnego zrozumienia zasad działania różnych przyrządów pomiarowych i ich zastosowań. Kluczowym aspektem jest zrozumienie, że pomiar prędkości obrotowej wymaga urządzenia, które reaguje na zmiany ruchu obrotowego, a nie tylko na parametry elektryczne czy cieplne. Używanie niewłaściwego narzędzia może prowadzić do nieprawidłowych odczytów i w konsekwencji do błędnych decyzji w procesach technologicznych, co podkreśla znaczenie wyboru odpowiednich urządzeń pomiarowych w inżynierii.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
B. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
C. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
D. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
B. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
C. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
D. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
W analizowanych stwierdzeniach, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących podstawowych zasad działania silników bocznikowych prądu stałego. Prąd w obwodzie wzbudzenia nie powinien być mniejszy niż w obwodzie twornika, ponieważ może to sugerować niedostateczne wzbudzenie, co prowadzi do zmniejszenia momentu obrotowego i osłabienia pracy silnika. Prędkość obrotowa wirnika wzrasta przy osłabieniu wzbudzenia, co jest zjawiskiem typowym dla silników prądu stałego, ale nie powinno być to mylone z normalnym działaniem. W rzeczywistości, obniżenie wzbudzenia prowadzi do zwiększenia prędkości obrotowej, ale również może prowadzić do niestabilności w pracy silnika i zwiększonego ryzyka przegrzania. Jednocześnie prędkość obrotowa na biegu jałowym nie powinna przekraczać prędkości znamionowej, ponieważ może to skutkować niewłaściwym działaniem silnika i potencjalnym uszkodzeniem komponentów. Kluczowe jest, aby operatorzy silników elektrycznych zrozumieli te zależności oraz systematycznie monitorowali parametry silnika, aby unikać sytuacji mogących prowadzić do awarii. Zrozumienie tych zasad jest niezbędne dla uzyskania efektywności oraz długowieczności systemów napędowych.

Pytanie 17

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zwiększać oporu wirnika
B. przekraczać prądu znamionowego
C. obniżać poślizgu
D. zmniejszać współczynnika mocy
Zmniejszanie poślizgu silnika indukcyjnego, zwiększanie rezystancji wirnika czy też zmniejszanie współczynnika mocy to podejścia, które mogą wydawać się logiczne na pierwszy rzut oka, jednak nie są skutecznymi metodami zapobiegania przegrzaniu uzwojeń. Poślizg w silniku indukcyjnym to różnica między prędkością obrotową wirnika a prędkością pola magnetycznego. Zmniejszenie poślizgu może teoretycznie prowadzić do większej wydajności, jednak w praktyce zmniejszenie poślizgu, zwłaszcza poniżej wartości nominalnej, może powodować wzrost prądu roboczego, co w konsekwencji prowadzi do przegrzania silnika. Zwiększenie rezystancji wirnika, choć może być postrzegane jako poprawa stabilności prądu, w rzeczywistości powoduje wzrost strat mocy i ciepła, co może przyczynić się do przegrzania. Współczynnik mocy, będący miarą efektywności wykorzystania energii elektrycznej, jeśli jest zmniejszany, powoduje, że więcej energii jest przekształcane w ciepło, co dodatkowo zwiększa ryzyko przegrzania. Typowe błędy myślowe, które prowadzą do takich wniosków, to mylenie efektywności energetycznej z bezpieczeństwem pracy silnika. Należy pamiętać, że fundamentalną zasadą eksploatacji silników indukcyjnych jest zawsze przestrzeganie ich parametrów znamionowych, aby zapobiec uszkodzeniom i zapewnić długoterminowe działanie.

Pytanie 18

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 5 lat
C. 3 lata
D. 4 lata
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Brak ciągłości przewodu PE
B. Przebicie izolacji między L1-N
C. Zwarcie między fazami L1-L2
D. Uszkodzenie przewodu N
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 23

W jakim przedziale powinno być nastawione zabezpieczenie przeciążeniowe silnika, którego tabliczkę znamionową przedstawiono na zdjęciu, jeśli wiadomo, że jego uzwojenia są zasilane z sieci 230/400 V, 50 Hz i połączone w gwiazdę?

Ilustracja do pytania
A. (2,21 - 2,31) A
B. (3,82 - 4,00) A
C. (3,40 - 3,80) A
D. (1,95 - 2,20) A
Podane odpowiedzi, które nie mieszczą się w zakresie (2,21 - 2,31) A, są wynikiem nieprawidłowego rozumienia zasad obliczania prądów znamionowych oraz ustawiania zabezpieczeń przeciążeniowych. Kluczowym błędem jest brak uwzględnienia, że prąd znamionowy silnika przy zasilaniu 400 V wynosi 1,46 A, a zabezpieczenia przeciążeniowe powinny być ustawiane na poziomie 110-125% tego prądu. Z tego wynika, że dolna granica zabezpieczenia wynosi 1,606 A, a górna granica 1,825 A. Odpowiedzi, które sugerują wyższe wartości, mogą wynikać z nieprawidłowych założeń co do specyfiki silnika lub nieznajomości zasad doboru zabezpieczeń zgodnie z normami branżowymi. Typowym błędem jest przyjmowanie, że wartości prądów przy zasilaniu 230 V bądź nieprawidłowe zaokrąglenia lub interpretacje danych z tabliczki znamionowej są wystarczające do określenia odpowiednich ustawień. Istotne jest zrozumienie, że zabezpieczenia przeciążeniowe mają na celu ochronę urządzenia przed uszkodzeniem w wyniku przeciążenia, a nie mogą być ustawiane losowo bez uwzględnienia specyfiki silnika oraz warunków jego pracy. Z tego powodu przy doborze zabezpieczeń należy kierować się zarówno obliczeniami, jak i standardami branżowymi, takimi jak IEC 60947-4-1, które precyzują zasady doboru zabezpieczeń dla silników elektrycznych.

Pytanie 24

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Pobór mocy czynnej z sieci ulegnie zwiększeniu
B. Napięcie na końcówkach silnika się zmniejszy
C. Częstotliwość prądu w silniku wzrośnie
D. Pobór mocy biernej z sieci będzie mniejszy
Założenia sugerujące, że pobór mocy czynnej z sieci wzrośnie, napięcie na zaciskach silnika spadnie lub częstotliwość prądu w silniku się zwiększy, są błędne i opierają się na nieprecyzyjnym rozumieniu zasad działania silników asynchronicznych oraz kondensatorów. Pobór mocy czynnej jest ściśle związany z pracą silnika, a włączenie kondensatorów ma na celu poprawę współczynnika mocy, co prowadzi do zmniejszenia poboru mocy biernej, a nie czynnej. W przypadku spadku napięcia na zaciskach silnika, takie zjawisko występuje jedynie w sytuacji, gdy obciążenie jest zbyt duże w porównaniu do możliwości zasilania, co jest odwrotnością efektu uzyskanego przez kondensatory. Co więcej, zwiększenie częstotliwości prądu nie jest możliwe przez dodanie kondensatorów, ponieważ częstotliwość prądu w systemie zasilania jest stała i zadana przez dostawcę energii. Zrozumienie tych zasad jest kluczowe do poprawnej analizy systemów elektroenergetycznych oraz minimalizacji strat energii i poprawy efektywności operacyjnej. W praktyce, nieodpowiednie podejście do kompensacji mocy biernej może prowadzić do poważnych problemów, w tym do obniżenia jakości zasilania i zwiększenia kosztów eksploatacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. odczytów aparatury kontrolno-pomiarowej
B. intensywności drgań
C. konfiguracji zabezpieczeń
D. stanu szczotek
Odpowiedzi, które mówią o sprawdzaniu poziomu drgań, ustawień zabezpieczeń i wskazań aparatury kontrolno-pomiarowej, mają sens, bo to ważne dla konserwacji i monitorowania silników elektrycznych. Poziom drgań to bezpośredni sygnał, co się dzieje z silnikiem. Jak są duże drgania, to może być coś nie tak z łożyskami, wirnik może być źle wyważony lub mogą być inne uszkodzenia, co prowadzi do poważnych problemów, a w efekcie dłuższego przestoju. Ustawienia zabezpieczeń są konieczne dla bezpieczeństwa pracy. Jak są źle ustawione, silnik może się przegrzewać albo ulec awarii. No i wskazania aparatury kontrolno-pomiarowej pokazują napięcie, prąd i inne parametry elektryczne, co pomaga na bieżąco monitorować stan silnika. Ignorowanie tego może skutkować nieefektywnością, większym zużyciem energii i skróceniem żywotności urządzeń. Więc mimo że te wszystkie rzeczy są istotne przy oględzinach, to jednak nie są bezpośrednio związane ze stanem szczotek, które powinny być sprawdzane w ramach konserwacji, a nie na co dzień, gdy silnik działa.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
B. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Do wykonania pomiarów impedancji pętli zwarciowej metodą spadku napięcia, zgodnie ze schematem przedstawionym na rysunku, wykorzystano impedancję Z = 50 Ω i otrzymano wyniki:
-wyłącznik otwarty, U1 = 230 V
-wyłącznik zamknięty, U2 = 200 V, I = 4,0 A
Impedancja badanej pętli zwarciowej wynosi

Ilustracja do pytania
A. 7,5 Ω
B. 42,3 Ω
C. 57,5 Ω
D. 3,7 Ω
Często pojawiającą się trudnością w obliczaniu impedancji pętli zwarciowej jest nieuwzględnienie kluczowych parametrów podczas analizy danych pomiarowych. Odpowiedzi, które zwracają uwagę na wartości takie jak 42,3 Ω czy 57,5 Ω, mogą wynikać z nieprawidłowego zrozumienia różnicy napięć. W zadaniu przedstawiono różnicę między napięciem przy otwartym wyłączniku a napięciem przy zamkniętym, co wskazuje na spadek napięcia, który należy brać pod uwagę w dalszych obliczeniach. Wartości te mogą być mylące, gdyż może wystąpić tendencja do pomijania ważnych kroków matematycznych lub błędnego stosowania wzorów. Na przykład, wyliczając impedancję, niektórzy mogą niefortunnie wziąć pod uwagę jedynie jedno z napięć zamiast obliczyć jego różnicę, co prowadzi do zaniżenia lub zawyżenia rzeczywistej wartości impedancji. Ponadto, mogą wystąpić błędy związane z zastosowaniem nieodpowiednich jednostek lub pomijania istotnych czynników, takich jak rezystancja obwodu, co również wpływa na ostateczny wynik. Zrozumienie związku między napięciem, prądem i impedancją jest kluczowe dla efektywnego diagnozowania i naprawy problemów w instalacjach elektrycznych, a także dla zapewnienia ich bezpieczeństwa i niezawodności.

Pytanie 32

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. 1 – niesprawny, 2 – sprawny.
B. 1 – sprawny, 2 – niesprawny.
C. Oba wyłączniki sprawne.
D. Oba wyłączniki niesprawne.
Wiele błędnych odpowiedzi wynika z nieporozumień dotyczących zasad działania wyłączników różnicowoprądowych. Często mylnie zakłada się, że jeśli wyłącznik zadziałał przy wartości prądu innej niż jego nominalna, to jest on sprawny, co jest absolutnie nieprawdziwe. Wyłącznik różnicowoprądowy powinien zadziałać przy maksymalnej wartości prądu różnicowego, która w tym przypadku wynosi 30 mA. Zadziałanie wyłącznika nr 1 przy wartości 35 mA oznacza, że nie spełnia on norm i stanowi zagrożenie dla użytkowników. Warto także zwrócić uwagę na powiązania między różnymi parametrami wyłączników a standardami bezpieczeństwa. Zastosowanie wyłączników, które działają przy wartościach prądów różnicowych wyższych niż wymagane, narusza zasady BHP i może prowadzić do tragicznych skutków. Ponadto, w odpowiedziach, które sugerują, że oba wyłączniki są niesprawne lub oba sprawne, brakuje właściwej analizy parametrów zadziałania. Każdy wyłącznik powinien być oceniany indywidualnie na podstawie przeprowadzonych testów, a nie na podstawie ogólnych założeń, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 33

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Uziemienie odłączonej linii
C. Zarządzanie pracą w grupie
D. Używanie sprzętu izolacyjnego
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. opór izolacji miejsca pracy jest zbyt wysoki
B. impedancja pętli zwarcia jest zbyt wysoka
C. impedancja sieci zasilającej jest zbyt niska
D. opór uziomu jest zbyt niski
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 36

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,1 ∙ In
B. 2,2 ∙ In
C. 0,8 ∙ In
D. 1,4 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
B. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
C. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
D. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
Zalecenia dotyczące projektowania instalacji elektrycznych obejmują wiele praktycznych aspektów, które mają na celu zarówno bezpieczeństwo, jak i efektywność energetyczną. Rozdzielanie obwodów oświetleniowych od obwodów gniazd wtykowych jest standardową praktyką, która pomaga w zarządzaniu obciążeniem elektrycznym oraz zapewnia łatwiejszą diagnostykę w razie awarii. Takie rozdzielenie pozwala na niezależne wyłączanie oświetlenia, co jest szczególnie istotne w przypadku awarii obwodów gniazd. Z kolei zasilać gniazda wtykowe w kuchni z osobnego obwodu to również właściwe zalecenie, z uwagi na większe obciążenie związane z urządzeniami AGD. Zasilanie urządzeń o dużej mocy z wydzielonych obwodów jest praktyką, która chroni inne obwody przed przeciążeniem oraz zabezpiecza przed ryzykiem uszkodzenia urządzeń oraz pożaru."

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. III
B. 0
C. II
D. I
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.