Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 grudnia 2025 18:52
  • Data zakończenia: 20 grudnia 2025 19:17

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem B
B. Symbolem P
C. Symbolem A
D. Symbolem T
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie elementy powinny być zacienione na rysunku technicznym przekroju komponentu?

A. Wyrwania.
B. O kształtach oczywistych.
C. Żebra.
D. Tylko o kształtach obrotowych.
Wybór innych odpowiedzi, takich jak "Żebra", "O kształtach oczywistych" oraz "Tylko o kształtach obrotowych", wskazuje na nieporozumienie dotyczące zasad rysunku technicznego. Żebra, które są elementami wspierającymi lub wzmacniającymi strukturę, nie są standardowo zakreskowane, ponieważ ich kształt jest zazwyczaj oczywisty i łatwy do zrozumienia w kontekście konstrukcji. Podobnie, zakreskowanie elementów "o kształtach oczywistych" jest zbędne, ponieważ ich kształt nie wymaga dodatkowego podkreślenia w przekroju, co może prowadzić do niejasności i przeładowania informacji na rysunku. Z kolei odpowiedź "Tylko o kształtach obrotowych" pomija kluczowy aspekt przekroju, który dotyczy nie tylko detali o kształtach obrotowych, ale także wszelkich elementów wewnętrznych, które powinny być przedstawione w sposób umożliwiający ich zrozumienie. Rysunki techniczne mają na celu jasne przekazywanie informacji i unikanie zbędnych komplikacji. W związku z tym brak zakreskowania niewidocznych elementów, takich jak wyrwania, może prowadzić do nieporozumień w interpretacji rysunku. W praktyce, kluczowe jest przestrzeganie norm i standardów, które jasno definiują, jakie elementy powinny być zakreskowane, aby zapewnić precyzyjną i jednoznaczną komunikację w procesie projektowania.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą linią punktową.
B. Cienką ciągłą linią zygzakową.
C. Grubą kreską.
D. Cienką z długą kreską oraz kropką.
Wybór innej linii niż cienka ciągła zygzakowa może prowadzić do poważnych nieporozumień w interpretacji rysunków technicznych. Gruba kreskowa linia jest często używana do oznaczania krawędzi widocznych obiektów i nie nadaje się do przedstawiania urwań lub przerwań, ponieważ sugeruje pełną widoczność, co jest sprzeczne z zamysłem. Gruba punktowa linia służy do wskazywania detali lub charakterystycznych punktów, ale również nie odzwierciedla idei przerwania przedmiotu. Cienka z długą kreską i kropką linia, z kolei, jest stosowana do oznaczania linii wymiarowych lub innych detali pomocniczych, które nie mają nic wspólnego z urwaniem. Wybór niewłaściwej linii może prowadzić do błędnych interpretacji, co w praktyce inżynieryjnej może skutkować poważnymi błędami konstrukcyjnymi. Kluczowe jest zrozumienie, że różne typy linii mają swoje specyficzne zastosowania, a ich niewłaściwe użycie odbiega od dobrych praktyk branżowych. Dlatego ważne jest przestrzeganie ustalonych norm i standardów, aby zapewnić dokładność i czytelność dokumentacji technicznej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które nastawy muszą zostać wybrane w oknie konfiguracyjnym timera, aby załączał swoje wyjście na 5 sekund od momentu podania na jego wejście logicznej jedynki?

Ilustracja do pytania
A. Typ timera – TON, czas bazowy – 1 ms, wartość Preset - 500
B. Typ timera – TOF, czas bazowy – 10 ms, wartość Preset - 500
C. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 500
D. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 50
Wybranie timera typu TP (Timer Pulse) jest poprawnym rozwiązaniem, ponieważ ten typ timera służy do generowania impulsów na wyjściu przez zdefiniowany czas, który jest ustalany na podstawie wartości Preset pomnożonej przez czas bazowy. W tym przypadku, przy ustawieniu czas bazowy na 10 ms oraz wartość Preset równą 500, otrzymujemy łączny czas działania wyjścia wynoszący 5000 ms, co odpowiada 5 sekundom. Takie nastawy są szczególnie przydatne w aplikacjach, w których wymagane jest precyzyjne sterowanie czasem, na przykład w automatyce przemysłowej przy sygnalizacji stanów maszyn czy w systemach sterowania, gdzie precyzyjne opóźnienia są kluczowe. Przy projektowaniu systemów automatyki warto również stosować się do standardów IEC 61131, które regulują stosowanie timerów i zapewniają ich poprawną implementację w różnych systemach sterowania.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Która kolejność czynności technologicznych, przy projektowaniu algorytmu sterowania pracą obrabiarki CNC, zagwarantuje prawidłowe wykonanie elementu przedstawionego na rysunku?

Ilustracja do pytania
A. Toczenie czoła, obróbka zgrubna, obróbka wykańczająca, toczenie rowka, odcięcie wałka.
B. Toczenie rowka, toczenie czoła, obróbka zgrubna, obróbka wykańczająca, odcięcie wałka.
C. Odcięcie wałka, toczenie rowka, obróbka zgrubna, toczenie czoła, obróbka wykańczająca.
D. Toczenie czoła, obróbka zgrubna, obróbka wykańczająca, odcięcie wałka, toczenie rowka.
Zastosowana w niepoprawnych odpowiedziach kolejność operacji prowadzi do poważnych nieefektywności w procesie obróbki CNC. W wielu przypadkach, pomijanie kluczowych kroków, takich jak toczenie czoła na początku procesu, skutkuje brakiem stabilnej podstawy dla dalszych operacji. Na przykład, obróbka wykańczająca przed toczeniem rowka może prowadzić do konieczności powtórzenia wcześniejszych kroków, co zwiększa czas obróbki oraz koszty produkcji. Kolejność operacji w obróbce CNC powinna być starannie przemyślana, aby unikać sytuacji, w których wykonanie jednej operacji uniemożliwia lub komplikuje wykonanie kolejnej. Zastosowanie niewłaściwych technik, takich jak odcięcie wałka przed wykonaniem toczenia rowka, prowadzi do ryzyka uszkodzenia gotowego elementu lub nawet obrabiarki. Prawidłowe planowanie operacji powinno bazować na analizie technologicznej oraz dobrych praktykach branżowych, co pozwala na optymalizację czasu oraz zasobów, a także na uzyskanie lepszej kontroli jakości. Również normy dotyczące obróbki materiałów wskazują na konieczność przestrzegania określonych sekwencji, aby proces był powtarzalny i efektywny.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.
A. Podłączyć wąż do półautomatu i do butli.
B. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
C. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
D. Ustawić poziomo butlę z gazem ochronnym.
Zdejmowanie kołpaka z butli oraz chwilowe odkręcenie zaworu butli jest kluczowym krokiem przed montażem reduktora. Kołpak działa jako zabezpieczenie, chroniące zawór przed uszkodzeniem oraz zanieczyszczeniami, które mogą wpłynąć na jakość gazu podczas użytkowania. Krótkie odkręcenie zaworu pozwala na wydostanie się niewielkiej ilości gazu, co pomaga w usunięciu zanieczyszczeń, takich jak kurz czy resztki, które mogą znajdować się w zaworze. Zgodnie z dobrymi praktykami w branży spawalniczej, takie działania zapobiegają późniejszym problemom, które mogą wystąpić w trakcie pracy, jak np. nieprawidłowe ciśnienie gazu, które wpłynie na jakość spawania. Dbanie o detale w procedurach przygotowawczych zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Obowiązujące normy dotyczące bezpieczeństwa, takie jak PN-EN ISO 2503, podkreślają znaczenie czystości i bezpieczeństwa przy podłączaniu urządzeń gazowych, co czyni ten krok nieodzownym elementem procesu.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Gdy sprzęt komputerowy jest w trakcie pożaru i podłączony do zasilania, nie wolno go gasić

A. kocem gaśniczym
B. gaśnicą śniegową
C. pianą
D. gaśnicą proszkową
Prawidłowa odpowiedź to użycie piany do gaszenia płonącego sprzętu komputerowego. Piana ma zdolność izolowania źródła ognia od tlenu, co jest kluczowe w procesie gaszenia. Ponadto, piana chłodzi powierzchnię, na którą jest aplikowana, co zmniejsza ryzyko dalszego rozprzestrzeniania się ognia. Standardy bezpieczeństwa przeciwpożarowego w miejscach, gdzie używa się sprzętu elektronicznego, zalecają stosowanie środków gaśniczych, które minimalizują ryzyko uszkodzenia sprzętu. W przypadku sprzętu komputerowego, którego podzespoły są wrażliwe na działanie wody oraz substancji chemicznych, piana staje się najbardziej odpowiednim rozwiązaniem. Przykładowo, w centrach danych i serwerowniach, gdzie istnieje ryzyko pożarów związanych z elektroniką, zaleca się stosowanie systemów gaśniczych opartych na pianie, aby skutecznie i bezpiecznie opanować sytuację. Warto zatem znać i stosować tę metodę, aby zminimalizować straty materialne oraz zapewnić bezpieczeństwo osobom znajdującym się w pobliżu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Dostarczają informacji o pozycji i prędkości napędu
B. Chronią serwonapęd przed przeciążeniem
C. Stanowią element wykonawczy serwonapędu
D. Informują o momencie generowanym przez napęd
Stwierdzenie, że enkodery w serwonapędach AC zabezpieczają napęd przed przeciążeniem, jest mylące. Enkodery to urządzenia pomiarowe, które dostarczają dane o pozycji i prędkości, natomiast zabezpieczenie przed przeciążeniem realizowane jest przez inne mechanizmy, takie jak układy ograniczające moment obrotowy czy zabezpieczenia termiczne. Kolejną nieprawidłową koncepcją jest przypisanie funkcji elementu wykonawczego do enkoderów. Elementy wykonawcze, jak silniki czy siłowniki, są odpowiedzialne za realizację ruchu, podczas gdy enkodery dostarczają jedynie dane niezbędne do ich sterowania. Ponadto, informowanie o momencie generowanym przez napęd to funkcjonalność, która również nie leży w zakresie działania enkoderów. Takie błędne rozumowanie często wynika z braku zrozumienia podstawowych zasad funkcjonowania systemów automatyki oraz różnicy między urządzeniami pomiarowymi a wykonawczymi. Kluczowe jest, aby zrozumieć, że pomiar prędkości i pozycji nie jest równoznaczny z ich kontrolą, a ich wykorzystanie w systemach serwonapędowych ma na celu osiągnięcie wysokiej precyzji i niezawodności w operacjach. Wiedza na temat właściwych funkcji poszczególnych komponentów serwonapędów jest niezbędna do efektywnego projektowania i eksploatacji systemów automatyki.

Pytanie 33

Jaką metodę uzyskiwania sprężonego powietrza należy zastosować, aby jak najlepiej usunąć olej z medium roboczego?

A. Osuszanie
B. Odolejanie
C. Filtrację
D. Redukcję
Metoda odolejania to kluczowy proces w przygotowaniu sprężonego powietrza, szczególnie w aplikacjach, gdzie czystość medium roboczego ma kluczowe znaczenie dla funkcjonowania urządzeń pneumatycznych i jakości produktów końcowych. Odolejanie polega na zastosowaniu specjalistycznych filtrów, które są zdolne do eliminacji cząstek oleju poprzez mechanizmy adsorpcji i separacji. W praktyce, w systemach pneumatycznych, często wykorzystuje się filtry wstępne i końcowe, które skutecznie usuwają zanieczyszczenia, poprawiając jakość sprężonego powietrza. Standardy branżowe, takie jak ISO 8573, definiują różne klasy czystości sprężonego powietrza, gdzie klasa 1 wymaga minimalnej zawartości oleju. Niezbędne jest, aby systemy odolejania były regularnie serwisowane i monitorowane, aby utrzymać ich skuteczność. W kontekście przemysłowym, nieprzestrzeganie zasad odolejania może prowadzić do uszkodzeń sprzętu, zwiększenia kosztów eksploatacji oraz obniżenia jakości produkcji. Znajomość i zastosowanie metody odolejania to zatem niezbędny element w zarządzaniu jakością w procesach pneumatycznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAE
B. CAM
C. SCADA
D. CAD
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 38

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
D. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.