Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:11
  • Data zakończenia: 7 grudnia 2025 11:43

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
B. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
C. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
D. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
Zalecenia dotyczące projektowania instalacji elektrycznych obejmują wiele praktycznych aspektów, które mają na celu zarówno bezpieczeństwo, jak i efektywność energetyczną. Rozdzielanie obwodów oświetleniowych od obwodów gniazd wtykowych jest standardową praktyką, która pomaga w zarządzaniu obciążeniem elektrycznym oraz zapewnia łatwiejszą diagnostykę w razie awarii. Takie rozdzielenie pozwala na niezależne wyłączanie oświetlenia, co jest szczególnie istotne w przypadku awarii obwodów gniazd. Z kolei zasilać gniazda wtykowe w kuchni z osobnego obwodu to również właściwe zalecenie, z uwagi na większe obciążenie związane z urządzeniami AGD. Zasilanie urządzeń o dużej mocy z wydzielonych obwodów jest praktyką, która chroni inne obwody przed przeciążeniem oraz zabezpiecza przed ryzykiem uszkodzenia urządzeń oraz pożaru."

Pytanie 4

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. MMS-32S – 4A
B. PKZM01 – 1
C. MMS-32S – 1,6A
D. PKZM01 – 0,63
Wybranie wyłącznika silnikowego PKZM01 – 1 jest najlepszym rozwiązaniem do zabezpieczenia silnika o prądzie znamionowym 0,69 A. Wyłącznik ten ma prąd znamionowy 1 A, co zapewnia odpowiednią ochronę przed przeciążeniem silnika. Zgodnie z normą IEC 60947-4-1, wyłączniki silnikowe powinny być dobrane tak, aby ich prąd znamionowy był nieco wyższy od prądu znamionowego chronionego urządzenia, co pozwala na uniknięcie fałszywych wyłączeń przy normalnej pracy. Dodatkowo, wyłącznik PKZM01 – 1 posiada funkcję zabezpieczenia przed zwarciem i przeciążeniem, co jest kluczowe w kontekście długoterminowej niezawodności układów elektrycznych. W praktyce, użycie tego typu wyłącznika pozwala nie tylko na zabezpieczenie silnika, ale także na zwiększenie trwałości instalacji, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej. Warto również dodać, że wybierając odpowiedni wyłącznik, należy wziąć pod uwagę charakterystykę obciążenia, co pozwala na minimalizację ryzyka uszkodzeń w systemie.

Pytanie 5

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. UTP
B. LgY
C. YDY
D. YKY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 1,5 mm2
B. 2,5 mm2
C. 6,0 mm2
D. 4,0 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 8

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Ułożyć dodatkową warstwę izolacyjną na podłożu
B. Wykonać lokalne połączenia wyrównawcze
C. Połączyć obudowę z przewodem ochronnym
D. Zainstalować transformator redukcyjny
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Na rysunku przedstawiono wyłącznik

Ilustracja do pytania
A. czasowy.
B. gazowo-wydmuchowy.
C. różnicowoprądowy.
D. nadprądowy.
Wyłącznik różnicowoprądowy jest kluczowym urządzeniem stosowanym w systemach elektrycznych, którego głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie pomiaru różnicy prądów wpływających i wypływających z obwodu. W przypadku wykrycia nieprawidłowości, na przykład przy uszkodzeniu izolacji, wyłącznik natychmiast przerywa obwód, co minimalizuje ryzyko wypadków. Głównym elementem wyłącznika różnicowoprądowego jest przycisk testowy, który pozwala użytkownikowi na regularne sprawdzanie jego działania. Zgodnie z normami PN-EN 61008-1, każdy wyłącznik różnicowoprądowy powinien być poddawany testom, co stało się standardem w nowoczesnych instalacjach elektrycznych. Warto zastosować te urządzenia w domach oraz obiektach użyteczności publicznej, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Waromierz
B. Megaomomierz
C. Pirometr
D. Sonometr
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Termistor
B. Bezpiecznik
C. Przekaźnik nadprądowy
D. Wyłącznik silnikowy
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 17

Jaki stopień ochrony powinien posiadać silnik trójfazowy eksploatowany w pomieszczeniu narażonym na wybuch?

A. IP56
B. IP11
C. IP00
D. IP34
Stopień ochrony IP56 oznacza, że urządzenie jest całkowicie chronione przed kurzem oraz odporne na silne strumienie wody. W kontekście silnika trójfazowego pracującego w pomieszczeniu zagrożonym wybuchem, taki stopień ochrony jest kluczowy, ponieważ zanieczyszczenia i wilgoć mogą negatywnie wpływać na jego wydajność oraz bezpieczeństwo. W przypadku zastosowań w strefach Ex, gdzie występują substancje łatwopalne, zgodność z normami takimi jak ATEX czy IECEx staje się obowiązkowa. Zastosowanie silnika z odpowiednim stopniem ochrony, jak IP56, minimalizuje ryzyko uszkodzeń oraz potencjalnych wybuchów. Przykładem może być użycie takich silników w przemysłach chemicznych, gdzie nie tylko trzeba dbać o bezpieczeństwo, ale także o ciągłość procesów produkcyjnych. Warto również pamiętać o regularnych przeglądach technicznych, które pozwalają na wczesne wykrywanie ewentualnych problemów związanych z ochroną przed pyłem i wodą.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Zwarcie w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu wtórnym
C. Przerwa w uzwojeniu pierwotnym
D. Przerwa w uzwojeniu wtórnym
Zwarcie w uzwojeniu pierwotnym transformatora obniżającego napięcie powoduje, że przy braku obciążenia (stan jałowy) napięcie na uzwojeniu pierwotnym nie może osiągnąć wartości znamionowej. W przypadku transformatora o przekładni napięciowej wynoszącej 5, napięcie wtórne powinno wynosić pięć razy mniejsze niż pierwotne, czyli przy napięciu 230 V na uzwojeniu pierwotnym, napięcie wtórne powinno wynosić 46 V. Jednak w omawianym przypadku zmierzono napięcia 230 V i 460 V, co sugeruje, że doszło do zwarcia w uzwojeniu pierwotnym. Takie uszkodzenie może prowadzić do znacznego wzrostu prądu, co jest niebezpieczne dla transformatora, a także dla sieci zasilającej. W praktyce, w celu weryfikacji stanu uzwojeń, stosuje się pomiary impedancji oraz testy napięciowe, które są zgodne z normami IEC i ANSI. W przypadku stwierdzenia zwarcia, konieczne jest szybkie odłączenie zasilania i przeprowadzenie naprawy oraz wymiany uszkodzonych elementów, aby przywrócić prawidłowe funkcjonowanie transformatora.

Pytanie 21

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Woltomierz oraz omomierz
B. Waromierz oraz amperomierz
C. Woltomierz i amperomierz
D. Amperomierz oraz licznik
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 22

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. czasu reakcji przekaźnika termobimetalowego
B. impedancji pętli zwarcia w instalacji
C. prądu zadziałania wyłącznika instalacyjnego nadprądowego
D. rezystancji uzwojeń fazowych silnika
Odpowiedzi, które nie wskazują na pomiar impedancji pętli zwarcia, nie są właściwe w kontekście oceny skuteczności ochrony przeciwporażeniowej. Pomiar prądu zadziałania wyłącznika instalacyjnego nadprądowego, choć istotny, nie dostarcza pełnej informacji o skuteczności ochrony. Wyłącznik nadprądowy nie jest jedynym elementem ochrony, a jego prawidłowe działanie nie gwarantuje, że system jest odporny na wszystkie rodzaje uszkodzeń. Oprócz tego, pomiar rezystancji uzwojeń fazowych silnika, choć może być przydatny w diagnostyce silnika, nie odnosi się bezpośrednio do kwestii zadziałania zabezpieczeń w przypadku zwarcia. Z kolei pomiar czasu zadziałania przekaźnika termobimetalowego dotyczy ochrony przeciążeniowej, a nie bezpośrednio ochrony przeciwporażeniowej. Należy pamiętać, że skuteczna ochrona przeciwporażeniowa wymaga systematycznego monitora impedancji pętli zwarcia, co pozwala na identyfikację potencjalnych problemów w instalacji, które mogą prowadzić do poważnych zagrożeń. Kluczowym błędem jest zatem skupienie się na elementach, które nie dotyczą bezpośrednio ochrony przed porażeniem elektrycznym, co może prowadzić do fałszywego poczucia bezpieczeństwa.

Pytanie 23

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
B. Silnik nie włączy się
C. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
D. Silnik zmieni swój kierunek obrotów
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. wzrostu rezystancji cewki
B. spadku indukcyjności cewki
C. wzrostu reaktancji cewki
D. zmniejszenia natężenia prądu płynącego przez cewkę
Wybór odpowiedzi związanej ze zwiększeniem rezystancji cewki może wydawać się logiczny w kontekście zwarcia, jednak nie jest to właściwe podejście do analizy tego zjawiska. W przypadku zwarcia międzyzwojowego, rzeczywisty przepływ prądu przez cewkę może obniżyć jej indukcyjność, ale niekoniecznie prowadzi to do wzrostu rezystancji. W rzeczywistości, w momencie zwarcia, można zaobserwować zmniejszenie impedancji, co skutkuje większym natężeniem prądu, a nie jego spadkiem. Ponadto, zmniejszenie prądu pobieranego przez cewkę jest z kolei związane z jej działaniem w obwodzie, a nie bezpośrednio z zwarciem. Warto zauważyć, że w niektórych warunkach zwarcie może prowadzić do zwiększenia prądu, co jest sprzeczne z koncepcją jego zmniejszenia. Zwiększenie reaktancji cewki również nie jest odpowiednie, ponieważ w przypadku zwarcia reaktancja (zależna od indukcyjności) maleje. Typowe błędy myślowe polegają na myleniu pojęć związanych z rezystancją i reaktancją, co prowadzi do niepoprawnych wniosków o wpływie zwarcia na parametry cewki. W praktyce, kluczowym jest zrozumienie, że zwarcie prowadzi do zmiany w strukturze magnetycznej i elektrycznej cewki, co wyraźnie wpływa na jej wydajność i parametry operacyjne.

Pytanie 30

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. intensywności pola magnetycznego
B. okresu jego działania
C. oporu uzwojeń stojana
D. oporu rdzenia stojana
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do wykonania pomiarów impedancji pętli zwarciowej metodą spadku napięcia, zgodnie ze schematem przedstawionym na rysunku, wykorzystano impedancję Z = 50 Ω i otrzymano wyniki:
-wyłącznik otwarty, U1 = 230 V
-wyłącznik zamknięty, U2 = 200 V, I = 4,0 A
Impedancja badanej pętli zwarciowej wynosi

Ilustracja do pytania
A. 3,7 Ω
B. 57,5 Ω
C. 7,5 Ω
D. 42,3 Ω
Aby obliczyć impedancję pętli zwarciowej, wykorzystujemy różnicę napięć zmierzoną przy otwartym i zamkniętym wyłączniku oraz prąd płynący w obwodzie. W danych przedstawionych w pytaniu mamy U1 = 230 V (wyłącznik otwarty) i U2 = 200 V (wyłącznik zamknięty). Spadek napięcia wynosi więc U1 - U2 = 230 V - 200 V = 30 V. Następnie, korzystając z prawa Ohma, możemy obliczyć impedancję pętli zwarciowej, stosując wzór Z = U/I, gdzie I to prąd przy zamkniętym wyłączniku, który wynosi 4,0 A. Podstawiając wartości, mamy Z = 30 V / 4,0 A = 7,5 Ω. Impedancja ta jest istotnym parametrem w projektowaniu i ocenie instalacji elektrycznych, gdyż pozwala na ocenę bezpieczeństwa systemu i odpowiednich działań w przypadku zwarcia. W praktyce, podczas pomiarów, warto również zwrócić uwagę na to, aby impedancja pętli zwarciowej była na poziomie zgodnym z normami, co może przyczynić się do poprawy ochrony przed porażeniem elektrycznym oraz zapewnienia efektywności działania zabezpieczeń.

Pytanie 34

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Brak ciągłości przewodu ochronnego
B. Pogorszenie stanu mechanicznego złącz przewodów
C. Brak ciągłości przewodu neutralnego
D. Zbyt wysoka rezystancja przewodu uziemiającego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 35

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów rezystancji izolacji przewodów
B. Oględzin związanych z ochroną przeciwpożarową
C. Badania zabezpieczeń przed dotykiem pośrednim
D. Pomiarów oraz weryfikacji spadków napięć
Pomiarów i sprawdzania spadków napięć nie przewiduje zakres badań okresowych instalacji elektrycznej, ponieważ tego rodzaju pomiary są wykonywane w ramach diagnostyki systemów energetycznych, a nie standardowych przeglądów instalacji elektrycznych. W badaniach okresowych koncentruje się na ocenie stanu technicznego instalacji oraz zabezpieczeń, takich jak odporność izolacji przewodów. Pomiar rezystancji izolacji przewodów pozwala na ocenę stanu izolacji i identyfikację potencjalnych zagrożeń związanych z przebiciem. Badania ochrony przed dotykiem pośrednim są kluczowe dla zapewnienia bezpieczeństwa użytkowników, gdyż dotyczą oceny skuteczności systemów zabezpieczeń. Oględziny dotyczące ochrony przeciwpożarowej są niemniej istotne, gdyż pozwalają na wykrycie nieprawidłowości mogących prowadzić do pożaru. Standardy, takie jak PN-IEC 60364, określają szczegółowe wymagania dotyczące badań okresowych, co podkreśla znaczenie poszczególnych metod oceny stanu instalacji elektrycznych.

Pytanie 36

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. pole przekroju poprzecznego żył przewodów
B. wytrzymałość napięciowa izolacji przewodów
C. rodzaj zamontowanych ochronników przeciwprzepięciowych
D. liczba zamontowanych ochronników przeciwprzepięciowych
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 37

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 38

Urządzenie oznaczone przedstawionym symbolem klasy ochronności można podłączyć do instalacji

Ilustracja do pytania
A. bez przewodu ochronnego.
B. ze stykiem ochronnym.
C. o obniżonym napięciu zasilania SELV lub PELV.
D. separowanej elektrycznie od linii zasilającej.
Zastanawiając się nad podłączaniem urządzeń elektrycznych, trzeba mieć na uwadze kilka ważnych rzeczy. Wydaje mi się, że nie do końca zrozumiałeś, jak działa klasa ochronności III. To, co napisałeś, sugeruje, że takie urządzenie powinno być odseparowane od zasilania, a to nie jest do końca prawda. Klasa III dotyczy niskonapięciowych systemów, które wcale nie potrzebują takiej separacji, jak to wskazujesz. Dodatkowo, jeśli podłączysz je do instalacji z ochronnym stykem, to może być niebezpieczne, bo klasa III działa na niskich napięciach, więc nie ma potrzeby dodatkowych zabezpieczeń. Warto pamiętać, że źle jest mylić te klasy ochronności i nie rozumieć, kiedy stosować styki ochronne. W każdym razie, jeśli chcesz bezpiecznie korzystać z takich urządzeń, trzeba trzymać się standardów jak IEC 61140.

Pytanie 39

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Zarządzanie czasem pracy
B. Włączanie i wyłączanie
C. Oględziny wymagające demontażu
D. Przeglądy wymagające demontażu
Optymalizacja czasu pracy, przeglądy wymagające demontażu oraz oględziny wymagające demontażu nie są bezpośrednio związane z codziennymi zadaniami pracowników obsługi urządzeń elektrycznych. W kontekście pierwszej z wymienionych odpowiedzi, choć optymalizacja czasu pracy jest istotna w zarządzaniu procesami, nie jest to czynność, którą wykonują pracownicy obsługi bezpośrednio przy samym urządzeniu. Optymalizacja raczej odnosi się do analizy wydajności i strategii operacyjnych, które są podejmowane na poziomie zarządzania, a nie w codziennym użytkowaniu maszyn. W przypadku przeglądów i oględzin wymagających demontażu, są to skomplikowane zadania, które zazwyczaj są realizowane przez wyspecjalizowanych techników lub inżynierów, a nie pracowników zajmujących się obsługą. Obejmuje to takie czynności jak demontaż elementów maszyny w celu przeprowadzenia szczegółowych inspekcji, co wymaga zaawansowanej wiedzy technicznej oraz odpowiednich uprawnień. W praktyce, takie operacje powinny być zgodne z zaleceniami producenta i standardami bezpieczeństwa, aby zminimalizować ryzyko awarii lub uszkodzeń. Powszechnym błędem jest mylenie prac rutynowych związanych z obsługą z bardziej skomplikowanymi zadaniami konserwacyjnymi, co może prowadzić do niewłaściwego przypisania obowiązków oraz z potencjalnymi zagrożeniami dla bezpieczeństwa operacji. W związku z tym, kluczowe jest zachowanie jasnego podziału obowiązków i odpowiedzialności między różnymi poziomami personelu w zakładzie.

Pytanie 40

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Niesymetryczność obciążenia
B. Drgania skrajnych blach rdzenia
C. Praca na biegu jałowym
D. Nieszczelność kadzi transformatora
To nie tak, że niesymetryczność obciążenia bezpośrednio powoduje to nienormalne brzęczenie w transformatorze. Chociaż może prowadzić do innych kłopotów, jak przegrzewanie czy większe straty mocy. Generalnie brzęczenie, które słychać podczas pracy transformatora, najczęściej jest spowodowane drganiami rdzenia. Nieszczelność kadzi również wpływa na wydajność, ale nie jest to główny powód brzęczenia. Jak transformator pracuje na biegu jałowym, to mogą się pojawić inne dźwięki, ale niekoniecznie związane z brzęczeniem. To błędne myślenie, że brzęczenie = problemy z obciążeniem, bo można łatwo pomylić obciążenie z powodem hałasu. W rzeczywistości to mechanika konstrukcji transformatora i interakcje jego elementów mają większy wpływ na te dźwięki. Zrozumienie tego jest istotne dla inżynierów i techników, żeby transformatory mogły działać efektywnie i bez hałasu.