Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 9 lutego 2026 10:22
  • Data zakończenia: 9 lutego 2026 10:32

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które ciało obce w obszarze badania nie stanowi przeciwwskazania do wykonania MR?

A. Wszczepiony stymulator układu nerwowego.
B. Wszczepiony rozrusznik serca.
C. Tytanowa endoproteza stawu biodrowego.
D. Metalowy opiłek w oku.
Poprawnie wskazana została tytanowa endoproteza stawu biodrowego jako ciało obce, które co do zasady nie stanowi przeciwwskazania do badania rezonansem magnetycznym. Tytan jest materiałem niemagnetycznym, ma bardzo niską podatność magnetyczną i dlatego nie jest przyciągany przez silne pole magnetyczne skanera MR. W praktyce klinicznej większość współczesnych endoprotez stawowych, śrub kostnych, płytek czy gwoździ śródszpikowych wykonanych z tytanu lub stopów tytanu jest oznaczona jako MR-safe lub MR-conditional zgodnie z zaleceniami producenta i normami (m.in. ASTM). Oznacza to, że badanie MR może być wykonane bezpiecznie, często przy zachowaniu pewnych warunków, np. maksymalne natężenie pola 1,5 T albo 3 T, określone ograniczenia SAR (współczynnik pochłaniania energii), brak określonych sekwencji silnie nagrzewających. W codziennej pracy technika i lekarza radiologa ważne jest, by zawsze sprawdzić dokumentację implantu lub kartę implantu pacjenta, ale sam fakt posiadania tytanowej endoprotezy biodra nie powinien automatycznie dyskwalifikować z badania MR. Trzeba też pamiętać o artefaktach – metal, nawet niemagnetyczny, powoduje zniekształcenia obrazu, szczególnie w sekwencjach gradientowych, więc przy planowaniu badania okolicy miednicy trzeba dobrać parametry tak, aby ograniczyć artefakty (np. sekwencje z mniejszą podatnością na zniekształcenia, zmiana kierunku fazy, szersze pasmo odbioru). Moim zdaniem kluczowe w praktyce jest rozróżnienie między bezpieczeństwem pacjenta a jakością obrazu: tytanowa proteza zwykle jest bezpieczna, ale może pogorszyć czytelność obrazów w jej bezpośrednim sąsiedztwie. Dlatego w standardach dobrej praktyki zawsze łączymy wiedzę o materiale implantu z rozsądnym doborem protokołu MR.

Pytanie 2

Którą metodę badania zastosowano w obrazowaniu stawu kolanowego?

Ilustracja do pytania
A. MR, obraz T2- zależny.
B. TK z kontrastem.
C. MR, obraz T1- zależny.
D. TK.
Na przedstawionym obrazie stawu kolanowego łatwo się pomylić, jeśli nie kojarzy się typowych cech poszczególnych metod obrazowania. Wiele osób z przyzwyczajenia zakłada, że przekrojowe obrazy o wysokiej rozdzielczości to tomografia komputerowa, ale tutaj to myślenie prowadzi na manowce. W TK, zarówno bez kontrastu, jak i z kontrastem jodowym, obraz ma zupełnie inną charakterystykę: kość korowa jest bardzo jasna, wręcz biała, szpik kostny ma mniejszy kontrast względem otoczenia, a tłuszcz nie odcina się tak spektakularnie. Dodatkowo, w rutynowej TK stawu kolanowego nie uzyskujemy tak dobrej wizualizacji tkanek miękkich, więzadeł i łąkotek jak w MR, szczególnie w obrazach o wysokim kontraście tkanek miękkich. Podanie kontrastu w TK zmienia głównie uwidocznienie naczyń i struktur silnie unaczynionych lub zapalnych, ale nie sprawi, że tłuszcz stanie się dominująco jasny, a płyn stosunkowo ciemny. To jest typowy błąd myślowy: założenie, że „kontrast = lepszy obraz wszystkiego”. W rzeczywistości charakter obrazu w TK jest wciąż determinowany przez pochłanianie promieniowania rentgenowskiego, a nie przez właściwości magnetyczne protonów, jak w MR. Z kolei pomylenie sekwencji MR T1‑zależnej z T2‑zależną wynika najczęściej z niepewności, jak zachowuje się płyn. W T2 płyn stawowy i wysięki są bardzo jasne, wręcz świecą, co jest wykorzystywane do wykrywania obrzęku, wysięku, zmian zapalnych. W T1 jest odwrotnie: tłuszcz jest jasny, a płyn raczej ciemny lub pośredni. Jeśli na obrazie widzisz jasny szpik kostny i stosunkowo ciemną jamę stawową, to nie jest T2. W dobrze ułożonych protokołach MR stawu kolanowego zawsze łączy się obie sekwencje, ale trzeba umieć je odróżnić po samym wyglądzie tkanek. Z mojego doświadczenia, kluczowe jest patrzenie nie tylko na jedną strukturę, ale na cały „schemat” jasności: kości, tłuszcz podskórny, płyn, mięśnie. Jeżeli wszystko wygląda bardzo „miękko”, z wysokim kontrastem tkanek miękkich i bez typowej dla TK bardzo wyraźnej, białej kory kostnej, to prawie na pewno patrzysz na MR, a nie TK. Świadome rozróżnianie tych cech to podstawa poprawnej interpretacji badań w diagnostyce obrazowej narządu ruchu.

Pytanie 3

Odprowadzenie II rejestruje różnicę potencjałów między

A. lewą i prawą ręką.
B. prawą ręką i prawą nogą.
C. prawą ręką i lewą nogą.
D. lewą ręką i lewą nogą.
Prawidłowo – odprowadzenie II w standardowym 12-odprowadzeniowym EKG rejestruje różnicę potencjałów między prawą ręką (elektroda ujemna) a lewą nogą (elektroda dodatnia). Tak jest zdefiniowane w klasycznej trójkątnej konfiguracji Einthovena i obowiązuje w praktycznie wszystkich aparatach EKG, zgodnie z normami opisanymi w podręcznikach kardiologii i zaleceniach towarzystw naukowych. Moim zdaniem warto to mieć „w palcu”, bo odprowadzenie II jest jednym z najczęściej oglądanych – to właśnie w nim zwykle oceniamy rytm zatokowy, załamki P, odstęp PQ i ogólne przewodzenie przedsionkowo–komorowe. W praktyce technika wygląda tak, że elektrody kończynowe zakładamy najczęściej na przeguby: prawa ręka – elektroda prawa, lewa ręka – elektroda lewa, lewa noga – elektroda referencyjna dodatnia, prawa noga – elektroda uziemiająca (neutralna, nie bierze udziału w tworzeniu odprowadzeń I, II, III). Aparat następnie „matematycznie” zestawia między sobą potencjały z tych punktów i tworzy trzy odprowadzenia kończynowe: I (lewa ręka – prawa ręka), II (lewa noga – prawa ręka) oraz III (lewa noga – lewa ręka). W odprowadzeniu II oś elektryczna serca często wypada najbardziej fizjologicznie, dlatego zapis jest „czytelny”: wysokie dodatnie załamki P i R, łatwo ocenić regularność rytmu i obecność zaburzeń przewodzenia. W wielu systemach monitorowania kardiologicznego (oddziały intensywnej terapii, sale pooperacyjne) jako monitoring ciągły wybiera się właśnie odprowadzenie II, bo najlepiej pokazuje depolaryzację przedsionków i pozwala szybko wychwycić np. migotanie przedsionków czy częstoskurcze nadkomorowe. Z mojego doświadczenia, jeśli ktoś dobrze rozumie, jak jest zbudowany trójkąt Einthovena i które kończyny tworzą dane odprowadzenie, dużo łatwiej mu potem ogarnąć bardziej złożone układy jak odprowadzenia wzmocnione (aVR, aVL, aVF) czy analizę osi elektrycznej serca. To jest taka podstawa, na której buduje się całą dalszą interpretację EKG.

Pytanie 4

Zamieszczone na ilustracji obrazy dotyczą badania

Ilustracja do pytania
A. scyntygraficznego.
B. dopplerowskiego.
C. densytometrycznego.
D. audiometrycznego.
Prawidłowo powiązałeś ilustrację z badaniem densytometrycznym. Na obrazie widać typowy wynik densytometrii kości biodrowej: po lewej stronie projekcję kości z zaznaczonymi prostokątami pomiarowymi, a po prawej kolorowy wykres gęstości mineralnej kości (BMD, bone mineral density) w funkcji wieku, z opisanymi strefami: normy, osteopenii i osteoporozy. To właśnie jest standardowy wydruk z aparatu DEXA (DXA – dual-energy X-ray absorptiometry), czyli złotego standardu w diagnostyce osteoporozy według zaleceń WHO i większości towarzystw osteologicznych. Densytometria wykorzystuje niskoenergetyczne promieniowanie rentgenowskie o dwóch różnych energiach i na podstawie stopnia pochłaniania promieniowania oblicza masę mineralną kości w g/cm². Kluczowe parametry to T-score i Z-score; na ilustracji widać skale T-score oraz zakresy kolorystyczne, co jest bardzo charakterystyczne właśnie dla tego badania. W praktyce badanie densytometryczne wykonuje się głównie w okolicy szyjki kości udowej i kręgosłupa lędźwiowego, czasem w obrębie przedramienia. Służy ono nie tylko do rozpoznawania osteoporozy, ale też do oceny ryzyka złamań, monitorowania skuteczności leczenia farmakologicznego oraz decyzji o włączeniu lub modyfikacji terapii. Z mojego punktu widzenia warto pamiętać, że przy prawidłowym wykonywaniu DEXA bardzo ważne jest prawidłowe ułożenie pacjenta, unikanie artefaktów (np. metal, guzki zwapniałe) oraz stosowanie się do protokołów kalibracji aparatu – od tego zależy wiarygodność wyniku. W dobrych pracowniach technik zawsze weryfikuje pozycjonowanie szyjki kości udowej i odpowiednie zaznaczenie ROI, dokładnie tak jak sugeruje pokazany obraz.

Pytanie 5

Którą tętnicę zaznaczono strzałką na obrazie MR?

Ilustracja do pytania
A. Śledzionową.
B. Krezkową dolną.
C. Nerkową lewą.
D. Krezkową górną.
Prawidłowo wskazana tętnica krezkowa górna jest głównym naczyniem zaopatrującym środkowy odcinek przewodu pokarmowego, czyli mniej więcej od części zstępującej dwunastnicy do 2/3 poprzecznicy. Na obrazie MR-angiografii, takim jak w pytaniu, wychodzi ona z przedniej ściany aorty brzusznej, tuż poniżej pnia trzewnego, a wyraźnie powyżej odejścia tętnic nerkowych. Na tym konkretnym obrazie widać obie tętnice nerkowe odchodzące bocznie, mniej więcej na poziomie wnęk nerek, natomiast strzałka pokazuje naczynie biegnące lekko w dół i do przodu z przedniej powierzchni aorty – to typowy obraz tętnicy krezkowej górnej na MR. Z mojego doświadczenia w opisach badań studenci najczęściej mylą ją właśnie z tętnicą nerkową lub śledzionową, bo patrzą bardziej na „okołośrodkowe” położenie niż na kierunek i poziom odejścia. W praktyce klinicznej rozpoznanie tętnicy krezkowej górnej na obrazach MR czy CT jest bardzo ważne np. przy podejrzeniu niedokrwienia jelit, w planowaniu zabiegów wewnątrznaczyniowych (stenty, angioplastyka) czy przed operacjami resekcyjnymi jelita cienkiego. Standardem dobrej praktyki w diagnostyce obrazowej jamy brzusznej jest zawsze ocena osi aorty i kolejno odchodzących z niej pni: pień trzewny, tętnica krezkowa górna, tętnice nerkowe, a niżej tętnica krezkowa dolna. W MR-angiografii, przy prawidłowym pozycjonowaniu pacjenta i odpowiednio dobranym oknie, tętnica krezkowa górna tworzy charakterystyczny łuk skierowany w dół, którego nie da się pomylić z bocznie odchodzącą tętnicą nerkową czy dużo wyżej położoną gałęzią śledzionową pnia trzewnego. Warto sobie to utrwalać, porównując różne projekcje i badania CT/MR, bo potem w praktyce radiologicznej naprawdę przyspiesza to opis i zmniejsza ryzyko pomyłek.

Pytanie 6

Odprowadzenie EKG mierzące różnicę potencjałów między lewym podudziem a prawym przedramieniem oznacza się jako

A. aVL
B. II
C. III
D. aVF
Prawidłowe jest odprowadzenie II, ponieważ zgodnie ze standardem Einthovena mierzy ono różnicę potencjałów między prawym ramieniem (RA) a lewym podudziem (LL). W praktyce klinicznej prawy przedramię traktujemy jako elektrodę RA, a lewy podudzie jako LL, więc dokładnie pasuje to do definicji odprowadzenia II. W zapisie EKG oznacza się je jako Lead II. To odprowadzenie biegnie wzdłuż osi serca z prawej góry (RA) do lewej dołu (LL), przez co najlepiej pokazuje typową depolaryzację przedsionków i komór. Z mojego doświadczenia, jeśli ktoś ma zapamiętać tylko jedno odprowadzenie z kończyn, to właśnie II, bo jest najczęściej używane w monitorowaniu przyłóżkowym, w anestezjologii, OIT, SOR, przy zabiegach endoskopowych czy w trakcie transportu pacjenta. W odprowadzeniu II załamki P są zwykle dobrze widoczne i dodatnie, co pomaga ocenić rytm zatokowy, wykrywać migotanie przedsionków, trzepotanie, częstoskurcz nadkomorowy. W wielu protokołach, np. przy analizie zaburzeń rytmu zgodnie z wytycznymi kardiologicznymi, zaleca się ocenę rytmu właśnie w odprowadzeniu II. W standardowym 12-odprowadzeniowym EKG odprowadzenia kończynowe dwubiegunowe (I, II, III) zawsze opisuje się zgodnie z trójkątem Einthovena: I – między RA a LA, II – między RA a LL, III – między LA a LL. Warto to sobie narysować i zapamiętać, bo potem dużo łatwiej rozumie się osie elektryczne serca i interpretację zapisów. W codziennej pracy technika elektroradiologii poprawne kojarzenie, które elektrody tworzą dane odprowadzenie, to podstawa bezpiecznego i wiarygodnego badania.

Pytanie 7

Brachyterapia polegająca na wielokrotnym wsuwaniu i wysuwaniu źródła promieniowania do tego samego aplikatora nosi nazwę

A. PDR
B. HDR
C. LDR
D. MDR
Prawidłowa odpowiedź to PDR – czyli Pulsed Dose Rate brachyterapia. W praktyce oznacza to technikę, w której wysokoaktywny radionuklid (najczęściej Ir-192) jest wielokrotnie wsuwany i wysuwany do tego samego aplikatora w krótkich, powtarzających się „pulsach” dawki. Z zewnątrz wygląda to jak seria krótkich frakcji HDR, ale rozkład dawki w czasie ma naśladować efekt biologiczny klasycznej LDR (ciągłego, niskiego tempo dawki). Moim zdaniem to jest fajny przykład, jak fizyka medyczna i radiobiologia łączą się z techniką – mamy źródło HDR, ale sposób jego użycia sprawia, że tkanki widzą coś bardziej zbliżonego do LDR. W PDR źródło jest automatycznie przesuwane przez afterloader do poszczególnych pozycji w aplikatorze, zatrzymuje się tam na określony czas (tzw. dwell time), a potem jest wycofywane do bezpiecznego położenia. Cały cykl powtarza się co określony interwał, np. co godzinę, przez kilkanaście–kilkadziesiąt godzin. W wytycznych wielu ośrodków radioterapii podkreśla się, że PDR jest szczególnie użyteczna tam, gdzie chcemy mieć lepszą kontrolę nad rozkładem dawki niż w LDR, ale jednocześnie zachować korzystny profil powikłań późnych. Stosuje się ją m.in. w guzach ginekologicznych, nowotworach głowy i szyi czy w niektórych nawrotach nowotworów, gdzie precyzyjna rekonstrukcja pozycji aplikatora w TK lub MR i planowanie 3D pozwalają dokładnie zoptymalizować dawkę. W codziennej pracy technika PDR wymaga dobrej koordynacji zespołu: prawidłowego założenia aplikatorów, weryfikacji ich położenia obrazowaniem, rzetelnego planowania w systemie TPS oraz ścisłego przestrzegania procedur ochrony radiologicznej, bo mimo że źródło jest schowane w afterloaderze, jego aktywność jest wysoka i każda ekspozycja musi być pod pełną kontrolą.

Pytanie 8

Na prawidłowo wykonanym zdjęciu zatok w projekcji PA górny zarys piramid rzutuje się

A. poniżej zatok szczękowych.
B. na dolny brzeg oczodołu.
C. powyżej zatok szczękowych.
D. poniżej dolnego brzegu oczodołu.
W tym zadaniu kluczowe jest zrozumienie zależności między ułożeniem głowy pacjenta a położeniem piramid kości skroniowych względem zatok szczękowych na zdjęciu w projekcji PA. Błędne odpowiedzi najczęściej wynikają z mylenia zasad projekcji czaszki ogólnej z zasadami typowymi dla celowanego obrazowania zatok. Jeśli ktoś uważa, że górny zarys piramid powinien rzutować się poniżej dolnego brzegu oczodołu lub dokładnie na dolny brzeg oczodołu, to zwykle miesza kryteria jakościowe dla innych projekcji czaszki, gdzie faktycznie relacja piramid do oczodołów jest elementem oceny poprawności ułożenia. W klasycznej projekcji PA czaszki patrzy się m.in. na to, czy piramidy nie nachodzą nadmiernie na oczodoły, ale w projekcjach zatok główny nacisk kładzie się na odsłonięcie światła zatok, szczególnie szczękowych. Dlatego ustawienie, w którym piramidy kończą się na poziomie dolnego brzegu oczodołu, nie jest pożądane – część struktury może wtedy wchodzić w rzut zatok i utrudniać ocenę ich przejaśnienia. Z kolei odpowiedź, że piramidy rzutują się powyżej zatok szczękowych, jest wprost sprzeczna z techniką wykonywania zdjęcia zatok. Gdyby piramidy znalazły się powyżej zatok, to praktycznie cała ich masa kostna nachodziłaby na zatoki szczękowe, co powoduje nakładanie się struktur i utratę czytelności granic patologii. To typowy błąd myślowy: ktoś zakłada, że „powyżej” znaczy lepiej, bo nie będzie zasłaniać, ale w geometrii projekcji rentgenowskiej jest odwrotnie – to, co jest bardziej dogłowowo, częściej będzie rzutowane na struktury leżące poniżej na detektorze. Dobra praktyka w radiologii zatok mówi jasno: piramidy trzeba „ściągnąć” w dół, poniżej zatok szczękowych, poprzez odpowiednie pochylenie głowy i uniesienie brody. Jeżeli na obrazie widzisz, że piramidy pokrywają się z zatokami lub z oczodołami, oznacza to błędne ułożenie, a nieprawidłowe parametry projekcji. Z mojego doświadczenia wynika, że zapamiętanie jednego prostego kryterium – zatoki szczękowe muszą być wolne od nakładania się piramid – bardzo pomaga unikać takich pomyłek przy egzaminach i w realnej pracy na pracowni.

Pytanie 9

Na którym obrazie MR jest widoczne pasmo saturacji?

A. Obraz 3
Ilustracja do odpowiedzi A
B. Obraz 4
Ilustracja do odpowiedzi B
C. Obraz 2
Ilustracja do odpowiedzi C
D. Obraz 1
Ilustracja do odpowiedzi D
W tym pytaniu łatwo dać się zmylić, bo wszystkie cztery obrazy pochodzą z planowania lub prezentacji badań MR, ale tylko jeden z nich pokazuje typowe pasmo saturacji. Na pierwszym obrazie widoczne są liczne ukośne linie przecinające obraz oczodołów – to linie planowania przyszłych przekrojów, tzw. lokalizatory lub warstwy planowane w różnych płaszczyznach. Mają one tylko funkcję pomocniczą dla technika, nie są związane z nasycaniem sygnału. Typowym błędem jest utożsamianie każdej ukośnej strefy czy linii z pasmem saturacji, podczas gdy są to po prostu graficzne znaczniki na ekranie konsoli. Na drugim obrazie, w projekcji strzałkowej kręgosłupa szyjnego, widać równoległe prostokątne ramki – to również planowane warstwy poprzeczne (axialne). Każdy taki prostokąt odpowiada jednej warstwie, w której będzie zbierany sygnał. Nie obserwujemy tu jednolitego wygaszenia sygnału w jakimś obszarze, tylko czyste, geometryczne kontury. Warstwy pomiarowe nie są tym samym co pasmo saturacji: warstwa jest miejscem, gdzie rejestrujemy obraz, a pasmo saturacji to strefa, w której sygnał jest celowo tłumiony przed pomiarem. Trzeci obraz przedstawia przekrój poprzeczny z naniesionym okręgiem i podziałem na sektory oznaczone numerami. To schemat podziału pola obrazowania, używany np. do opisu położenia zmian, planowania cewki czy orientacji. Nie ma tam żadnego rzeczywistego paska wygaszonego sygnału, tylko konstrukcja graficzna. Częsty błąd polega na szukaniu „pasma” w samym rysunku, zamiast patrzeć na to, co dzieje się z sygnałem tkanek. Prawdziwe pasmo saturacji, jak na obrazie 4, to jednorodny, prostokątny pas sygnału o obniżonej intensywności, ustawiony zwykle skośnie do głównego przekroju, który w praktyce używa się do tłumienia przepływu krwi lub ruchu struktur spoza obszaru zainteresowania. Warto zapamiętać: linie i ramki cienkie, ostre – to planowanie warstw; szerokie, półprzezroczyste, „wypełnione” pole – to pasmo saturacji. Skupienie się na wyglądzie sygnału, a nie tylko na geometrii linii, pozwala uniknąć takich pomyłek przy analizie obrazów MR.

Pytanie 10

Na obrazie uwidoczniono

Ilustracja do pytania
A. radiogram czynnościowy kręgosłupa lędźwiowego.
B. radiogram z wadą postawy.
C. radiogram czynnościowy kręgosłupa piersiowego.
D. scyntygram kośćca.
Na obrazie widzisz typowy scyntygram kośćca – tzw. scyntygrafię kości całego ciała. Charakterystyczny jest „negatywowy” wygląd: brak klasycznych zarysów tkanek miękkich, brak typowych struktur jak płuca czy cienie narządów jamy brzusznej, za to równomierne, dość rozmyte uwidocznienie całego szkieletu w projekcji przedniej i tylnej. W scyntygrafii kości używa się radiofarmaceutyku znakowanego technetem-99m (najczęściej 99mTc-MDP lub 99mTc-HDP), który gromadzi się w miejscach aktywnego metabolizmu kostnego – czyli tam, gdzie kość się przebudowuje. Moim zdaniem to jedno z badań, które najszybciej uczą odróżniać medycynę nuklearną od klasycznego RTG: obraz jest bardziej „plamisty”, bez ostrych konturów, a intensywność sygnału zależy od wychwytu radioznacznika, a nie od pochłaniania promieniowania przez tkanki. W praktyce klinicznej scyntygram kośćca stosuje się do wykrywania przerzutów nowotworowych do kości, ognisk zapalnych (np. osteomyelitis), złamań przeciążeniowych, martwicy aseptycznej, a także do oceny rozległości zmian pourazowych. Badanie wykonuje się gammakamerą, a pacjent musi odczekać zwykle 2–3 godziny po podaniu radiofarmaceutyku, żeby znacznik związał się z tkanką kostną i wypłukał z tkanek miękkich. Dobre praktyki mówią, żeby przed badaniem pacjent był dobrze nawodniony i po podaniu radiofarmaceutyku dużo pił, co poprawia jakość obrazów i zmniejsza dawkę dla pęcherza moczowego. W odróżnieniu od radiogramu, tutaj nie interesują nas klasyczne projekcje kostne typu AP/PA/boczne, tylko całościowy zapis rozkładu radioaktywności w ciele. To właśnie ten układ – cały szkielet, projekcja przód–tył, rozmyte, izotopowe cieniowanie – jednoznacznie wskazuje na scyntygram kośćca.

Pytanie 11

Za wyrównanie ciśnienia między uchem środkowym a otoczeniem odpowiada

A. narząd Cortiego.
B. przewód słuchowy.
C. błona bębenkowa.
D. trąbka słuchowa.
Prawidłowo wskazana została trąbka słuchowa, nazywana też trąbką Eustachiusza. To właśnie ten przewód łączy jamę bębenkową ucha środkowego z nosową częścią gardła i odpowiada za wyrównywanie ciśnienia między uchem a otoczeniem. W normalnych warunkach trąbka słuchowa jest częściowo zamknięta i otwiera się przy przełykaniu, ziewaniu, żuciu – wtedy do jamy bębenkowej dostaje się powietrze i ciśnienie po obu stronach błony bębenkowej się wyrównuje. Dzięki temu błona bębenkowa może swobodnie drgać, a przewodzenie dźwięku jest prawidłowe. W praktyce bardzo dobrze to widać przy zmianach wysokości, np. w windzie, samolocie czy w górach – uczucie „zatkanego ucha” mija, gdy kilka razy przełkniemy ślinę, napijemy się wody albo ziewniemy. To właśnie aktywacja trąbki słuchowej. W otolaryngologii i audiometrii zwraca się dużą uwagę na drożność trąbki słuchowej, bo jej zaburzenia prowadzą do podciśnienia w jamie bębenkowej, wysięku, nawracających zapaleń ucha środkowego i przewodzeniowego ubytku słuchu. W testach impedancyjnych (tympanometria) nieprawidłowe ciśnienie w uchu środkowym jest jednym z podstawowych parametrów oceny. Moim zdaniem warto też kojarzyć, że przy niedrożności trąbki słuchowej stosuje się proste manewry, jak próba Valsalvy czy manewr Toynbee, a w poważniejszych przypadkach leczenie laryngologiczne, czasem nawet drenaż jamy bębenkowej. To są takie bardzo praktyczne sytuacje, które potem wracają w pracy z pacjentem i w interpretacji badań audiometrycznych.

Pytanie 12

Zamieszczony elektrokardiogram przedstawia

Ilustracja do pytania
A. migotanie komór.
B. zawał przedniej ściany serca.
C. blok prawej odnogi pęczka Hisa.
D. zawał dolnej ściany serca.
To zapis bardzo typowy dla migotania komór. Na przedstawionym EKG nie widać żadnych wyraźnych, powtarzalnych zespołów QRS, brak też załamków P i załamków T. Zamiast tego jest nieregularna, chaotyczna, falista linia o zmiennej amplitudzie i częstotliwości. W praktyce mówi się, że zapis wygląda jak „robaczkowanie” albo „drżenie” linii izoelektrycznej. To właśnie klasyczny obraz VF (ventricular fibrillation). W tej arytmii poszczególne włókna mięśnia komór kurczą się nieskoordynowanie, serce mechanicznie nie pompuje krwi, a krążenie w zasadzie ustaje. Z punktu widzenia medycyny ratunkowej to rytm do defibrylacji – zgodnie z wytycznymi ERC/AHA po rozpoznaniu VF natychmiast wykonuje się wyładowanie defibrylatora (u dorosłych najczęściej 150–200 J w defibrylacji dwufazowej), równolegle prowadząc wysokiej jakości uciśnięcia klatki piersiowej. Moim zdaniem warto zapamiętać, że w migotaniu komór nie próbujemy liczyć tętna ani częstości – tu liczy się szybkie rozpoznanie „chaosu” na EKG i natychmiastowa reakcja. W warunkach szpitalnych VF często widzi się na monitorze jako nagłą utratę zespołów QRS i przejście w właśnie taki nieregularny zapis bez linii izoelektrycznej między „falami”. W diagnostyce elektromedycznej dobrą praktyką jest zawsze sprawdzenie, czy nie jest to artefakt (np. luźne elektrody), ale przy braku tętna i nagłej utracie przytomności zakładamy, że to prawdziwe VF i działamy od razu, bez zwłoki na dodatkową analizę.

Pytanie 13

Którą kasetę należy wykorzystać do wykonania rentgenogramu klatki piersiowej w projekcji bocznej u 35-letniej pacjentki o wzroście 165 cm i wadze 54 kg?

A. 35,6 cm × 43,2 cm
B. 24 cm × 30 cm
C. 35,6 cm × 35,6 cm
D. 30 cm × 40 cm
Prawidłowo dobrana kaseta 30 cm × 40 cm do bocznego zdjęcia klatki piersiowej u szczupłej, dorosłej pacjentki to po prostu standard praktyki w RTG klatki. W projekcji bocznej musisz „zmieścić” cały wymiar przednio–tylny klatki piersiowej, od mostka aż do tylnej ściany klatki, plus zapas na barki i dolne kąty łopatek. Dla dorosłych o przeciętnej budowie ciała przyjmuje się właśnie kasetę 30 × 40 cm jako optymalny kompromis między pełnym pokryciem obszaru a wygodnym ułożeniem pacjenta przy detektorze. Mniejsze kasety zbyt łatwo „obcinają” fragmenty płuc lub tylne kąty przepony, a to potem utrudnia ocenę zmian zapalnych, zatorowości czy płynu w jamach opłucnowych. W dobrych pracowniach radiologicznych dużą wagę przykłada się do powtarzalności: PA (projekcja tylno–przednia) i boczna klatki u dorosłych są wykonywane w ustalonym protokole – z reguły kaseta 35 × 43 cm do PA i 30 × 40 cm do bocznej, przy prawidłowym ustawieniu linii środkowej ciała, z uniesionymi rękami i długim ognisku–kaseta (ok. 180 cm), żeby ograniczyć powiększenie. W praktyce technik RTG, moim zdaniem, właśnie takie automatyczne sięganie po właściwy rozmiar kasety bardzo zmniejsza liczbę powtórzeń ekspozycji, a więc też dawkę dla pacjenta. Warto też pamiętać, że poprawny dobór kasety łączy się z doborem parametrów ekspozycji: przy bocznym zdjęciu klatki stosuje się wyższe kV niż w PA, bo promień musi przejść przez większą grubość tkanek. Zbyt mała kaseta i zbyt niskie kV to klasyczna para błędów – obraz może być zarówno niepełny, jak i niedoeksponowany. Dobrą praktyką jest zawsze wyobrazić sobie, jak pacjent „leży” na kasecie w danej projekcji i czy wszystkie istotne struktury anatomiczne (płuca, serce, tylne zarysy przepony, kręgosłup piersiowy) się na niej mieszczą.

Pytanie 14

Na obrazie MR kręgosłupa lędźwiowego strzałką wskazano

Ilustracja do pytania
A. osteofit na poziomie L4-L5
B. przepuklinę na poziomie L2-L3
C. przepuklinę na poziomie L4-L5
D. osteofit na poziomie L2-L3
Na zaznaczonym obrazie MR w projekcji strzałkowej widać typowy obraz przepukliny krążka międzykręgowego na poziomie L4–L5. Strzałka pokazuje ogniskowe uwypuklenie materiału jądra miażdżystego poza granice prawidłowego zarysu krążka, w kierunku kanału kręgowego. W MR wygląda to jak ognisko o sygnale zbliżonym do krążka, ciągłe z dyskiem, które wchodzi do kanału i modeluje worek oponowy lub korzenie ogona końskiego. To właśnie odróżnia przepuklinę od osteofitu – osteofit jest zbudowany z tkanki kostnej, ma ostry, twardy zarys, wychodzi z krawędzi trzonu, a nie z obwodu krążka. Na tym zdjęciu kształt zmiany jest „miękki”, półkolisty, typowo dyskowy. Poziom L4–L5 rozpoznajemy po liczeniu trzonów od góry (L1 nad stożkiem rdzeniowym) i po położeniu względem kości krzyżowej – segment nad L5–S1. W praktyce klinicznej taka przepuklina L4–L5 bardzo często odpowiada za bóle krzyża z promieniowaniem do kończyny dolnej w przebiegu ucisku korzenia L5. Standardem jest opisanie w badaniu MR: poziomu, typu przepukliny (protruzja, ekstruzja, sekwestr), stopnia zwężenia kanału i otworów międzykręgowych. Moim zdaniem warto od razu w głowie kojarzyć obraz z objawami pacjenta, bo to potem ułatwia rozmowę z lekarzem prowadzącym i udział w planowaniu leczenia – od fizjoterapii, przez blokady, aż po ewentualny zabieg neurochirurgiczny. Dobra praktyka w diagnostyce obrazowej kręgosłupa to zawsze: poprawne zidentyfikowanie poziomu, ocena wysokości i sygnału krążków, kształtu tylnej krawędzi dysku oraz relacji do worka oponowego i korzeni nerwowych – tutaj wszystkie te elementy wskazują jednoznacznie na przepuklinę krążka na poziomie L4–L5.

Pytanie 15

Na prawidłowo przedstawionym radiogramie badania kontrastowego strzałką zaznaczono

Ilustracja do pytania
A. moczowód prawy.
B. mięsień lędźwiowy lewy.
C. moczowód lewy.
D. mięsień lędźwiowy prawy.
Na zdjęciu widzisz klasyczne badanie urograficzne – kontrast wypełnia układy kielichowo‑miedniczkowe nerek oraz moczowody. Strzałka wskazuje smukły, wyraźnie cieniujący słupek kontrastu biegnący z górnej części obrazu w kierunku pęcherza po stronie lewej pacjenta. W projekcji AP (przednio‑tylnej) zawsze pamiętamy, że lewa strona obrazu odpowiada lewej stronie pacjenta, bo promień pada z przodu na tył, a obraz nie jest odwracany lustrzanie. Dlatego zaznaczona struktura to lewy moczowód wypełniony środkiem cieniującym. Moczowód na urografii ma typowy przebieg: schodzi z miedniczki nerkowej przyśrodkowo, krzyżuje wyrostki poprzeczne kręgów lędźwiowych, dalej zbliża się do linii kolców biodrowych przednich górnych i kończy w pęcherzu. Na tym radiogramie dokładnie to widać – równy, kontrastowy zarys, bez typowego wachlarzowatego kształtu mięśnia i bez beleczkowania kości. Z praktycznego punktu widzenia umiejętność pewnego rozpoznania moczowodów jest kluczowa przy ocenie zastoju moczu, kamicy moczowodowej, zwężeń po operacjach czy zmian uciskowych z zewnątrz. W codziennej pracy technika elektroradiologii, radiologa czy urologa takie zdjęcie to podstawa oceny drożności dróg moczowych. Moim zdaniem warto sobie „wdrukować” ten obraz w pamięć: wąski kontrastowy pasek w linii mniej więcej wyrostków poprzecznych – to moczowód, a jeśli po lewej stronie ekranu, to właśnie moczowód lewy.

Pytanie 16

Który zapis EKG przedstawia falę Pardee'go?

A. Zapis 3
Ilustracja do odpowiedzi A
B. Zapis 2
Ilustracja do odpowiedzi B
C. Zapis 1
Ilustracja do odpowiedzi C
D. Zapis 4
Ilustracja do odpowiedzi D
Prawidłowo wskazany „Zapis 4” przedstawia tzw. falę Pardee’go, czyli uniesienie odcinka ST typowe dla ostrego zawału mięśnia sercowego z uniesieniem ST (STEMI). Kluczowy element, na który patrzymy, to położenie odcinka ST względem linii izoelektrycznej. W fali Pardee’go odcinek ST jest wyraźnie uniesiony i przechodzi niemal płynnie w załamek T, tworząc taki jakby kopiec lub „płaskowyż”. Punkt J (miejsce przejścia zespołu QRS w ST) leży powyżej linii izoelektrycznej – w standardach przyjmuje się najczęściej ≥1–2 mm w odpowiednich odprowadzeniach. W zapisie 4 widać właśnie takie wyraźne, kopulaste uniesienie ST, bez wyraźnego powrotu do linii podstawowej po zespole QRS. W praktyce, na dyżurze czy w pracowni EKG, taki obraz w odprowadzeniach odpowiadających za konkretną ścianę serca (np. V2–V4 dla ściany przedniej) oznacza pilne podejrzenie STEMI i konieczność natychmiastowego działania – powiadomienia lekarza, przygotowania pacjenta do koronarografii, podania leków przeciwpłytkowych zgodnie z wytycznymi ESC/Polskiego Towarzystwa Kardiologicznego. Moim zdaniem warto od razu „wdrukować” sobie w głowę ten obraz: wysoki zespół QRS, a zaraz za nim uniesiony, wypukły odcinek ST, który nie opada do izoelektrycznej – to jest klasyczna fala Pardee’go. Właśnie takie rozpoznanie na poziomie technika EKG ma ogromne znaczenie kliniczne, bo przyspiesza decyzje terapeutyczne i realnie wpływa na rokowanie chorego.

Pytanie 17

Droga przewodnictwa powietrznego fali akustycznej przebiega przez

A. ucho środkowe, ucho wewnętrzne i kości czaszki.
B. ucho zewnętrzne, ucho środkowe i ucho wewnętrzne.
C. ucho wewnętrzne i kości czaszki.
D. ucho zewnętrzne, ucho środkowe i kości czaszki.
Prawidłowo wskazana droga przewodnictwa powietrznego to: ucho zewnętrzne, ucho środkowe i ucho wewnętrzne. Właśnie tak fizjologicznie przebiega fala akustyczna, kiedy słyszymy dźwięk w typowy, „naturalny” sposób. Najpierw fala dźwiękowa wchodzi przez małżowinę uszną i przewód słuchowy zewnętrzny – to jest ucho zewnętrzne. Małżowina działa trochę jak lejek akustyczny, zbiera i kieruje fale do przewodu, a jego kształt wpływa na wzmocnienie niektórych częstotliwości, co ma znaczenie np. w rozpoznawaniu kierunku, skąd dochodzi dźwięk. Następnie fala uderza w błonę bębenkową. To już granica ucha zewnętrznego i środkowego. Błona bębenkowa zaczyna drgać i przekazuje te drgania na kosteczki słuchowe w uchu środkowym: młoteczek, kowadełko i strzemiączko. Ten układ kosteczek działa jak mechaniczny transformator impedancji – dzięki temu energia fali powietrznej może być efektywnie przekazana do środowiska płynowego w uchu wewnętrznym. Z mojego doświadczenia to właśnie to miejsce jest często pomijane w myśleniu: nie doceniamy roli wzmacniania i dopasowania impedancji. Na końcu strzemiączko porusza okienkiem owalnym, które przenosi drgania do ślimaka w uchu wewnętrznym wypełnionego płynem. Tam dochodzi do przetworzenia energii mechanicznej fali na impulsy nerwowe w komórkach rzęsatych narządu Cortiego. W badaniach audiometrycznych zawsze rozróżnia się przewodnictwo powietrzne i kostne właśnie po to, żeby ocenić, czy zaburzenie dotyczy ucha zewnętrznego/środkowego (niedosłuch przewodzeniowy), czy wewnętrznego i nerwu (niedosłuch odbiorczy). Standardem jest, że przy badaniu przewodnictwa powietrznego sygnał podajemy przez słuchawki na małżowinę uszną, a więc wykorzystujemy całą tę drogę: ucho zewnętrzne → ucho środkowe → ucho wewnętrzne. To jest podstawowa, książkowa definicja przewodnictwa powietrznego i warto ją mieć w głowie, bo przewija się w praktycznie każdym opisie audiogramu.

Pytanie 18

W celu wyeliminowania zakłóceń obrazu MR przez sygnały pochodzące z tkanki tłuszczowej, stosuje się

A. obrazowanie PD - zależne.
B. sekwencje STIR.
C. obrazowanie T1 - zależne.
D. sekwencje FLAIR.
Prawidłowo wskazano sekwencje STIR, bo to jest klasyczna, podręcznikowa metoda supresji sygnału z tkanki tłuszczowej w obrazowaniu MR. STIR (Short Tau Inversion Recovery) to sekwencja inwersyjno‑odzyskiwania, w której stosuje się impuls inwersyjny 180° i odpowiednio dobrany czas TI (inversion time), tak żeby magnetyzacja podłużna tłuszczu przechodziła przez zero w momencie rejestracji sygnału. Efekt w praktyce: tłuszcz na obrazach jest wygaszony, ciemny, dzięki czemu lepiej widać obrzęk, zmiany zapalne, nacieki nowotworowe czy urazy. W kończynach, w badaniach kręgosłupa, stawów czy w onkologii STIR jest, moim zdaniem, absolutnym „must have”, bo pozwala wyłapać nawet subtelne zmiany w szpiku kostnym i tkankach miękkich. W standardach protokołów MR, zwłaszcza narządu ruchu, bardzo często znajdziesz kombinację sekwencji T1‑zależnych, T2‑zależnych i właśnie STIR do oceny patologii. Warto pamiętać, że STIR jest sekwencją niespecyficzną dla pola – to znaczy działa dobrze zarówno w 1,5 T, jak i 3 T, w przeciwieństwie do klasycznego fat‑satu chemicznego, który bywa kapryśny przy niejednorodnościach pola. Z praktycznego punktu widzenia STIR jest też bezpieczny przy badaniach po kontraście gadolinowym, bo nie powinno się go łączyć z selektywną saturacją tłuszczu, natomiast STIR dalej poprawnie wygasza tłuszcz. Dobrą praktyką jest zapamiętanie: jeśli pytanie dotyczy tłumienia tłuszczu metodą inwersyjno‑odzyskiwania – odpowiedź to STIR, nie FLAIR ani inne sekwencje.

Pytanie 19

Która właściwość promieniowania X pozwala na skierowanie promienia centralnego na wybrany punkt topograficzny podczas wykonywania badania radiologicznego?

A. Różnica w pochłanianiu przez różne substancje.
B. Przenikliwość różnego stopnia.
C. Wywoływanie zjawiska fotoelektrycznego.
D. Prostoliniowe rozchodzenie się.
Prawidłowo wskazana właściwość to prostoliniowe rozchodzenie się promieniowania X. W praktyce oznacza to, że fotony promieniowania rentgenowskiego poruszają się po możliwie prostych liniach, dopóki nie zostaną pochłonięte, rozproszone albo zatrzymane przez przegrodę, kolimator, filtr czy tkanki pacjenta. Dzięki temu radiolog albo technik elektroradiologii może bardzo precyzyjnie „wycelować” promień centralny w konkretny punkt topograficzny, np. w środek stawu kolanowego, wyrostek barkowy łopatki czy przegrodę międzykręgową. Całe ustawianie lampy RTG, dobór projekcji i pozycjonowanie pacjenta opiera się właśnie na założeniu, że promień centralny biegnie prostoliniowo od ogniska lampy do detektora. Moim zdaniem to jest jedna z absolutnie kluczowych rzeczy w praktyce: jeśli rozumiesz prostoliniowe rozchodzenie się promieniowania, dużo łatwiej ogarnąć geometrie projekcji, zniekształcenia, powiększenie obrazu czy cieniowanie struktur. Standardy wykonywania zdjęć RTG (np. klasyczne projekcje AP, PA, boczne, skośne) bardzo mocno podkreślają konieczność prawidłowego ustawienia promienia centralnego względem osi długiej badanej kości czy danego narządu. Dzięki temu unika się zniekształceń, nakładania struktur i powtarzania ekspozycji, co jest też elementem dobrej praktyki ochrony radiologicznej – mniejsza liczba powtórzeń to mniejsze narażenie pacjenta i personelu. W codziennej pracy w pracowni RTG używa się wskaźników świetlnych i kolimatora, które pokazują pole promieniowania i właśnie kierunek promienia centralnego. Cała ta optyka działa sensownie tylko dlatego, że zakładamy prostoliniową trajektorię fotonów X, analogicznie jak w klasycznej geometrii świetlnej.

Pytanie 20

Zgodnie z obowiązującą procedurą radiologiczną zdjęcie jamy brzusznej przy podejrzeniu zapalenia nerek zostanie wykonane w projekcji

A. AP na leżąco.
B. AP na stojąco.
C. PA na leżąco.
D. PA na stojąco.
Prawidłowa jest projekcja AP na leżąco, bo przy podejrzeniu zapalenia nerek (odmiedniczkowe zapalenie nerek, kolka nerkowa, inne ostre stany w obrębie jamy brzusznej i przestrzeni zaotrzewnowej) standardowo wykonuje się klasyczne zdjęcie przeglądowe jamy brzusznej w pozycji leżącej na plecach. W projekcji AP promień główny przechodzi od strony przedniej do tylnej części ciała, a detektor leży pod plecami pacjenta. W praktyce oddziałowej to jest najbardziej powtarzalna, stabilna i bezpieczna pozycja, szczególnie dla pacjentów z bólem, gorączką, odwodnieniem, którzy często w ogóle nie są w stanie ustać prosto przy statywie. Zdjęcie AP na leżąco pozwala dobrze ocenić zarys nerek, rozmieszczenie gazu w jelitach, obecność zwapnień (np. złogi w drogach moczowych), czasem cienie tkanek miękkich w okolicy lędźwiowej. Moim zdaniem ważne jest też to, że ta projekcja minimalizuje ruchy pacjenta – leżący chory mniej się wierci, więc ostrość obrazu jest po prostu lepsza. W wielu pracowniach jest to pozycja domyślna do przeglądowego RTG brzucha, zgodna z typowymi procedurami radiologicznymi i zaleceniami opisanymi w podręcznikach techniki obrazowania. Dodatkowo, jeśli lekarz podejrzewa inny problem (np. perforację przewodu pokarmowego czy wolny gaz pod kopułami przepony), dopiero wtedy dokładamy projekcję stojącą lub boczną na leżąco, ale bazą nadal pozostaje AP na leżąco. W praktyce technik często zaczyna właśnie od tego ułożenia, a dopiero potem, na zlecenie lekarza, rozszerza badanie o kolejne projekcje lub inne metody, np. USG czy TK, bo RTG jamy brzusznej przy zapaleniu nerek jest badaniem raczej uzupełniającym niż rozstrzygającym.

Pytanie 21

Przyczyną zaniku kostnego jest

A. duży i częsty wysiłek.
B. przedawkowanie spożycia wapnia.
C. utrata macierzy kostnej.
D. nadmiar witaminy D3.
Prawidłowo wskazana przyczyna zaniku kostnego to utrata macierzy kostnej. Kość nie jest strukturą „martwą”, tylko żywą tkanką, która stale się przebudowuje. Podstawą tej przebudowy jest właśnie macierz kostna, czyli rusztowanie zbudowane głównie z kolagenu typu I, na którym odkładają się sole mineralne – głównie fosforan wapnia w postaci hydroksyapatytu. Gdy dochodzi do przewagi procesów resorpcji (działanie osteoklastów) nad tworzeniem nowej tkanki kostnej (osteoblasty), macierz jest stopniowo tracona i rozwija się zanik kostny, np. w osteoporozie czy przy długotrwałym unieruchomieniu kończyny. W praktyce klinicznej widać to bardzo wyraźnie w badaniach obrazowych: na zdjęciach RTG obserwuje się obniżenie gęstości kostnej, ścieńczenie beleczek kostnych, poszerzenie jam szpikowych. W densytometrii (DXA) notuje się spadek T-score, co od razu kojarzy się z utratą masy i jakości macierzy kostnej. Moim zdaniem warto zapamiętać, że sama obecność wapnia to za mało – bez prawidłowej macierzy kolagenowej nie ma gdzie tego wapnia „przyczepić”. Dlatego w profilaktyce i leczeniu osteoporozy tak duży nacisk kładzie się nie tylko na suplementację wapnia i witaminy D3, ale też na aktywność fizyczną, prawidłową dietę białkową oraz unikanie leków i stanów, które nasilają resorpcję kości. W standardach postępowania (np. zalecenia towarzystw osteologicznych) wyraźnie podkreśla się rolę równowagi między tworzeniem macierzy a jej degradacją: jeśli ta równowaga jest zaburzona na korzyść utraty, to właśnie wtedy rozwija się zanik kostny, widoczny później w badaniach obrazowych i objawach klinicznych, jak złamania niskoenergetyczne czy obniżenie wzrostu.

Pytanie 22

Kolonoskopia to badanie, które ma na celu ocenę błony śluzowej

A. jelita grubego.
B. dwunastnicy.
C. jelita cienkiego.
D. żołądka.
Prawidłowo – kolonoskopia służy do oceny błony śluzowej jelita grubego, czyli okrężnicy, esicy i odbytnicy. W badaniu używa się giętkiego endoskopu wprowadzanego przez odbyt, a operator ogląda od środka ścianę jelita na monitorze w powiększeniu. Dzięki temu można bardzo dokładnie ocenić wygląd śluzówki: kolor, ukształtowanie, obecność nadżerek, owrzodzeń, polipów, guzów czy źródeł krwawienia. Z mojego doświadczenia to jedno z kluczowych badań w profilaktyce raka jelita grubego – standardem jest wykonywanie kolonoskopii przesiewowej u osób po 50. roku życia (a czasem wcześniej, gdy są obciążenia rodzinne). W trakcie kolonoskopii zgodnie z dobrymi praktykami nie tylko się ogląda jelito, ale też od razu wykonuje procedury terapeutyczne: usuwa polipy pętlą diatermiczną, pobiera wycinki do badania histopatologicznego, tamuje krwawienie za pomocą klipsów endoskopowych czy koagulacji. Dobre przygotowanie pacjenta, czyli dokładne oczyszczenie jelita środkami przeczyszczającymi dzień przed badaniem, jest absolutnie kluczowe – od tego zależy jakość oceny błony śluzowej, a tym samym wiarygodność wyniku. W praktyce technik czy personel pomocniczy musi pilnować, żeby pacjent miał właściwe przeciwwskazania ocenione (np. ciężka niewydolność krążenia, perforacja, ostre zapalenie otrzewnej) oraz żeby sprzęt był prawidłowo zdezynfekowany zgodnie z procedurami endoskopowymi. Moim zdaniem warto też zapamiętać prostą zasadę: kolonoskopia = jelito grube, gastroskopia = przełyk, żołądek i dwunastnica. To pomaga na egzaminach i w praktyce na oddziale, kiedy lekarz zleca różne badania endoskopowe i trzeba je dobrze od siebie odróżniać.

Pytanie 23

Zamieszczony obraz został wykonany metodą

Ilustracja do pytania
A. MRI
B. PET
C. USG
D. TK
Na tym obrazie widać przekrój poprzeczny głowy z bardzo wyraźnie odgraniczoną kością czaszki, która jest intensywnie biała, oraz typowy dla tomografii komputerowej rozkład szarości w mózgowiu i zatokach. Pomyłki przy tym pytaniu zwykle wynikają z mylenia różnych metod obrazowania, zwłaszcza gdy ktoś patrzy tylko na to, że jest to „czarno-biały” przekrój, bez analizy szczegółów technicznych. Ultrasonografia (USG) nie daje takich przekrojów przez czaszkę u dorosłych, bo kość bardzo silnie odbija i tłumi fale ultradźwiękowe. W USG obraz jest dynamiczny, ziarnisty, bez wyraźnej białej obwódki kości otaczającej cały przekrój. Gdyby to było USG, widzielibyśmy raczej struktury powierzchowne, a nie pełny przekrój mózgowia. Rezonans magnetyczny (MRI) daje obrazy przekrojowe, ale zupełnie inny jest charakter kontrastu: kość jest bardzo ciemna, prawie „wycięta” z obrazu, a tkanki miękkie mają bogaty kontrast zależny od sekwencji (T1, T2, FLAIR itd.). W MRI nie zobaczysz tak intensywnie białej, ciągłej obwódki kostnej jak w TK. Częstym błędem jest to, że ktoś myśli: „jest przekrój, więc pewnie MRI”, a pomija fakt, że w TK operujemy gęstością w HU, co daje właśnie taki typowy wygląd kości. Pozytonowa tomografia emisyjna (PET) to natomiast zupełnie inna bajka – pokazuje głównie metabolizm i wychwyt radioznacznika, więc dominuje mapa kolorowa lub szaroodcieniowa ognisk aktywności, a nie dokładny obraz anatomiczny kości i mózgu. PET często łączy się z TK lub MRI, ale wtedy widać charakterystyczne nałożenie obrazów funkcjonalnych i anatomicznych. Tutaj mamy czysty obraz anatomiczny typowy dla TK. Z mojego punktu widzenia dobrą praktyką jest, żeby przy każdym obrazie najpierw zadać sobie pytanie: jak zachowuje się kość, jak wygląda tło, czy widzę mapę funkcjonalną czy czystą anatomię. To pomaga szybko odsiać błędne skojarzenia i poprawnie rozpoznać technikę obrazowania.

Pytanie 24

Na przekroju poprzecznym TK kręgosłupa szyjnego strzałką wskazano

Ilustracja do pytania
A. ząb kręgu obrotowego.
B. guzek tylny kręgu szczytowego.
C. otwór kręgu szczytowego.
D. rdzeń kręgowy.
Na przedstawionym przekroju poprzecznym TK szyi strzałka wskazuje typową, owalną, kostną strukturę położoną centralnie, nieco ku przodowi w kanale kręgowym – to ząb kręgu obrotowego (dens axis, C2). W tomografii komputerowej w okolicy połączenia czaszkowo‑szyjnego zawsze warto sobie „ułożyć w głowie” układ: z przodu łuk przedni kręgu szczytowego (C1), za nim właśnie ząb kręgu obrotowego, a dopiero dalej ku tyłowi przestrzeń z rdzeniem kręgowym. Ząb ma wysoką gęstość w TK (typowa dla kości zbitej), wyraźne korowe obrysy i jest zrośnięty z trzonem C2. Moim zdaniem, jak się raz dobrze zapamięta ten charakterystyczny obraz „palika” wystającego do góry w obrębie C1, to później rozpoznawanie jest już dużo prostsze. W praktyce klinicznej prawidłowa identyfikacja zęba kręgu obrotowego jest kluczowa przy ocenie urazów odcinka szyjnego, zwłaszcza u pacjentów po wypadkach komunikacyjnych czy upadkach z wysokości. Standardy diagnostyczne (np. zalecenia towarzystw radiologicznych) podkreślają konieczność oceny ciągłości zęba, linii złamania, przemieszczenia względem łuku przedniego C1 oraz szerokości przestrzeni przedzębowej. Właśnie w oparciu o prawidłowe rozpoznanie tej struktury planuje się dalsze postępowanie: od zaopatrzenia ortopedycznego, przez stabilizację operacyjną, aż po ścisłą kontrolę w badaniach kontrolnych TK. Dodatkowo znajomość anatomii dens axis pomaga też przy planowaniu badań czynnościowych (RTG w projekcjach otwartych ust) i przy interpretacji rezonansu magnetycznego, gdzie oceniamy nie tylko samą kość, ale też więzadła stabilizujące ząb oraz ewentualne uciski na rdzeń kręgowy.

Pytanie 25

Radiogram jamy brzusznej uwidacznia

Ilustracja do pytania
A. złogi w nerkach.
B. złogi w pęcherzyku żółciowym.
C. połknięte ciało obce.
D. perforację przewodu pokarmowego.
Prawidłowo wskazana perforacja przewodu pokarmowego odnosi się do jednej z najważniejszych, wręcz klasycznych wskazań do wykonania przeglądowego radiogramu jamy brzusznej w projekcji stojącej. Na takim zdjęciu szukamy przede wszystkim wolnego powietrza w jamie otrzewnej – tzw. odmy otrzewnowej. Typowy obraz to pas powietrza pod kopułami przepony, oddzielony wyraźną linią od cienia wątroby lub śledziony. W standardach opisowych przyjmuje się, że nawet niewielka ilość gazu, jeżeli jest dobrze uwidoczniona pod przeponą, jest bardzo silnym argumentem za perforacją żołądka, dwunastnicy albo jelit. W praktyce ostrych dyżurów chirurgicznych takie RTG w projekcji stojącej albo bocznej leżącej jest szybkim, tanim i ciągle stosowanym badaniem przesiewowym, zanim pacjent trafi na TK. Moim zdaniem warto zapamiętać, że w sytuacji ostrego brzucha, nagłego bólu, twardego „deskowatego” brzucha – zlecenie RTG jamy brzusznej i klatki piersiowej w pozycji stojącej to standardowa dobra praktyka. Radiolog opisując obraz zwraca uwagę na obecność wolnego powietrza, poziomy płyn–powietrze, rozdęcie pętli jelitowych, ale to właśnie odma podprzeponowa jest najbardziej charakterystycznym i jednoznacznym wskaźnikiem perforacji. W przeciwieństwie do złogów czy ciał obcych, które mogą być widoczne albo nie (zależnie od ich wysycenia), wolne powietrze ma bardzo typową, kontrastową prezentację. Współczesne wytyczne sugerują, że TK jamy brzusznej jest dokładniejsza, ale zwykłe RTG nadal pozostaje ważnym, szybkim narzędziem wstępnej diagnostyki i triage’u pacjentów z podejrzeniem pęknięcia przewodu pokarmowego.

Pytanie 26

Brachyterapia wewnątrzprzewodowa jest stosowana w leczeniu

A. nowotworu narządu rodnego.
B. nowotworu przełyku.
C. raka skóry.
D. raka nerwu wzrokowego.
Prawidłowo wskazany nowotwór przełyku dobrze pokazuje, że rozumiesz ideę brachyterapii wewnątrzprzewodowej. W tej technice źródło promieniowania jonizującego umieszcza się w świetle narządu rurowego, czyli właśnie „wewnątrz przewodu”. W praktyce klinicznej najczęściej dotyczy to przełyku, oskrzeli czy dróg żółciowych, ale w standardach radioterapii to rak przełyku jest takim klasycznym, podręcznikowym przykładem. Do przełyku wprowadza się aplikator lub specjalny cewnik, który pozycjonuje się w miejscu guza, a następnie za pomocą afterloadera wprowadza się radioaktywny izotop (najczęściej Ir-192 w HDR). Dzięki temu dawka jest bardzo wysoka w obrębie guza, a stosunkowo szybko spada w tkankach zdrowych otaczających przełyk. Z mojego doświadczenia, na zajęciach zawsze podkreśla się, że to metoda szczególnie przydatna w leczeniu paliatywnym – np. przy zwężeniach przełyku powodujących problemy z połykaniem, kiedy celem jest poprawa komfortu życia pacjenta. Ważne jest też, że taka brachyterapia wymaga bardzo dokładnego planowania w systemie 3D, zwykle w oparciu o TK, z precyzyjnym określeniem długości odcinka napromienianego i położenia aplikatora. Standardy i wytyczne (np. ESTRO, PTRO) podkreślają konieczność weryfikacji położenia aplikatora obrazowaniem przed rozpoczęciem frakcji oraz ścisłego przestrzegania zasad ochrony radiologicznej personelu. Co istotne, brachyterapia wewnątrzprzewodowa nie jest terapią „uniwersalną” – stosuje się ją w wybranych lokalizacjach, głównie właśnie w przewodach i światłach narządów, a nie w guzach litej skóry czy narządów rodnych, gdzie używa się innych technik brachyterapii. W praktyce technik radioterapii musi umieć odróżnić brachyterapię śródjamową, śródmiąższową i wewnątrzprzewodową, bo od tego zależy sposób przygotowania pacjenta, dobór aplikatorów i cały tok postępowania.

Pytanie 27

Na obrazie MR jamy brzusznej strzałką wskazano

Ilustracja do pytania
A. wątrobę.
B. trzustkę.
C. śledzionę.
D. nerkę.
Na obrazie MR jamy brzusznej strzałka wskazuje wątrobę, czyli największy narząd miąższowy w górnej części jamy brzusznej, po prawej stronie. Na przekroju czołowym, takim jak na tym zdjęciu, wątroba zajmuje prawą górną część obrazu, tuż pod przeponą, przylega do prawej ściany klatki piersiowej i zwykle częściowo przykrywa prawą nerkę. W rezonansie magnetycznym jej sygnał jest stosunkowo jednorodny, a granica z płucem i przeponą jest wyraźna. Moim zdaniem to jedno z podstawowych ćwiczeń w radiologii: najpierw lokalizacja wątroby, potem dopiero szukanie zmian patologicznych. W praktyce klinicznej prawidłowe rozpoznanie wątroby na MR jest kluczowe przy ocenie ogniskowych zmian, takich jak naczyniaki, przerzuty, HCC czy torbiele. Standardem jest porównywanie położenia narządu względem kręgosłupa, żeber i innych narządów – to bardzo pomaga, gdy obraz nie jest idealny albo pacjent był słabo ułożony. Dobre praktyki mówią, żeby zawsze „czytać” badanie systematycznie: najpierw orientacja w płaszczyźnie i stronach ciała (oznaczenia L/R), potem narządy miąższowe (wątroba, śledziona, nerki, trzustka), a dopiero na końcu drobne szczegóły. Dzięki temu łatwiej uniknąć pomylenia wątroby np. ze śledzioną w nietypowych wariantach anatomicznych czy przy dużych guzach. W codziennej pracy technika lub młodego radiologa poprawna identyfikacja wątroby na MR to absolutna podstawa do dalszej, bardziej zaawansowanej interpretacji badania.

Pytanie 28

Przy ułożeniu do zdjęcia AP czaszki płaszczyzna

A. czołowa jest prostopadła do kasety.
B. oczodołowo-uszna środkowa jest prostopadła do kasety.
C. oczodołowo-uszna dolna jest równoległa do kasety.
D. strzałkowa jest równoległa do kasety.
W pozycjonowaniu do projekcji AP czaszki bardzo łatwo się pomylić między różnymi płaszczyznami, bo ich nazwy są do siebie podobne, a w praktyce liczy się dosłownie kilka stopni różnicy. W tym pytaniu pułapka polega na tym, że część osób automatycznie myśli o płaszczyźnie czołowej i strzałkowej, bo są bardziej znane z anatomii, a w radiografii czaszki kluczowe są jednak linie oczodołowo-uszne. Płaszczyzna czołowa rzeczywiście ustawiona jest mniej więcej równolegle do kasety przy AP czaszki, ale pytanie dotyczy konkretnej płaszczyzny używanej jako punkt odniesienia do pozycjonowania. W standardach radiologicznych to właśnie linia oczodołowo-uszna środkowa (OML) jest kontrolowana względem kasety, a nie ogólna płaszczyzna czołowa. Z kolei płaszczyzna strzałkowa pośrodkowa powinna być prostopadła do kasety, a nie równoległa. Jeżeli ktoś zakłada, że powinna być równoległa, to zwykle wynika to z pomieszania z projekcją boczną czaszki, gdzie głowa faktycznie jest ustawiona bokiem i płaszczyzna strzałkowa biegnie równolegle do kasety. To typowy błąd: przenoszenie ustawień z innej projekcji. Linie oczodołowo-uszne dolna (IOML) i środkowa (OML) też często się mylą. Dolna bywa wykorzystywana w innych projekcjach (np. niektóre zdjęcia zatok, projekcje skośne), ale w klasycznej projekcji AP czaszki to OML ma być prostopadła do kasety. Ustawianie dolnej równolegle do kasety spowodowałoby, że głowa byłaby odchylona, a obraz czaszki nie byłby prawidłowo odwzorowany – pojawią się skróty, przemieszczenie struktur, gorsza ocena symetrii. Z mojego doświadczenia najlepiej zapamiętać prostą zasadę: w projekcjach AP/PA czaszki patrzymy na OML prostopadłą do kasety i na płaszczyznę strzałkową pośrodkową bez rotacji. Każde inne ustawienie tych linii prowadzi do zniekształceń i jest sprzeczne z dobrymi praktykami radiograficznymi opisanymi w podręcznikach do techniki RTG.

Pytanie 29

Jednym z kryteriów poprawnie wykonanego badania spirometrycznego jest czas trwania natężonego wydechu, który powinien wynosić u osób powyżej 10 roku życia co najmniej

A. 4 sekundy.
B. 2 sekundy.
C. 3 sekundy.
D. 6 sekund.
Prawidłowo – w spirometrii jednym z kluczowych kryteriów akceptowalności manewru jest czas trwania natężonego wydechu (FVC), który u osób powyżej 10. roku życia powinien wynosić co najmniej 6 sekund. Wynika to z wytycznych m.in. ATS/ERS, które podkreślają, że krótszy wydech bardzo często zaniża wartość FVC i może całkowicie zafałszować interpretację badania. U dorosłych i starszych dzieci pojemność życiowa wydychana natężenie nie jest osiągana w 2–3 sekundy, czasem potrzeba nawet dłuższego wysiłku, szczególnie przy obturacji dróg oddechowych. Moim zdaniem w praktyce najważniejsze jest pilnowanie dwóch rzeczy: żeby pacjent naprawdę dmuchał „do końca”, aż do wyraźnego plateau na krzywej objętość–czas, oraz żeby ten wysiłek trwał co najmniej właśnie te 6 sekund. Technik czy pielęgniarka wykonująca badanie powinna aktywnie motywować pacjenta: głośno zachęcać, kontrolować zapis na ekranie i przerwać dopiero wtedy, gdy spełnione są kryteria czasu i kształtu krzywej. U wielu osób z POChP albo astmą wydech jest długi i męczący – ale dokładnie o to chodzi, bo wtedy widzimy rzeczywisty obraz zwężenia dróg oddechowych. W dobrych pracowniach spirometrycznych standardem jest zapis kilku prób, z których wybiera się te spełniające kryteria: gwałtowny start wydechu, brak kaszlu, brak przecieków, brak przedwczesnego zakończenia oraz właśnie minimalny czas wydechu 6 sekund (lub osiągnięcie wyraźnego plateau przez ≥1 sek.). Jeśli czas jest krótszy, wynik oznacza się jako nieakceptowalny, nawet gdy liczby „na oko” wyglądają ładnie. Dłuższy czas pozwala też lepiej ocenić wskaźniki jak FEV1, FVC i ich stosunek, co jest podstawą rozpoznawania obturacji, restrykcji i oceny skuteczności leczenia. To jest po prostu element rzetelnej jakości badania.

Pytanie 30

Rozpraszanie promieniowania X, w wyniku którego następuje zwiększenie długości fali promieniowania, to zjawisko

A. Maxwella.
B. Comptona.
C. Boltzmana.
D. Bragga.
Prawidłowo wskazane zjawisko to efekt Comptona. W fizyce promieniowania mówi się, że jest to sprężyste rozpraszanie fotonów promieniowania X (albo gamma) na praktycznie swobodnych elektronach, po którym foton ma mniejszą energię, a więc większą długość fali. Energia nie znika, tylko dzieli się: część przejmuje elektron (zostaje on wybity z powłoki i zyskuje energię kinetyczną), a część zachowuje foton, ale już o niższej energii i zmienionym kierunku. Właśnie ta utrata energii fotonu jest fizyczną przyczyną zwiększenia długości fali. W praktyce radiologicznej efekt Comptona dominuje w zakresie energii typowej dla diagnostycznych zdjęć RTG klatki piersiowej czy jamy brzusznej, szczególnie w tkankach o średniej gęstości. Z mojego doświadczenia to jedno z kluczowych zjawisk, które trzeba rozumieć, jeśli ktoś chce sensownie mówić o kontraście obrazu i dawce rozproszonej. Rozproszone promieniowanie Comptona odpowiada za tzw. mgłę na obrazie, pogarsza kontrast i zwiększa niepotrzebne narażenie personelu. Dlatego w dobrych praktykach pracowni RTG stosuje się kratki przeciwrozproszeniowe, odpowiednie kolimowanie wiązki, właściwe parametry kV i mAs – właśnie po to, żeby ograniczać wpływ rozpraszania Comptona. W planowaniu osłon stałych i organizacji pracowni fizyk medyczny też musi brać pod uwagę udział promieniowania rozproszonego na ściany, sufit i podłogę. Co ważne, efekt Comptona jest w dużej mierze niezależny od liczby atomowej materiału, więc występuje zarówno w tkankach miękkich, jak i w kości, a jego intensywność bardziej zależy od gęstości elektronowej i energii wiązki. W tomografii komputerowej, przy typowych energiach efektywnych wiązki, rozpraszanie Comptona również ma duży udział i wpływa na artefakty oraz konieczność stosowania filtrów i algorytmów rekonstrukcji uwzględniających rozproszenie. Dlatego kojarzenie „zwiększenia długości fali po rozproszeniu” z nazwiskiem Compton to w medycynie obrazowej absolutna podstawa fizyki promieniowania.

Pytanie 31

Co zostało uwidocznione na zamieszczonym radiogramie?

Ilustracja do pytania
A. Zwichnięcie stawu skokowego.
B. Złamanie kości skokowej.
C. Złamanie kostki bocznej.
D. Ostroga kości piętowej.
Na radiogramie widoczna jest typowa ostroga kości piętowej, czyli wyrośl kostna zlokalizowana na dolno-przyśrodkowej powierzchni guza piętowego, w okolicy przyczepu rozcięgna podeszwowego. W obrazie RTG wygląda to jak haczykowate lub dziobowate uwypuklenie kości skierowane ku przodowi stopy. Moim zdaniem to jedno z bardziej charakterystycznych znalezisk radiologicznych – jeśli raz się je dobrze obejrzy, trudno je potem pomylić. W praktyce technika i lekarze radiolodzy zwracają szczególną uwagę na tę okolicę u pacjentów zgłaszających ból pięty, zwłaszcza nasilający się przy pierwszych krokach rano. Standardowo wykonuje się projekcje boczne stopy lub stawu skokowo-piętowego, bo w tej projekcji ostroga jest najlepiej uwidoczniona. W dobrych praktykach opisowych podkreśla się lokalizację (przyczep rozcięgna podeszwowego vs przyczep ścięgna Achillesa), wielkość wyrośli kostnej i ewentualne towarzyszące zmiany zwyrodnieniowe stawu skokowo-piętowego. Trzeba też pamiętać, że sama obecność ostrogi na RTG nie zawsze koreluje z nasileniem dolegliwości bólowych – czasem pacjent ma dużą ostrogę i minimalne objawy, a innym razem odwrotnie. W praktyce klinicznej wynik badania obrazowego łączy się z badaniem fizykalnym i wywiadem. Radiogram pełni tu rolę potwierdzającą i różnicującą – pomaga odróżnić ostrogę od złamań zmęczeniowych guza piętowego, zmian pourazowych czy rzadziej zmian guzowatych. W pracy technika elektroradiologii ważne jest prawidłowe ułożenie stopy, brak rotacji oraz dobranie takich parametrów ekspozycji, żeby struktury gąbczaste kości piętowej nie były ani przepalone, ani zbyt niedoświetlone – wtedy krawędzie ostrogi są wyraźne i łatwe do oceny.

Pytanie 32

Jakie symbole mają odprowadzenia kończynowe dwubiegunowe w badaniu EKG?

A. aVR, aVL, aVF
B. I, II, III
C. V4, V5, V6
D. V1, V2, V3
Prawidłowo – odprowadzenia kończynowe dwubiegunowe w standardowym 12‑odprowadzeniowym EKG mają symbole I, II, III. Nazywają się „dwubiegunowe”, bo rejestrują różnicę potencjałów pomiędzy dwiema elektrodami czynnościowymi założonymi na kończyny. W odprowadzeniu I aparat porównuje lewą rękę z prawą ręką (LA–RA), w odprowadzeniu II – lewą nogę z prawą ręką (LL–RA), a w odprowadzeniu III – lewą nogę z lewą ręką (LL–LA. W praktyce klinicznej właśnie te trzy odprowadzenia są podstawą tzw. trójkąta Einthovena, który opisuje elektryczną oś serca w płaszczyźnie czołowej. Z mojego doświadczenia, jeżeli ktoś dobrze ogarnia I, II, III, to dużo łatwiej rozumie potem interpretację osi serca, zmian niedokrwiennych czy przerostów komór. W zapisie monitorującym (np. na OIT czy w ratownictwie) najczęściej używa się właśnie odprowadzenia II, bo zwykle daje ono najwyższe, najbardziej czytelne załamki P i zespoły QRS. To jest taki „roboczy standard” w wielu oddziałach. Warto też pamiętać, że technik zakładający EKG musi poprawnie rozmieścić elektrody kończynowe (czerwony, żółty, zielony, czarny) – nawet jeśli w praktyce klinicznej często daje się je na przedramiona i podudzia, a nie na nadgarstki i kostki. Dla jakości zapisu i poprawnej interpretacji odprowadzeń I, II, III ważne jest jeszcze ograniczenie artefaktów ruchowych, dobra przyczepność elektrod i powtarzalny schemat podłączenia, zgodny z wytycznymi producenta aparatu i standardami pracowni EKG.

Pytanie 33

Przemiana promieniotwórcza radu w ren opisana wzorem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) jest rozpadem

A. beta minus.
B. alfa.
C. beta plus.
D. gamma.
Rozpad opisany równaniem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) to klasyczny przykład przemiany alfa. Widać to po tym, że z jądra radu „odrywa się” cząstka o liczbie masowej 4 i liczbie atomowej 2, czyli dokładnie jądro helu – to jest właśnie cząstka alfa. Liczba masowa zmniejsza się z 226 do 222 (spadek o 4), a liczba atomowa z 88 do 86 (spadek o 2), co jest typowym wzorcem dla rozpadu alfa. Z fizycznego punktu widzenia jądro ciężkiego pierwiastka, jak rad, pozbywa się nadmiaru energii i „zbyt dużej” liczby nukleonów właśnie przez emisję takiej cząstki. W medycynie, szczególnie w medycynie nuklearnej i w ochronie radiologicznej, rozumienie tego typu przemian jest bardzo praktyczne. Cząstki alfa mają bardzo mały zasięg w tkankach (rzędu dziesiątek mikrometrów), ale jednocześnie bardzo duże liniowe przekazywanie energii (wysoki LET). To oznacza, że jeśli źródło alfa znajdzie się wewnątrz organizmu, może silnie uszkadzać komórki w bardzo małym obszarze. Dlatego w procedurach, które opisują dobre praktyki ochrony radiologicznej, tak mocno podkreśla się, żeby nie spożywać, nie wdychać i nie zanieczyszczać skóry materiałami emitującymi alfa. Z zewnątrz skóra praktycznie zatrzymuje to promieniowanie, ale wewnętrznie jest ono bardzo niebezpieczne. Moim zdaniem znajomość rozpadu alfa przydaje się też przy rozumieniu łańcuchów promieniotwórczych, np. szeregu uranowo-radowego. W takich szeregach wielokrotnie pojawiają się kolejne rozpady alfa prowadzące do powstania gazowego radu i radu–222, który z kolei ma znaczenie w ocenie narażenia na radon w budynkach. W standardach oceny ryzyka radiacyjnego i w dokumentacji ochrony radiologicznej zawsze uwzględnia się, czy mamy do czynienia z promieniowaniem alfa, beta czy gamma, bo od tego zależy zarówno sposób ekranowania, jak i metody monitorowania skażeń. W praktyce technika medycznego znajomość tego typu reakcji pomaga lepiej rozumieć opisy źródeł, charakterystyki radioizotopów w kartach katalogowych oraz zalecenia BHP przy pracy z materiałami promieniotwórczymi.

Pytanie 34

Obszary napromieniania w technice IMRT w trakcie wykonywania zabiegu radioterapeutycznego wyznacza

A. technik elektroradiolog.
B. lekarz radioterapeuta.
C. fizyk medyczny.
D. system komputerowy.
Prawidłowa odpowiedź wskazuje na kluczową cechę techniki IMRT: obszary napromieniania w trakcie wykonywania zabiegu są wyznaczane i realizowane przez system komputerowy, zgodnie z wcześniej przygotowanym planem leczenia. W praktyce wygląda to tak, że lekarz radioterapeuta i fizyk medyczny wspólnie ustalają cele kliniczne, marginesy bezpieczeństwa, dawki dla guza i narządów krytycznych, a następnie fizyk (albo planista) tworzy plan w specjalistycznym systemie TPS (Treatment Planning System). Ten plan zawiera bardzo szczegółowe informacje: kształt pól, modulację intensywności, przebieg łuków, segmenty MLC, liczbę monitor units itd. Jednak w samej fazie wykonywania zabiegu, w czasie faktycznego napromieniania, to już nie człowiek „rysuje” pola, tylko system komputerowy steruje aparatem zgodnie z zapisanym planem. System na bieżąco ustawia listki kolimatora MLC, kontroluje dawkę, kąt obrotu głowicy, czas ekspozycji i inne parametry. Technik elektroradiolog ma wtedy przede wszystkim zadanie poprawnie ułożyć pacjenta, zweryfikować pozycję (często przy pomocy obrazowania portalowego lub CBCT), załadować właściwy plan leczenia i nadzorować przebieg seansu, ale nie zmienia ręcznie kształtu obszarów napromieniania. Moim zdaniem to bardzo ważne, żeby kojarzyć IMRT właśnie z automatyzacją i dużym zaufaniem do algorytmów optymalizacyjnych i systemów sterowania. Z punktu widzenia bezpieczeństwa i jakości leczenia ostateczne „wyznaczanie” obszaru w danej sekundzie napromieniania jest realizowane przez oprogramowanie, które precyzyjnie przesuwa listki MLC i reguluje dawkę zgodnie z planem zaakceptowanym wcześniej przez lekarza i fizyka. Tak działają nowoczesne standardy radioterapii – człowiek definiuje cele i weryfikuje poprawność, a system komputerowy wykonuje skomplikowaną, powtarzalną pracę techniczną z dokładnością co do milimetra.

Pytanie 35

Jakie wymagania techniczne muszą spełniać aparaty terapeutyczne stosowane w zakładach brachyterapii, służące bezpośrednio do napromieniania pacjenta metodą zdalnego wprowadzania źródeł promieniotwórczych?

A. Posiadają jeden niezależny system odliczający czas i informujący o zakończeniu napromieniania.
B. Wyłączenie i ponowne włączenie aparatu likwiduje sygnalizowany błąd.
C. Wyłączenie i ponowne włączenie aparatu nie likwiduje sygnalizowanego błędu.
D. Weryfikują ustawione warunki i nie sygnalizują przypadkowych błędów personelu.
Prawidłowa odpowiedź podkreśla bardzo ważną zasadę bezpieczeństwa w brachyterapii HDR: wyłączenie i ponowne włączenie aparatu nie może kasować wcześniej zgłoszonego błędu. W aparatach do zdalnego wprowadzania źródeł (afterloaderach) mamy do czynienia z bardzo silnymi źródłami promieniowania, które są prowadzone do ciała pacjenta systemem prowadnic. Jeśli system raz wykryje sytuację niebezpieczną – np. problem z pozycją źródła, zablokowanie prowadnicy, błąd w układzie bezpieczeństwa, uszkodzenie czujnika – to z punktu widzenia norm ochrony radiologicznej ten stan musi być traktowany jako trwały alarm, dopóki nie zostanie sprawdzony i skasowany w kontrolowany sposób przez uprawnioną osobę, a nie przez zwykły „reset zasilania”. W praktyce klinicznej obowiązuje zasada tzw. fail-safe: jeżeli coś jest nie tak, urządzenie przechodzi w stan bezpieczny (źródło wraca do osłony, napromienianie jest przerwane), a system wymaga świadomej interwencji. Moim zdaniem to jest trochę jak z hamulcem bezpieczeństwa w windzie: samo wyłączenie i włączenie prądu nie może sprawić, że system uzna, iż nagle jest bezpiecznie. W nowoczesnych afterloaderach błędy są zapisywane w logach, trzeba je zdiagnozować, czasem wykonać testy serwisowe, dopiero potem można przywrócić normalną pracę. Takie podejście wynika z zaleceń producentów, wymagań prawa atomowego, rozporządzeń dotyczących urządzeń radioterapeutycznych oraz z ogólnych standardów QA w radioterapii (np. wytyczne IAEA czy ESTRO). Dodatkowo, aparaty te zwykle mają wielopoziomowe systemy nadzoru: niezależne układy kontroli pozycji źródła, monitorowania czasu napromieniania, kontroli ruchu kabla źródła, systemy blokad drzwiowych bunkra. Gdy którykolwiek z krytycznych podsystemów zgłosi błąd, musi to być sygnał do zatrzymania procedury i analizy, a nie coś, co można „przeklikać” restartem. Dzięki temu unika się sytuacji, w której potencjalna usterka techniczna prowadzi do niekontrolowanego narażenia pacjenta lub personelu. To jest dokładnie sens tej odpowiedzi: błąd ma być trwałym ostrzeżeniem, a nie komunikatem, który da się łatwo ukryć prostym trikiem z wyłącznikiem.

Pytanie 36

Którą patologię uwidoczniono na zamieszczonym rentgenogramie?

Ilustracja do pytania
A. Złamanie obojczyka.
B. Złamanie nasady dalszej kości ramiennej.
C. Stłuczenie łopatki.
D. Zwichnięcie kości ramiennej.
Na tym zdjęciu RTG widoczny jest typowy obraz zwichnięcia kości ramiennej w stawie ramiennym, czyli przemieszczenia głowy kości ramiennej względem panewki łopatki. Kluczowe jest to, że zarys kostny głowy kości ramiennej jest ciągły, bez szczeliny złamania, ale głowa nie znajduje się w prawidłowej relacji do panewki. Zamiast „siedzieć” centralnie w panewce, jest przemieszczona – najczęściej do przodu i ku dołowi w stosunku do łopatki. Na prawidłowym RTG barku oś trzonu kości ramiennej, głowa i panewka tworzą harmonijną, anatomiczną linię, a przestrzeń stawowa ma równomierną szerokość. Tutaj ta relacja jest zaburzona, co według standardów opisowych radiologii jednoznacznie sugeruje zwichnięcie, a nie złamanie. W praktyce technik elektroradiologii powinien zawsze ocenić, czy na zdjęciu AP barku głowa kości ramiennej „nakłada się” na panewkę. Jeśli nie – trzeba podejrzewać zwichnięcie i, zgodnie z dobrymi praktykami, wykonać dodatkową projekcję (np. Y-łopatkową lub osiową), oczywiście po uzgodnieniu z lekarzem i z zachowaniem zasad bezpieczeństwa pacjenta. Takie podejście jest zgodne z zasadami diagnostyki obrazowej narządu ruchu. Moim zdaniem warto wyrobić sobie nawyk, żeby przy każdym barku najpierw szukać: ciągłości obrysów kostnych (czyli złamania), a dopiero później oceniać położenie głowy względem panewki. W zwichnięciu głowa jest przesunięta, ale jej kontur jest wyraźny, bez cech złamania nasady dalszej czy proksymalnej. To pomaga w odróżnieniu czystego zwichnięcia od złamania z przemieszczeniem. W codziennej pracy w pracowni RTG takie rozróżnienie ma duże znaczenie, bo wpływa na dalsze postępowanie ortopedyczne – inne jest nastawianie zwichnięcia, a inaczej leczy się złamania okołostawowe.

Pytanie 37

Na radiogramie stopy uwidocznione jest złamanie trzonu

Ilustracja do pytania
A. II kości śródstopia.
B. III kości śródstopia.
C. paliczka bliższego palca III.
D. paliczka bliższego palca II.
Prawidłowo wskazana została III kość śródstopia – na radiogramie w projekcji grzbietowo‑podeszwowej widać wyraźne przerwanie ciągłości zarysu jej trzonu. Trzon kości śródstopia ma kształt wydłużony, lekko zwężony w części środkowej, z wyraźnie zaznaczonymi nasadami bliższą i dalszą. Na zdjęciu linia złamania przebiega w obrębie tej środkowej części trzeciej kości licząc od strony przyśrodkowej stopy (czyli po palcach: I, II, III…). W standardowej ocenie RTG stopy zawsze zaczyna się od identyfikacji osi – paluch to I promień, dalej II, III, IV i V. W praktyce technika radiologii powinna nawykowo „liczyć” kości od strony przyśrodkowej, bo pomyłki między II a III kością są bardzo częste, szczególnie gdy złamanie jest w trzonie, a kości leżą blisko siebie. Moim zdaniem dobrą praktyką jest porównywanie szerokości przynasad i ustawienia stawów śródstopno‑paliczkowych – to pomaga nie pomylić segmentów. W codziennej pracy, przy opisie zdjęć urazowych, zawsze trzeba podać dokładną lokalizację: numer kości śródstopia, część (głowa, trzon, podstawa) oraz ewentualne przemieszczenie lub odchylenie osi. Ma to znaczenie dla ortopedy przy doborze leczenia – inaczej postępuje się przy złamaniu trzonu III kości śródstopia, a inaczej np. przy złamaniu podstawy V kości śródstopia (typowe złamanie awulsyjne). W dobrych standardach diagnostyki obrazowej, jeśli linia złamania jest wątpliwa, wykonuje się dodatkową projekcję skośną lub porównawczą, ale tutaj obraz trzonu III kości śródstopia jest dosyć jednoznaczny. Warto też pamiętać, że ocena trzonów śródstopia wymaga odpowiedniej ekspozycji – zbyt twarde zdjęcie „gubi” drobne linie złamań, a zbyt miękkie daje zlewanie się struktur. Z mojego doświadczenia takie złamania, jak na tym obrazie, często są efektem urazu skrętnego lub urazu sportowego i dobrze korelują z bólem uciskowym dokładnie nad trzecim promieniem śródstopia.

Pytanie 38

Jak oznacza się w radioterapii obszar tkanek zawierający GTV i mikrorozsiewy w fazie niewykrywalnej klinicznie?

A. TV
B. PTV
C. CTV
D. IV
Prawidłowo wskazany CTV (Clinical Target Volume) to w radioterapii absolutna podstawa poprawnego planowania leczenia. CTV oznacza objętość tkanek, która obejmuje GTV (Gross Tumor Volume – czyli makroskopowo widoczną masę guza w badaniach obrazowych lub klinicznie) oraz obszar mikrorozsiewu nowotworu, który jest jeszcze niewidoczny w TK, MR czy PET, ale wiemy z badań i wytycznych, że statystycznie tam bywa. Czyli mówiąc po ludzku: CTV = guz + to, co już najpewniej „rozpełzło się” mikroskopowo wokół niego. W praktyce lekarz radioterapeuta, często razem z fizykiem medycznym i radiologiem, najpierw wyznacza GTV na obrazie TK/MR, a potem na podstawie zaleceń (np. wytyczne ESTRO, ICRU, lokalne protokoły) dodaje margines na mikrorozsiewy i otrzymuje właśnie CTV. Ten margines nie jest przypadkowy – zależy od typu nowotworu, stopnia złośliwości, lokalizacji anatomicznej, a także sposobu szerzenia się choroby. Na przykład w raku głowy i szyi CTV obejmuje nie tylko sam guz, ale też całe grupy węzłów chłonnych, które z dużym prawdopodobieństwem mogą być zajęte mikroskopowo. W raku prostaty CTV może obejmować samą prostatę i pęcherzyki nasienne w zależności od zaawansowania. Warto też pamiętać, że dopiero z CTV tworzy się PTV (Planning Target Volume), czyli objętość planistyczną uwzględniającą dodatkowy margines na błędy ustawienia pacjenta, ruchy narządów, niepewności układu napromieniającego. Moim zdaniem dobrze jest to sobie ułożyć w głowie jako logiczny ciąg: GTV – to, co widzę; CTV – to, co widzę + to, czego nie widzę, ale rozsądnie zakładam; PTV – CTV + margines bezpieczeństwa technicznego. Dzięki temu łatwiej potem rozumieć, skąd się biorą różnice między konturami na planie leczenia i dlaczego nie można tak po prostu „przyciąć” objętości, żeby oszczędzić zdrowe tkanki, bo ryzykowalibyśmy niedoleczenie mikrorozsiewu właśnie w CTV.

Pytanie 39

Zgodnie z procedurą wzorcową w badaniu MR należy ułożyć pacjenta na brzuchu do diagnostyki

A. jamy brzusznej.
B. stawu barkowego.
C. gruczołu piersiowego.
D. kręgosłupa szyjnego.
Prawidłowo – w standardowych procedurach obrazowania MR gruczołu piersiowego pacjentkę układa się na brzuchu, czyli w pozycji pronacyjnej. To jest tzw. pozycja na brzuchu z piersiami swobodnie zwisającymi w specjalnych otworach cewki piersiowej. Dzięki temu gruczoł piersiowy nie jest spłaszczony przez ciężar własnego ciała, lepiej się układa i można uzyskać jednorodne wypełnienie kontrastem oraz równomierne pole magnetyczne. Dodatkowo taka pozycja poprawia separację tkanek i zmniejsza artefakty ruchowe związane z oddychaniem. W praktyce technik MR stosuje dedykowaną cewkę piersiową (breast coil), w której piersi są „zawieszone” w polu widzenia, a klatka piersiowa i klatka kostna są podparte. Moim zdaniem to jedno z badań, gdzie pozycjonowanie ma kluczowe znaczenie dla jakości diagnostycznej – źle ułożona pacjentka to potem problem z oceną zmian ogniskowych, naciekania ściany klatki piersiowej czy węzłów chłonnych. W wytycznych dotyczących badań MR piersi (np. EUSOBI, ACR) wyraźnie podkreśla się konieczność stosowania pozycji na brzuchu i wysokopolowego skanera z odpowiednią sekwencją dynamiczną po kontraście. W badaniach kontrolnych po leczeniu oszczędzającym pierś, w ocenie wieloogniskowości raka, a także u pacjentek z implantami silikonowymi, ta pozycja pozwala na lepsze odróżnienie zmienionego nowotworowo miąższu od blizn, zmian zapalnych czy pofałdowanych implantów. Warto też pamiętać, że ułożenie na brzuchu poprawia komfort psychiczny wielu pacjentek, daje poczucie większej intymności i zmniejsza lęk, co przekłada się na mniejszą liczbę ruchów i lepszą jakość obrazów. W diagnostyce jamy brzusznej, barku czy odcinka szyjnego kręgosłupa pozycja standardowa jest inna, dlatego właśnie odpowiedź dotycząca gruczołu piersiowego najlepiej odzwierciedla procedurę wzorcową.

Pytanie 40

Rutynowe badanie koronarografii prawej tętnicy wieńcowej wykonywane jest w rzucie skośnym przednim

A. lewym pod kątem 45°.
B. prawym pod kątem 45°.
C. lewym pod kątem 60°.
D. prawym pod kątem 60°.
Prawidłowa odpowiedź „lewym pod kątem 60°” odnosi się do klasycznej, rutynowej projekcji skośnej przedniej stosowanej w koronarografii prawej tętnicy wieńcowej (RCA – right coronary artery). W praktyce zabiegowej przyjęło się, że standardowym ujęciem do oceny przebiegu proksymalnego i środkowego odcinka RCA jest projekcja LAO (Left Anterior Oblique) około 60°, często z niewielkim dogięciem czaszkowym lub ogonowym, zależnie od budowy pacjenta. W tej projekcji prawa tętnica wieńcowa „odwija się” z cienia kręgosłupa i przepony, staje się bardziej wyizolowana i można czytelnie ocenić zwężenia, przebieg i ewentualne anomalie anatomiczne. Moim zdaniem warto zapamiętać to tak: RCA – najlepiej widoczna w skośnej przedniej lewej, dość mocno odkręconej (ok. 60°). W pracowni hemodynamicznej operator dobiera kąt na podstawie obrazu na żywo, ale punkt wyjścia jest właśnie taki. Jest to zgodne z typowymi schematami nauczania kardiologii inwazyjnej i z opisami w podręcznikach do angiografii wieńcowej, gdzie jako projekcję rutynową RCA podaje się LAO 30–60°. Taka standaryzacja ujęć ułatwia porównywanie badań między różnymi pracowniami i operatorami. W praktyce technik / pielęgniarka instrumentariuszka powinna kojarzyć, że przy badaniu prawej tętnicy wieńcowej lekarz najczęściej poprosi właśnie o rzut skośny przedni lewy o większym kącie, a nie o małe odchylenie czy projekcję prawoskośną. Dzięki temu przygotowanie ramienia C-ramienia jest szybsze, a ekspozycja krótsza, co zmniejsza dawkę promieniowania dla pacjenta i personelu. Dodatkowo dobra znajomość standardowych projekcji pomaga potem w interpretacji obrazów – łatwiej rozpoznać, który segment naczynia oglądamy i jak układa się ono w przestrzeni.