Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 12:22
  • Data zakończenia: 19 grudnia 2025 12:32

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. W listwach elektroinstalacyjnych.
B. Pod tynkiem.
C. Na tynku.
D. W kanałach przypodłogowych.
Odpowiedź "Pod tynkiem" jest poprawna, ponieważ zgodnie z normami instalacji elektrycznych, przewody powinny być ułożone w sposób, który zapewnia ich odpowiednie zabezpieczenie oraz estetykę. Układanie przewodów pod tynkiem to standardowa praktyka, która minimalizuje ryzyko uszkodzeń mechanicznych i wpływu warunków atmosferycznych, co jest kluczowe dla długowieczności instalacji. Przewody umieszczone w ścianach są mniej narażone na uszkodzenia spowodowane codziennym użytkowaniem pomieszczeń. Dodatkowo, lokalizowanie przewodów pod tynkiem pozwala na łatwiejsze ich maskowanie i dostosowanie do estetyki wnętrza, co jest istotne w projektach budowlanych. Warto również zauważyć, że układanie przewodów pod tynkiem musi być zgodne z obowiązującymi normami, takimi jak PN-IEC 60364, które regulują sposób wykonania instalacji elektrycznych. W praktyce, przed rozpoczęciem pracy, warto wykonać szczegółowy plan instalacji, który uwzględnia rozmieszczenie gniazdek, włączników i innych elementów instalacji, aby uniknąć późniejszych problemów związanych z dostępem do przewodów i ich konserwacją.

Pytanie 2

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YALY
B. YKY
C. YAKY
D. YLY
Odpowiedź YKY jest poprawna, ponieważ przewód ten charakteryzuje się izolacją wykonaną z polichlorku winylu (PVC), co zapewnia mu odpowiednią odporność na działanie warunków atmosferycznych oraz chemikaliów. Przewody YKY są powszechnie stosowane w instalacjach elektrycznych w budynkach, gdzie kluczowe jest zabezpieczenie przed uszkodzeniem i zapewnienie bezpieczeństwa użytkowania. Dodatkowo, przewód ten posiada trzy żyły miedziane, co umożliwia przesył energii elektrycznej w systemach trójfazowych. W zastosowaniach praktycznych, YKY wykorzystywany jest do zasilania maszyn, urządzeń oraz w instalacjach oświetleniowych, gdzie wymagana jest trwałość i odporność na różne czynniki. Standardy branżowe, takie jak PN-EN 50525-2-21, określają wymagania dla przewodów tego typu, podkreślając ich zastosowanie w budownictwie i przemyśle. Wiedza o typach przewodów i ich zastosowaniach jest kluczowa dla każdego specjalisty w dziedzinie elektroinstalacji, co pozwala na właściwy dobór materiałów do konkretnego zadania.

Pytanie 3

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 1 450 obr./min
B. 750 obr./min
C. 720 obr./min
D. 1 500 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * f<sub>N</sub>) / p, gdzie n to prędkość obrotowa w obr./min, f<sub>N</sub> to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku f<sub>N</sub> wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 4

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Automatu schodowego.
B. Czujnika ruchu.
C. Aparatu zmierzchowego.
D. Źródła światła.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 5

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 3,4%
B. 3,0%
C. 8,3%
D. 6,8%
Aby obliczyć całkowity względny błąd pomiaru rezystancji izolacji, musimy uwzględnić zarówno błąd procentowy, jak i błąd wyrażony w cyfrach. W naszym przypadku, merkur wskazał wartość 200,0 MΩ, a jego niedokładność wynosi ± (3% w.w. + 8 cyfr). Najpierw obliczamy 3% z 200,0 MΩ, co daje 6,0 MΩ. Następnie dodajemy wartość 8 cyfr, co w tym przypadku oznacza 0,00000008 Ω. W rzeczywistości 8 cyfr nie wpływa znacząco na wynik w skali MΩ, ale dla pełności obliczeń uwzględniamy tę wartość. Tak więc całkowity błąd pomiarowy wynosi 6,0 MΩ. Aby obliczyć względny błąd, dzielimy błąd przez zmierzoną wartość i mnożymy przez 100%. Liczba ta daje nam 3,0%. Jednak aby uzyskać całkowity błąd, należy dodać błędy z różnych źródeł, co prowadzi do ostatecznego wyniku 3,4%. Taki sposób obliczania błędów pomiarowych jest zgodny z zaleceniami standardów ISO oraz dobrymi praktykami w dziedzinie metrologii, którymi powinni kierować się wszyscy inżynierowie pracujący z pomiarami elektrycznymi.

Pytanie 6

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Zwarcie doziemne przewodu neutralnego
B. Przerwa w przewodzie neutralnym
C. Przerwa w przewodzie ochronnym
D. Uszkodzenie izolacji przewodu ochronnego
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 7

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik zmierzchowy.
C. Prostownik dwupołówkowy.
D. Przekaźnik bistabilny.
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 8

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy D
B. Klasy A
C. Klasy C
D. Klasy B
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 9

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 10

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz znamionowy prąd ciągły 63 mA
B. 0,03 mA oraz napięcie znamionowe 63 V
C. 0,03 A i znamionowy prąd ciągły 63 A
D. 0,03 A oraz napięcie znamionowe 63 V
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 11

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 4, N z 1, 2 z 3
B. L z 3, N z 2, 1 z 4
C. L z 1, N z 3, 2 z 4
D. L z 1, N z 4, 2 z 3
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 12

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K2, K7
B. K1, K2, K3, K4, K5, K6, K7
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K5, K4, K6, K3, K7, K2
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 13

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Oprawkę źródła światła.
B. Gniazdo zapłonnika.
C. Wkładkę topikową bezpiecznika.
D. Wkładkę kalibrową.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 14

Co oznacza symbol literowy YKY?

A. kabel z żyłami miedzianymi w izolacji z PVC
B. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
D. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
Wybór odpowiedzi dotyczącej kabla o żyłach aluminiowych lub przewodów telekomunikacyjnych jest błędny, ponieważ te typy kabli różnią się w fundamentalny sposób od standardów oznaczonych symbolem YKY. Kable z żyłami aluminiowymi, choć mogą być lżejsze i tańsze niż ich miedziane odpowiedniki, mają znacznie gorszą przewodność elektryczną, co prowadzi do strat energii oraz potencjalnych problemów z niezawodnością w dłuższej perspektywie. Dodatkowo, przewody telekomunikacyjne, które również pojawiają się w alternatywnych odpowiedziach, są przeznaczone do zupełnie innych zastosowań, takich jak przesyłanie danych, co czyni je nieodpowiednimi w kontekście instalacji elektrycznych. Wybór przewodu oponowego warsztatowego również nie jest trafny, gdyż dotyczy on innego rodzaju zastosowań, głównie w warsztatach, gdzie wymagane są wysokie właściwości mechaniczne. W rezultacie, mylenie zastosowań i typów kabli oraz przewodów może prowadzić do nieefektywności i zagrożeń w instalacjach elektrycznych. Kluczowe jest zrozumienie specyfikacji technicznych oraz ich odpowiedniego doboru do konkretnych potrzeb, aby zapewnić bezpieczeństwo i efektywność energetyczną.

Pytanie 15

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Kuchenkę elektryczną.
B. Grzejnik elektryczny
C. Zmywarkę do naczyń.
D. Pralkę elektryczną.
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 16

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Przewód ochronny powinien być odłączony.
B. Zabezpieczenie główne powinno być zamknięte.
C. Wyłącznik główny powinien być zamknięty.
D. Zabezpieczenie silnika powinno być otwarte.
Pomiar rezystancji izolacji to mega ważny proces, który ocenia stan izolacji w instalacjach elektrycznych. Jak się nie uważa na zabezpieczenia i wyłączniki, to można narobić błędów. Jeśli główne zabezpieczenie czy zabezpieczenie silnika są zamknięte podczas pomiaru, to mogą dodać jakieś dodatkowe rezystancje, co zafałszuje wyniki. Główny wyłącznik powinien być otwarty, żeby mieć pełny dostęp do obwodów, a przewody ochronne odłączone, bo one też mogą coś namieszać. Ważne jest też to, żeby przed pomiarem wszystko było odłączone od prądu, żeby uniknąć niebezpieczeństw związanych z porażeniem prądem. W branży przyjęte są zasady, że przed każdym pomiarem trzeba sprawdzić stan instalacji i upewnić się, że wszystko jest zgodne z normami. Dlatego tak istotne jest, żeby wiedzieć, jak te pomiary robić i jakie są ich procedury, żeby uzyskać wiarygodne wyniki.

Pytanie 17

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór błędnej odpowiedzi może wynikać z niedostatecznej wiedzy na temat zasad dotyczących zachowywania odpowiednich odległości przy trasowaniu przewodów instalacji elektrycznych. Wiele osób może mylnie sądzić, że mniejsze odległości są wystarczające, co prowadzi do potencjalnych problemów w przyszłości. Przyjęcie niewłaściwych odległości, na przykład mniejszych niż zalecane, naraża instalację na uszkodzenia mechaniczne. Może to skutkować zwarciem, a nawet pożarem, gdyż przewody będą narażone na wpływ narzędzi oraz innych elementów konstrukcyjnych podczas późniejszych prac. Przykładowo, zbyt bliskie umiejscowienie przewodów w stosunku do krawędzi ścian może prowadzić do ich uszkodzenia podczas montażu mebli lub osprzętu, co jest częstym błędem w trakcie projektowania instalacji. Ponadto, niewłaściwe podejście do zachowania dystansu może ograniczyć dostępność instalacji do ewentualnych napraw oraz konserwacji, co generuje dodatkowe trudności i koszty w dłuższej perspektywie. Warto pamiętać, że przestrzeganie zasad dotyczących odległości nie tylko wpływa na bezpieczeństwo, ale także na komfort codziennego użytkowania budynku. Każda instalacja elektryczna powinna być zaplanowana zgodnie z obowiązującymi normami, co zapewnia nie tylko ochronę przed zagrożeniami, ale również zwiększa trwałość całego systemu.

Pytanie 18

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. z bitem M8
C. płaski.
D. PH2
Wybór odpowiedzi innej niż wkrętak płaski wskazuje na nieporozumienie dotyczące rodzaju narzędzi stosowanych w instalacjach elektrycznych. Odpowiedzi takie jak TROX, PH2 czy z bitem M8 nie są odpowiednie w kontekście typowego wyłącznika instalacyjnego z zaciskiem śrubowym. Wkrętak TROX, pomimo że jest narzędziem stosowanym w niektórych zastosowaniach, nie jest przeznaczony do standardowych wyłączników instalacyjnych. Z kolei końcówka PH2, będąca rodzajem wkrętaka krzyżowego, jest używana głównie do śrub z gniazdem krzyżowym, które są rzadziej spotykane w wyłącznikach instalacyjnych. Odpowiedź dotycząca bitu M8 odnosi się do zastosowania wkrętaków z końcówkami o dużych rozmiarach, co jest całkowicie nieodpowiednie w kontekście standardowych zacisków dostępnych w wyłącznikach elektrycznych. Te błędne odpowiedzi wskazują na powszechne nieporozumienia w zakresie narzędzi potrzebnych do wykonywania prac elektrycznych, gdzie kluczowa jest znajomość specyfiki zamocowań w różnych urządzeniach. Używanie niewłaściwych narzędzi nie tylko może prowadzić do uszkodzeń, ale też stwarza zagrożenie dla bezpieczeństwa, co jest nie do zaakceptowania w profesjonalnych pracach elektroinstalacyjnych. Zrozumienie tych różnic jest kluczowe dla skutecznego i bezpiecznego podejścia do pracy z instalacjami elektrycznymi.

Pytanie 19

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Weryfikacja braku zwarć międzyzwojowych
D. Pomiar rezystancji izolacji
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 20

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Zmniejsza napięcie podtrzymania cewki.
C. Zmniejsza siłę docisku zwory.
D. Likwiduje drgania zwory.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 21

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S194B10
B. S193B10
C. S193B16
D. S192B16
Wyłącznik S193B16 jest właściwym wyborem do zastąpienia bezpieczników typu gG w obwodzie zasilającym trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7 kW. Aby przeanalizować tę decyzję, należy wziąć pod uwagę kilka kluczowych aspektów. Po pierwsze, moc 7 kW przy napięciu 400 V wymaga prądu znamionowego wynoszącego około 10 A (I = P/U, czyli 7 kW / 400 V = 17,5 A). W związku z tym wyłącznik S193B16, który ma wartość 16 A, jest odpowiedni, ponieważ jego wartość znamionowa jest wyższa od obliczonego prądu, co zapewnia odpowiednią ochronę przed przeciążeniem. Po drugie, wyłączniki nadprądowe typu S193 są projektowane z myślą o zastosowaniach w instalacjach trójfazowych, co czyni je bardziej odpowiednimi niż inne opcje, które są mniej uniwersalne. W praktyce, stosując S193B16, zapewniamy nie tylko skuteczną ochronę obwodu przed przeciążeniem, ale także zgodność z normami PN-EN 60898-1, które regulują zasady stosowania takich urządzeń w instalacjach elektrycznych. W przypadku awarii, wyłącznik ten zareaguje szybko, co zwiększy bezpieczeństwo użytkowania grzejnika elektrycznego.

Pytanie 22

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. oprawy oświetleniowe o II klasie ochronności.
B. elektryczne podgrzewacze wody.
C. urządzenia zasilanie prądem zmiennym do 12 V.
D. przenośne odbiorniki o II klasie ochronności.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 23

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór innej odpowiedzi, mimo że na pierwszy rzut oka może wydawać się logiczny, często prowadzi do nieprawidłowych praktyk, które mogą zagrażać bezpieczeństwu instalacji. Niewłaściwe ułożenie drutu w zacisku lub jego zbyt słabe dokręcenie może skutkować niepełnym kontaktem, co prowadzi do zwiększonego oporu elektrycznego, a w konsekwencji do przegrzewania się połączenia. Należy także pamiętać, że niewłaściwe zagięcie drutu, które nie umożliwia jego pełnego przylegania do powierzchni styku, stwarza ryzyko wypadnięcia żyły z zacisku. Takie błędy są szczególnie niebezpieczne w kontekście urządzeń, które są narażone na wibracje lub ruch, gdzie może dochodzić do poluzowania złączki. Przykładowo, w zastosowaniach przemysłowych, takie jak montaż silników elektrycznych, poprawne połączenie jest kluczowe dla ich długowieczności i efektywności. Z tego powodu, każde połączenie powinno być wykonane zgodnie z zaleceniami producentów oraz obowiązującymi normami, co zapewnia nie tylko bezpieczeństwo, ale również funkcjonalność całej instalacji elektrycznej. Praktyczne umiejętności związane z prawidłowym wykonaniem połączeń są zatem niezbędne w każdej pracy związanej z elektrycznością.

Pytanie 24

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Zaciskanie końcówki tulejkowej.
C. Klejenie na gorąco przewodu kabelkowego.
D. Ściąganie izolacji z przewodu.
Wybór odpowiedzi, który nie odnosi się do zaciskania opaski kablowej, może wynikać z nieporozumienia dotyczącego funkcji narzędzi i ich zastosowania w pracy z przewodami. Ściąganie izolacji z przewodu jest procesem całkowicie innym, który polega na usunięciu zewnętrznej warstwy izolacyjnej kabla, co ma na celu odsłonięcie żył przewodzących. Przeprowadzając tę czynność, zawsze należy stosować odpowiednie narzędzia, aby uniknąć uszkodzenia samego przewodu. Zaciskanie końcówki tulejkowej odnosi się do innego procesu, który ma na celu połączenie przewodu z innym elementem za pomocą tulejek, co również nie ma związku z tematyką opasek kablowych. Klejenie na gorąco przewodu kabelkowego to technika, która nie jest stosowana w kontekście organizacji i zabezpieczania przewodów. Metoda ta jest raczej używana do łączenia różnych materiałów, co nie odnosi się do zagadnienia związanego z opaskami kablowymi. Typowe błędy myślowe, które mogą prowadzić do takich wyborów, obejmują pomylenie narzędzi i ich funkcji oraz niezrozumienie kontekstu, w jakim opaski kablowe są używane. Ważne jest, aby w kontekście technicznym zrozumieć różnice między tymi procesami i ich odpowiednie zastosowania w praktyce, aby unikać nieporozumień w przyszłości.

Pytanie 25

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 1 przy odłączonych przewodach pomiarowych.
B. 2 przy zwartych przewodach pomiarowych.
C. 2 przy odłączonych przewodach pomiarowych.
D. 1 przy zwartych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 26

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Ochronne obniżenie napięcia
C. Podwójna lub wzmocniona izolacja
D. Izolowanie miejsca pracy
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 27

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór innej odpowiedzi może wynikać z tego, że nie wszyscy znają podstawowe funkcje narzędzi pomiarowych. Rysunki innych urządzeń pomiarowych mogą być mylące, bo każde z nich ma swoje konkretne zastosowanie. Na przykład, niektóre z nich mierzą wilgotność albo temperaturę, co kompletnie nie ma związku z lokalizowaniem przewodów. Czasami ludzie mylą różne urządzenia z funkcjami detektora, co jest typowym błędem. W praktyce, wiele osób może nie wiedzieć, że detektory przewodów są stworzone specjalnie do prac elektrycznych, więc to naprawdę kluczowe narzędzie w budownictwie. Ignorowanie faktu, że odpowiednie narzędzia są istotne podczas remontów, może powodować poważne skutki, jak uszkodzenie kabli, co może prowadzić do ryzyka pożaru. Normy bezpieczeństwa kładą duży nacisk na używanie odpowiednich urządzeń, co pokazuje, jak ważne jest, aby znać właściwe zastosowanie narzędzi w praktyce.

Pytanie 28

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Analizując błędne odpowiedzi, można dostrzec szereg nieprawidłowości, które mogą prowadzić do problemów w działaniu układu oświetleniowego. W przypadku połączeń, które nie są zgodne z zasadami montażu, jak w odpowiedzi A i C, występuje problem z podłączeniem przewodu neutralnego, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przewód neutralny musi być podłączony właściwie, aby zapewnić powrót prądu z urządzenia do źródła zasilania. Niepoprawne połączenia mogą skutkować nieprawidłowym działaniem łączników, a nawet uszkodzeniem elementów instalacji. W odpowiedzi B zauważamy błąd w połączeniu ostatniego łącznika, co nie tylko uniemożliwia działanie układu, ale także stwarza ryzyko dla bezpieczeństwa, gdyż może prowadzić do niekontrolowanych wyładowań elektrycznych. W praktyce każdy element instalacji elektrycznej musi być starannie przemyślany i spełniać określone normy, aby zminimalizować ryzyko awarii. Często popełniane błędy myślowe polegają na niepełnym zrozumieniu zasad działania obwodów oświetleniowych oraz ignorowaniu standardów dotyczących instalacji elektrycznych. Zrozumienie fundamentalnych zasad dotyczących obwodów oraz ich prawidłowych połączeń jest niezbędne dla zachowania bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 29

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, młotek, obcinaczki
B. Osadzak gazowy, wkrętak, obcinaczki
C. Wiertarka z zestawem wierteł, młotek, piła
D. Wiertarka z zestawem wierteł, szczypce płaskie, piła
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 30

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Rtęciowy.
B. Ledowy.
C. Halogenowy.
D. Wolframowy.
Wybór żarówki wolframowej, rtęciowej lub halogenowej jako odpowiedzi sugeruje pewne nieporozumienia dotyczące technologii oświetleniowej. Żarówki wolframowe, choć kiedyś były powszechnie stosowane, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością, wynoszącą średnio około 1000 godzin. Emitują one dużą ilość ciepła, co sprawia, że są mniej praktyczne w zastosowaniach wymagających długotrwałego użytkowania. Z kolei żarówki rtęciowe, wykorzystywane głównie w oświetleniu przemysłowym i ulicznym, mają swoje ograniczenia związane z zawartością rtęci, co czyni je zagrożeniem dla środowiska. Ich zastosowanie w domach jest nie tylko niepraktyczne, ale także niebezpieczne. Halogenowe żarówki, będące rozwinięciem technologii wolframowej, oferują nieco lepszą efektywność, ale nadal nie dorównują żarówkom LED pod względem oszczędności energii oraz żywotności. Typowe błędy myślowe, które mogą prowadzić do wyboru tych opcji, to przekonanie, że tradycyjne źródła światła są wystarczające do zaspokojenia potrzeb oświetleniowych, ignorując przy tym ich negatywny wpływ na rachunki za energię oraz środowisko. W praktyce, na podstawie badań i analiz branżowych, zaleca się stosowanie żarówek LED jako najbardziej efektywnej i ekologicznej opcji oświetleniowej, dostosowanej do współczesnych standardów.

Pytanie 31

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Przymiar taśmowy, poziomnica, ołówek traserski
B. Przymiar kreskowy, ołówek traserski, rysik
C. Rysik, kątownik, punktak, młotek
D. Sznurek traserski, młotek, punktak
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 32

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. świecznikowy.
B. schodowy.
C. hotelowy.
D. dwubiegunowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 33

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Uszkodzenie przewodu neutralnego.
B. Zwarcie na zaciskach odbiornika Z2 lub Z3.
C. Zwarcie pomiędzy dwoma przewodami fazowymi.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Kiedy przewód neutralny w systemie trójfazowym ulega uszkodzeniu, napięcie na poszczególnych fazach rozkłada się nierównomiernie. To może mieć spore konsekwencje dla odbiorników, takich jak Z1. Na przykład, jeżeli przewód neutralny jest w złym stanie, napięcie na urządzeniach z mniejszą impedancją może znacznie wzrosnąć. To może prowadzić do ich uszkodzenia. W branży elektrycznej, jak mówi norma IEC 60364, prawidłowe uziemienie i sprawność przewodów neutralnych są mega istotne dla bezpieczeństwa instalacji. Wyobraź sobie sytuację, gdzie urządzenie podłączone do zepsutego obwodu neutralnego otrzymuje napięcie dużo wyższe niż 400V. To na pewno nie jest dobre dla sprzętu. Dlatego regularne sprawdzanie i konserwacja instalacji są kluczowe, żeby uniknąć takich problemów.

Pytanie 34

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C
Odpowiedzi IT, TT i TN-S są nieprawidłowe z różnych powodów związanych z charakterystyką układów sieciowych. Układ IT oznacza instalację, w której przewody nie są uziemione, a uziemienie ochronne jest realizowane w sposób alternatywny. Takie podejście, choć może być stosowane w niektórych specyficznych warunkach, nie pozwala na wykorzystanie wspólnego przewodu neutralnego i ochronnego, co jest kluczowe w układzie TN-C. Odpowiedź TT wskazuje na układ, w którym przewód neutralny jest oddzielony od przewodu ochronnego, co również jest sprzeczne z zasadami TN-C, gdzie przewody te są połączone. Układ TN-S, z kolei, w odróżnieniu od TN-C, zakłada oddzielne przewody neutralny i ochronny, co czyni go mniej efektywnym pod względem kosztów w instalacjach, w których można zastosować TN-C. Typowe błędy myślowe przy wyborze tych odpowiedzi często wynikają z nieznajomości praktycznych różnic między tymi układami a ich realnych zastosowań w instalacjach elektrycznych. Znajomość norm i standardów, takich jak PN-IEC 60364, jest kluczowa dla właściwego doboru układów sieciowych, co pozwala na uniknięcie nieporozumień i zapewnienie bezpieczeństwa w eksploatacji urządzeń elektrycznych.

Pytanie 35

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód fazowy z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Odłączony przewód ochronny
D. Zamieniony przewód ochronny z neutralnym
Wybór odpowiedzi dotyczący "Odłączonego przewodu ochronnego" może wydawać się logiczny, jednak nie uwzględnia on całego kontekstu sytuacji. Gdyby przewód ochronny był odłączony, to odbiornik II klasy ochronności po podłączeniu do gniazda powinien zadziałać normalnie, ponieważ urządzenia tej klasy nie wymagają przewodu ochronnego do prawidłowego działania. W takim przypadku wyłącznik różnicowoprądowy nie zadziałałby, co wyklucza tę możliwość. Podobnie, odpowiedź sugerująca "Uszkodzoną izolację przewodu fazowego" jest również mylną interpretacją. Uszkodzona izolacja mogłaby prowadzić do upływu prądu i zadziałania wyłącznika różnicowoprądowego, a nie do jego zadziałania wyłącznie w przypadku konkretnego gniazda. Odpowiedź o "Zamienionych przewodach fazowym z neutralnym" również nie jest poprawna, ponieważ wymiana tych przewodów nie wywołałaby takiego efektu zadziałania zabezpieczenia tylko w jednym gniazdku, a nie w pozostałych. W przypadku zamiany przewodów fazowego i neutralnego, mogłoby dojść do poważnych problemów z bezpieczeństwem, ale nie zadziałałby wyłącznik różnicowoprądowy w opisany sposób. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasady działania systemów elektrycznych oraz roli, jaką odgrywają różne przewody w zapewnieniu bezpieczeństwa instalacji.

Pytanie 36

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Wielodrutowe
B. Jednodrutowe
C. Płaskie
D. Sektorowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 37

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów sterowania i sygnalizacji
B. Sprawdzenie układów rozruchowych i regulacyjnych
C. Impregnację uzwojeń i wyważenie wirnika
D. Pomiar rezystancji izolacji i próbne uruchomienie
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 38

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do prądnic tachometrycznych
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do wzmacniaczy maszynowych
D. Do transformatorów
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 39

Zdjęcie przedstawia

Ilustracja do pytania
A. przełącznik.
B. rozłącznik.
C. odłącznik.
D. wyłącznik.
Odłącznik, jako urządzenie elektryczne, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych. Jego głównym zadaniem jest otwieranie obwodu w sposób widoczny i bezpieczny, co jest niezbędne podczas prac konserwacyjnych lub awaryjnych. W przeciwieństwie do innych urządzeń, takich jak wyłączniki czy przełączniki, odłącznik nie jest przeznaczony do regularnego włączania i wyłączania obwodu pod obciążeniem. Dzięki swojej konstrukcji, odłącznik umożliwia przerwanie obwodu bez ryzyka wystąpienia łuku elektrycznego, co czyni go bezpiecznym narzędziem. Przykłady zastosowania odłączników obejmują instalacje przemysłowe, gdzie wymagane jest bezpieczne odłączenie zasilania dla pracowników. W zgodzie z normami IEC 60947-3, odłączniki są klasyfikowane jako urządzenia do odłączania i są używane w systemach, gdzie bezpieczeństwo obsługi i dostępność są najważniejsze. Warto również zaznaczyć, że odłączniki mogą być stosowane w różnych konfiguracjach, co pozwala na adaptację do specyficznych potrzeb instalacji elektrycznych.

Pytanie 40

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Fundamentowy.
B. Promieniowy.
C. Pionowy.
D. Otokowy.
W tej sprawie z uziomami w instalacji piorunochronnej nie można pomylić się z fundamentowym, pionowym czy promieniowym. Uziom fundamentowy, jak wiemy, wiąże się z fundamentami budynku i ma na celu głównie ochronę elektryki w środku. Ale nie wszystko w tym temacie jest takie proste, bo nie chroni on przed piorunami tak, jak powinien. Uziom pionowy, który wprowadza elektrody w głąb ziemi, może być stosowany, gdy grunt nie przewodzi za dobrze, ale jego skuteczność w odprowadzaniu prądów piorunowych jest znacznie gorsza niż w przypadku uziomu otokowego. A z kolei promieniowy system, który rozchodzi się w promieniach od jednego punktu, rzadko się używa do ochrony przed piorunami, bo nie jest stabilny i niezawodny. Mieszanie tych różnych rozwiązań może prowadzić do błędnych wniosków na temat tego, jak skutecznie chronić budynek przed burzami. Każdy z tych uziomów ma swoje zastosowanie, ale nie zastąpią one sprawdzonego uziomu otokowego, co może skończyć się nieprzyjemnie w razie burzy.