Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 31 stycznia 2026 06:43
  • Data zakończenia: 31 stycznia 2026 07:04

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W regulatorze PID symbolem TI oznacza się czas

A. zdwojenia.
B. wyprzedzenia.
C. opóźnienia.
D. propagacji.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 2

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

Ilustracja do pytania
A. S1 przyciśnięty, S2 nieprzyciśnięty.
B. S1 nieprzyciśnięty, S2 przyciśnięty.
C. S1 nieprzyciśnięty, S2 nieprzyciśnięty.
D. S1 przyciśnięty, S2 przyciśnięty.
Analiza błędnych odpowiedzi wymaga zrozumienia, jak działają przełączniki i obwody szeregowe. Przełącznik S1, jeśli nie jest przyciśnięty, nie przepuści prądu dalej, co oznacza, że obwód pozostaje otwarty i lampka nie zaświeci. Podobnie, jeśli S2 jest przyciśnięty, również otwiera obwód, przerywając przepływ prądu do lampki H1. Typowym błędem jest zakładanie, że wystarczy przycisnąć dowolny przełącznik, by obwód był zamknięty. Jednak w przypadku połączenia szeregowego, wszystkie elementy muszą być w odpowiednim stanie, by prąd mógł płynąć. Często mylone jest to z połączeniem równoległym, gdzie każdy element ma swoją ścieżkę prądu. W praktycznych zastosowaniach, takie błędy mogą prowadzić do nieprawidłowego działania systemów sterowania, co może być krytyczne w kontekstach przemysłowych. Dlatego ważne jest, by dokładnie przemyśleć każdą konfigurację i zwrócić uwagę na specyfikę używanych elementów. Moim zdaniem, zrozumienie różnicy między różnymi typami połączeń w obwodach elektrycznych jest niezbędne, by uniknąć takich pomyłek w przyszłości. Z tego też powodu, zawsze rekomenduje się dokładne przestudiowanie schematów i ich działania przed przystąpieniem do ich użycia.

Pytanie 3

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. kołków rozprężnych.
B. zabezpieczeń E-ring.
C. podkładek dystansowych.
D. pierścieni Segera.
Choć na pierwszy rzut oka mogą się mylić, narzędzie przedstawione na ilustracjach nie służy do montażu pierścieni Segera. Pierścienie te, znane również jako pierścienie zabezpieczające, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Bez odpowiedniego narzędzia, montaż i demontaż takich pierścieni jest nie tylko trudny, ale i ryzykowny dla mechanizmów. Podobnie, narzędzie to nie jest przeznaczone do montażu kołków rozprężnych, które działają na zasadzie sił rozszerzających, a ich montaż wymaga najczęściej młotka lub prasy. Podkładki dystansowe z kolei nie wymagają użycia tego rodzaju narzędzi, ponieważ są to płaskie elementy mające na celu regulację odległości pomiędzy częściami, a ich montaż jest manualny. Typowym błędem jest mylenie szczypiec do E-ring z innymi narzędziami z powodu ich zewnętrznego podobieństwa. Jednak funkcja i konstrukcja są specjalnie dostosowane do konkretnego zastosowania. W przypadku E-ringów, kluczowe jest odpowiednie dopasowanie narzędzia, aby zapewnić właściwe działanie zabezpieczenia i uniknąć uszkodzeń mechanicznych. Dlatego zawsze warto dokładnie sprawdzić specyfikację techniczną narzędzia przed jego użyciem.

Pytanie 4

Kolejność dokręcania śrub mocujących płytę jest następująca:

Ilustracja do pytania
A. 4 – 3 – 1 – 2
B. 1 – 2 – 3 – 4
C. 4 – 3 – 2 – 1
D. 1 – 3 – 4 – 2
Prawidłowa kolejność dokręcania to 1–3–4–2. W praktyce technicznej oznacza to, że śruby dokręca się na krzyż, czyli naprzemiennie po przekątnej. Dzięki temu docisk płyty do powierzchni jest równomierny, a naprężenia w materiale rozkładają się symetrycznie. Taki sposób montażu zapobiega wykrzywieniu lub pęknięciu płyty, a także nieszczelnościom w połączeniu – szczególnie gdy pod spodem znajduje się uszczelka. Z mojego doświadczenia wynika, że warto najpierw dokręcać śruby lekko, z momentem wstępnym, a dopiero potem dociągnąć je końcowo momentem zalecanym przez producenta (np. wg normy ISO 898-1). W mechanice, hydraulice i motoryzacji ten sposób jest standardem przy montażu głowic silników, kołnierzy czy obudów przekładni. Równomierne dokręcanie na krzyż to niby drobiazg, ale decyduje o trwałości całego połączenia.

Pytanie 5

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. dynamometryczny.
B. hakowy.
C. oczkowy.
D. imbusowy.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.

Pytanie 6

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady blokady programowej sygnałów wejściowych.
C. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Rozważając zasady blokady sygnałów wyjściowych, można dojść do wniosku, że ich stosowanie w celu wyłączenia systemu sterowanego przez PLC nie jest właściwe. Blokada wyjść dotyczy przede wszystkim zatrzymania działania urządzeń wykonawczych, co niekoniecznie oznacza bezpieczne wyłączenie całego systemu. W praktyce, blokada sygnałów wejściowych, choć mogłaby wydawać się sposobem na wyłączenie systemu, w rzeczywistości skupia się bardziej na ochronie przed niepożądanymi sygnałami zewnętrznymi niż na stopowaniu pracy sterownika. To podejście często prowadzi do błędnego myślenia, że ograniczenie informacji docierających do PLC wystarczy do jego wyłączenia. Zasady prądu roboczego, polegające na podaniu stanu 1 na wejście, są zazwyczaj wykorzystywane do aktywacji obwodów. W praktyce oznacza to, że w kontekście wyłączania, poleganie na stanie 1 może prowadzić do problematycznych sytuacji, zwłaszcza w przypadku awarii zasilania. Tego rodzaju koncepcje mogą być mylnie interpretowane jako właściwe, ponieważ w pewnych sytuacjach stan 1 jest utożsamiany z aktywnością. Jednakże w automatyce przemysłowej, szczególnie z perspektywy bezpieczeństwa, bardziej liczy się niezawodne przejście do stanu bezpiecznego, co zapewnia przerwa robocza, czyli stan 0. W konkluzji, niepoprawne zrozumienie tych zasad może wynikać z niepełnej znajomości standardów bezpieczeństwa lub specyfiki działania systemów PLC, co może prowadzić do nieodpowiednich implementacji w projektach inżynieryjnych.

Pytanie 7

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. pierścieni Segera.
B. zabezpieczeń E-ring.
C. kołków rozprężnych.
D. podkładek dystansowych.
Zrozumienie różnicy między różnymi typami narzędzi do montażu zabezpieczeń jest kluczowe dla efektywnej pracy. Pierścienie Segera, znane również jako pierścienie sprężynujące, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Nie są to jednak te same końcówki, co w przypadku narzędzi do E-ringów. Zastosowanie niewłaściwego narzędzia może prowadzić do uszkodzenia pierścienia lub nawet samego mechanizmu. Podobnie, zabezpieczenia typu E-ring różnią się konstrukcją od pierścieni Segera i wymagają innych narzędzi. Kołki rozprężne to całkiem inna kategoria elementów mocujących, które są używane do zamocowania elementów w otworach, zwykle bez użycia dodatkowych narzędzi. Ich montaż zazwyczaj polega na wciśnięciu ich w miejsce docelowe, co nie wymaga użycia specjalnych szczypiec. Podkładki dystansowe służą do zapewnienia odpowiedniego odstępu między elementami, ale nie są montażowym zabezpieczeniem w tradycyjnym tego słowa znaczeniu. Mylenie tych elementów prowadzi często do błędnych wniosków, co może skutkować niewłaściwym doborem narzędzi i materiałów w pracy mechanicznej. Ważne jest, aby przed przystąpieniem do pracy dokładnie zidentyfikować, jakie zabezpieczenia są stosowane i jakie narzędzia są potrzebne do ich montażu.

Pytanie 8

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 60 mm
B. 30 mm
C. 20 mm
D. 10 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 9

Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości zasilającego silnik indukcyjny prądu przemiennego powoduje

A. spadek rezystancji uzwojeń silnika.
B. wzrost rezystancji uzwojeń silnika.
C. spadek prędkości obrotowej wału silnika.
D. wzrost prędkości obrotowej wału silnika.
Silnik indukcyjny prądu przemiennego jest niezwykle popularnym wyborem w aplikacjach przemysłowych z powodu swojej prostoty i niezawodności. Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości, który zasila taki silnik, prowadzi do wzrostu prędkości obrotowej wału silnika. Wynika to z fundamentalnej zależności między częstotliwością zasilania a prędkością obrotową, którą opisuje wzór n = (120 * f) / p, gdzie n to prędkość obrotowa w obr./min, f to częstotliwość zasilania w Hz, a p to liczba biegunów silnika. Zwiększając częstotliwość, zwiększamy także prędkość obrotową, co jest niezwykle użyteczne w aplikacjach wymagających zmiennej prędkości, takich jak wentylatory czy pompy. W praktyce, przemienniki częstotliwości pozwalają na płynne sterowanie prędkością obrotową bez konieczności zmiany konstrukcji samego silnika. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują efektywność energetyczną i elastyczność zastosowań. Dodatkowo, regulacja prędkości za pomocą przemienników częstotliwości może przyczynić się do redukcji zużycia energii oraz przedłużenia żywotności sprzętu, co czyni je kluczowym elementem w nowoczesnych systemach automatyki przemysłowej.

Pytanie 10

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. interfejsu komunikacyjnego.
C. modułu wyjściowego.
D. modułu wejściowego.
Analizując dostępne opcje, warto zastanowić się nad każdym z błędnych wyborów, aby zrozumieć, dlaczego mogą wprowadzać w błąd. Interfejs komunikacyjny to element, który umożliwia wymianę danych pomiędzy różnymi urządzeniami. W kontekście PLC, mógłby służyć do komunikacji z innymi sterownikami lub komputerem. Jednak w tym układzie ADMC-1801 pełni rolę modułu wejściowego, co czyni tę odpowiedź niepoprawną. Zasilacz sterownika PLC jest natomiast odpowiedzialny za dostarczenie odpowiedniego napięcia i prądu do urządzenia, co jest kluczowe dla jego prawidłowego działania. W diagramie nie ma wskazań, które potwierdzałyby tę funkcję dla ADMC-1801. Kolejną możliwością jest moduł wyjściowy, który steruje elementami wykonawczymi na podstawie decyzji podejmowanych przez sterownik PLC. Tego rodzaju moduły są kluczowe w procesie automatyki, lecz nie jest to rola ADMC-1801 w przedstawionym schemacie. Częstym błędem jest mylenie funkcji poszczególnych elementów systemu automatyki, co może wynikać z braku doświadczenia lub nieznajomości specyfikacji. Poprawne zrozumienie ról poszczególnych modułów jest kluczowe w projektowaniu i utrzymaniu systemów sterowania, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 11

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. regulującego.
B. sterującego.
C. pomiarowego.
D. wykonawczego.
Wybierając niepoprawną odpowiedź, warto zrozumieć różnice funkcji elementów w układzie automatyki. Gdy mówimy o elementach pomiarowych, odnosimy się do urządzeń takich jak czujniki i przetworniki, które mierzą fizyczne wielkości procesowe jak temperatura, ciśnienie czy przepływ i przekazują te dane dalej w systemie. Nie są one odpowiedzialne za wykonywanie czynności w sensie mechanicznym, lecz za dostarczanie danych do dalszego przetwarzania. Element regulujący, z kolei, to zazwyczaj komponenty takie jak zawory czy regulatory, które mają wpływ na przebieg procesu, zmieniając jego parametry zgodnie z ustalonymi zadaniami. Ich zadanie to raczej modyfikacja parametrów procesu niż bezpośrednie wykonanie pracy mechanicznej. Element sterujący w systemach automatyki odnosi się do jednostek takich jak PLC (Programmable Logic Controller), które zarządzają logiką procesu. Ich główną rolą jest koordynacja pracy całego systemu, ale nie wykonują one fizycznej pracy w sensie mechanicznym. Typowym błędem jest mylenie tych pojęć, wynikające z braku zrozumienia ich specyficznych ról i powiązań w systemach automatyki. Znajomość tej struktury pomaga w efektywnym projektowaniu i diagnozowaniu układów automatycznych, co jest kluczowe w pracy inżyniera automatyka.

Pytanie 12

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. klucza „francuskiego”.
B. wkrętaka gwiazdkowego.
C. klucza imbusowego.
D. klucza hydraulicznego nastawnego.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 13

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. brązowym.
B. czerwonym.
C. białym.
D. niebieskim.
Odpowiedź niebieska jest poprawna, ponieważ w systemach elektrycznych zgodnych z normą PN-EN 60446 kolorem niebieskim oznacza się przewody neutralne, czyli te, które są podłączone do bieguna neutralnego zasilania. Praktycznie w każdym przypadku, gdy mamy do czynienia z instalacją elektryczną, neutralne przewody w kolorze niebieskim są kluczowe dla prawidłowego funkcjonowania systemu. Przykładowo, podczas instalacji przemienników częstotliwości, przewód L2 często jest przewodem neutralnym, który uziemia i stabilizuje układ. Ważne jest, aby pamiętać, że właściwe oznaczenie przewodów nie tylko ułatwia serwisowanie, ale przede wszystkim zapewnia bezpieczeństwo i zgodność z przepisami. Moim zdaniem, umiejętność rozpoznawania i prawidłowego łączenia przewodów to fundamentalna umiejętność każdego elektryka, dlatego warto przyłożyć do tego szczególną uwagę. Dobre oznaczenie przewodów to także mniejsze ryzyko pomyłki w przyszłości, co jest jednym z podstawowych standardów w branży elektrycznej.

Pytanie 14

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. A
C. T
D. B
Zrozumienie, do którego przyłącza w zaworze hydraulicznym należy podłączyć zbiornik z cieczą, jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przyłącze P, często mylone, służy do doprowadzenia ciśnienia roboczego z pompy do zaworu, a nie do podłączenia zbiornika. To często spotykany błąd, wynikający z braku znajomości podstawowych zasad działania układów hydraulicznych. Przyłącza A i B odpowiadają za sterowanie przepływem cieczy do siłowników i innych elementów wykonawczych. Ich funkcją jest kierowanie cieczy do odpowiednich części systemu, aby mogły one wykonać zaplanowaną pracę, np. przesunięcie tłoka. Podłączenie zbiornika do tych portów mogłoby skutkować niekontrolowanym działaniem siłowników lub w ogóle uniemożliwić działanie układu. Prawidłowe podłączenie zbiornika do przyłącza T jest niezbędne dla zapewnienia swobodnego powrotu cieczy do zbiornika po jej użyciu w systemie. Takie podejście nie tylko zapobiega nadmiernemu ciśnieniu, ale także minimalizuje ryzyko uszkodzeń mechanicznych całego układu. Dobry projektant systemów hydraulicznych wie, że stosowanie się do standardowych praktyk i zrozumienie funkcji poszczególnych przyłączy jest podstawą dla niezawodności i efektywności działania.

Pytanie 15

Narzędzie przedstawione na rysunku to szczypce

Ilustracja do pytania
A. tnące boczne.
B. tnące czołowe.
C. uniwersalne.
D. płaskie.
Wydaje się, że mogło dojść do nieporozumienia związanego z charakterystyką poszczególnych typów szczypiec. Szczypce płaskie, często nazywane kombinerkami, służą głównie do chwytania i zgniatania przedmiotów. Ich płaskie powierzchnie robocze są świetne do podtrzymywania elementów, ale nie sprawdzą się, gdy potrzebne jest precyzyjne cięcie. Z kolei szczypce uniwersalne łączą cechy kilku różnych narzędzi; mogą mieć powierzchnię do chwytania, ale też elementy do cięcia, jednak nie są tak precyzyjne jak narzędzia specjalistyczne. Często spotykanym błędem jest zakładanie, że jedno narzędzie rozwiąże wszystkie problemy – w praktyce jednak, każda operacja wymaga odpowiednio dobranego sprzętu. Szczypce tnące czołowe mają ostrza ustawione prostopadle do rękojeści, co czyni je idealnymi do cięć blisko powierzchni, ale nie sprawdzą się do zadań wymagających precyzyjnego cięcia bocznego. Z mojego doświadczenia wynika, że warto zainwestować czas w poznanie funkcji i zastosowań różnych narzędzi, co pozwala unikać takich błędów i wybierać narzędzia adekwatne do zadania, co jest kluczowe w zapewnieniu nie tylko jakości, ale i bezpieczeństwa pracy.

Pytanie 16

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
B. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
C. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
D. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
Podłączenie napięcia zasilania 24 V DC do zacisków 3 i 4 jest zgodne z dokumentacją przedstawioną na schemacie. Zacisk 3 służy jako punkt podłączenia „-”, a zacisk 4 jako „+”. To typowe oznaczenie dla zasilania urządzeń elektronicznych, gdzie biegunowość ma znaczenie dla prawidłowego działania układów. W schemacie wyraźnie widać, że obwód dla 24 V DC jest oddzielony od obwodu 230 V AC, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w elektronice. W praktyce często stosuje się zaciski oznaczone jako „+” i „-” w urządzeniach zasilanych napięciem stałym, co zapobiega błędnemu podłączeniu i potencjalnym uszkodzeniom. Dlatego, jeśli pracujesz z urządzeniami elektronicznymi, zawsze zwracaj uwagę na poprawne oznaczenie zacisków. I pamiętaj, że przy pracy z napięciem, nawet tak niskim jak 24 V, kluczowe jest przestrzeganie zasad bezpieczeństwa. Z mojego doświadczenia wynika, że takie detale jak poprawna biegunowość to podstawa w pracy z elektroniką.

Pytanie 17

Na schemacie przedstawiono

Ilustracja do pytania
A. konwerter łącza szeregowego na łącze światłowodowe.
B. regulowany wzmacniacz napięć lub prądów zmiennych.
C. przetwornik napięcia AC na prąd AC.
D. przetwornik pomiarowy prądu lub napięcia AC.
Na schemacie przedstawiono konwerter łącza szeregowego RS-232 na łącze światłowodowe. Urządzenie tego typu przekształca standardowe sygnały elektryczne (TxD, RxD, 0V) w sygnały optyczne, które mogą być przesyłane na duże odległości za pomocą światłowodu. Na schemacie widać typowe oznaczenia dla interfejsu RS-232 – linie transmisji i odbioru danych (TxD, RxD) oraz ekranowanie (Sh). Po stronie FO (Fiber Optic) znajdują się diody nadawcze i odbiorcze, które zamieniają impulsy elektryczne na światło i odwrotnie. Tego typu konwertery stosuje się, gdy trzeba zapewnić odporność transmisji na zakłócenia elektromagnetyczne, wydłużyć dystans lub odizolować galwanicznie dwa urządzenia. Moim zdaniem to świetne rozwiązanie w przemyśle, szczególnie przy połączeniach między sterownikami PLC a komputerem operatorskim, gdzie odległość przekracza kilka metrów. Konwerter pozwala na zachowanie pełnej funkcjonalności RS-232, a jednocześnie gwarantuje niezawodność transmisji nawet w trudnych warunkach środowiskowych. Typowy zakres napięć zasilania (24–240 V AC/DC) pozwala na uniwersalne zastosowanie w szafach sterowniczych, co jest zgodne z przemysłowymi standardami komunikacji.

Pytanie 18

Do odkręcania śrub przedstawionych na zdjęciu służy klucz z nasadką o nacięciu

Ilustracja do pytania
A. prostym.
B. trójkątnym.
C. torx.
D. krzyżowym.
Śruby przedstawione na zdjęciu mają charakterystyczne, sześcioramienne gniazdo w kształcie gwiazdy. Klucze torx oznaczane są symbolem T (np. T20, T30) i zostały zaprojektowane tak, aby przenosić większy moment obrotowy bez ryzyka uszkodzenia łba śruby. W przeciwieństwie do tradycyjnych śrub krzyżowych lub prostych, torx zapewnia znacznie lepszy kontakt narzędzia z gniazdem, co zmniejsza efekt tzw. wyślizgiwania się końcówki (cam-out). W praktyce technicznej śruby torx stosuje się w motoryzacji, elektronice, urządzeniach przemysłowych i meblarstwie – tam, gdzie wymagana jest precyzja i trwałość połączenia. Z mojego doświadczenia wynika, że warto mieć w warsztacie pełen zestaw torxów, bo coraz częściej zastępują one klasyczne krzyżaki. Dodatkowo istnieją wersje zabezpieczone (torx z bolcem w środku), które wymagają specjalnego klucza, co chroni przed nieautoryzowanym rozkręceniem urządzeń.

Pytanie 19

Która z przekładni mechanicznych na pokazanych rysunkach pracuje zgodnie z przedstawionym schematem kinematycznym?

Ilustracja do pytania
A. Przekładnia 4.
Ilustracja do odpowiedzi A
B. Przekładnia 1.
Ilustracja do odpowiedzi B
C. Przekładnia 3.
Ilustracja do odpowiedzi C
D. Przekładnia 2.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to przekładnia 1. Jest to przekładnia stożkowa, w której osie kół zębatych przecinają się pod kątem prostym. Dokładnie taki układ przedstawiono na schemacie kinematycznym – dwa wały ustawione prostopadle względem siebie, przenoszące moment obrotowy przez zazębienie stożkowe. Przekładnie tego typu stosuje się wszędzie tam, gdzie trzeba zmienić kierunek obrotów o 90°, np. w skrzyniach biegów, w napędach maszyn przemysłowych, w mechanizmach różnicowych pojazdów czy obrabiarkach. Ich zaletą jest kompaktowa budowa i wysoka sprawność przy stosunkowo małych wymiarach. Z mojego doświadczenia wynika, że poprawny montaż przekładni stożkowej wymaga precyzyjnego ustawienia osi i odpowiedniego smarowania – niewielkie przesunięcia kątowe mogą powodować nierównomierne zużycie zębów. W praktyce technicznej często stosuje się też wersje hipoidalne, które pozwalają dodatkowo przesunąć osie napędzające względem siebie, zachowując tę samą zasadę pracy.

Pytanie 20

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. redukcyjny.
B. dławiący.
C. bezpieczeństwa.
D. zwrotny.
Zawór bezpieczeństwa pełni zupełnie inną rolę w układzie pneumatycznym. Jego zadaniem jest ochrona systemu przed nadmiernym wzrostem ciśnienia, co mogłoby prowadzić do uszkodzeń. Gdy ciśnienie przekroczy określoną wartość, zawór otwiera się, aby upuścić nadmiar gazu, zapobiegając w ten sposób awarii. To typowy komponent w systemach, gdzie bezpieczeństwo ma kluczowe znaczenie, jak na przykład w zbiornikach ciśnieniowych czy kompresorach. Z kolei zawór dławiący stosuje się do regulacji przepływu powietrza, co wpływa na prędkość działania elementów wykonawczych, takich jak siłowniki. Nie reguluje on jednak ciśnienia, a jedynie strumień przepływu. Natomiast zawór zwrotny, jak sama nazwa wskazuje, zapobiega cofaniu się medium w układzie, działając jak jednokierunkowe zamknięcie. Jego obecność jest kluczowa w systemach, gdzie cofanie medium mogłoby powodować nieprawidłowości w działaniu, ale również nie reguluje ciśnienia. Wybierając odpowiedź, można się łatwo pomylić, jeśli nie zrozumiemy pełni funkcji każdego z tych zaworów. Typowym błędem jest myślenie, że każdy zawór wpływający na przepływ mediów automatycznie będzie regulował ciśnienie, jednak w rzeczywistości każdy z tych komponentów ma swoje specyficzne zastosowanie i działanie zgodne z zasadami fizyki oraz potrzebami danego układu. Dlatego tak ważne jest, aby dokładnie znać specyfikę działania poszczególnych zaworów w kontekście ich praktycznych zastosowań.

Pytanie 21

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
B. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
C. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
D. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1
Odpowiedź jest poprawna, ponieważ timer TON w sterowniku PLC jest używany do opóźnienia załączenia wyjścia o określony czas po pojawieniu się sygnału wejściowego. W tym przypadku, gdy na wejściu %I0.1 pojawia się stan wysoki, timer zaczyna odliczać czas 5 sekund, co jest zdefiniowane w parametrach timera jako PT (preset time). Po upływie tego czasu wyjście %Q0.1 zostaje załączone. Timer TON jest jednym z najczęściej wykorzystywanych bloków w programowaniu PLC, szczególnie w automatyzacji procesów produkcyjnych, gdzie niezbędne jest precyzyjne sterowanie czasem. Typowymi zastosowaniami mogą być np. sterowanie oświetleniem w halach produkcyjnych, gdzie światło włącza się z opóźnieniem, aby zapewnić bezpieczeństwo pracowników opuszczających stanowiska pracy. Warto również pamiętać, że zgodnie ze standardami IEC 61131-3, timer TON jest jednym z elementów struktury programistycznej języka LD (Ladder Diagram), co czyni go uniwersalnym i powszechnie rozumianym w branży. Dzięki temu, że jest to rozwiązanie standardowe, można go łatwo zastosować w różnych systemach automatyki, co zwiększa elastyczność i kompatybilność projektów PLC.

Pytanie 22

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. opornik dekadowy.
B. multimetr cyfrowy.
C. silnik prądu stałego.
D. autotransformator.
Odpowiedź obejmująca urządzenia takie jak multimetr cyfrowy, opornik dekadowy czy silnik prądu stałego wskazuje na pewne nieporozumienia związane z funkcją transformatora. Multimetr cyfrowy to narzędzie pomiarowe używane do mierzenia różnych parametrów elektrycznych, takich jak napięcie, natężenie prądu czy oporność. Jest to urządzenie niezastąpione w diagnostyce i konserwacji urządzeń elektronicznych, ale nie zmienia ono wartości napięcia. Opornik dekadowy, z kolei, to urządzenie stosowane do precyzyjnego ustawiania wartości rezystancji w układach elektrycznych. Zazwyczaj wykorzystywany jest w laboratoriach do kalibracji i testowania sprzętu. Silnik prądu stałego to maszyna elektryczna przekształcająca energię elektryczną na mechaniczną. Funkcjonuje w zupełnie innym kontekście niż transformator, ponieważ jego zadaniem jest napędzanie maszyn i urządzeń, a nie zmiana parametrów elektrycznych w sieci. Wybór którejś z tych odpowiedzi świadczy o pewnym niezrozumieniu podstawowych funkcji i zastosowań każdego z tych urządzeń. Typowym błędem myślowym jest tutaj mylenie urządzeń pomiarowych i aktorów elektrycznych z elementami systemu dystrybucji energii. Dlatego warto zwrócić uwagę na specyfikę każdego z tych urządzeń, ich przeznaczenie oraz kontekst, w jakim są stosowane, aby unikać takich pomyłek w przyszłości.

Pytanie 23

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w dół CTD.
B. licznika impulsów zliczającego w górę CTU.
C. timera opóźniającego załączenie TON.
D. timera opóźniającego wyłączenie TOF.
Wybór innej odpowiedzi może wynikać z błędnego zrozumienia funkcji poszczególnych bloków w sterownikach PLC. Timer opóźniający załączenie TON działa zupełnie inaczej – jego zadaniem jest opóźnienie aktywacji sygnału wyjściowego po wystąpieniu sygnału wejściowego. Jest szeroko stosowany w procesach, które wymagają opóźnienia startu, np. w systemach HVAC. Z kolei timer opóźniający wyłączenie TOF utrzymuje sygnał wyjściowy aktywnym przez określony czas po zaniku sygnału wejściowego, co jest użyteczne w systemach, gdzie wymagane jest podtrzymanie działania przez krótki czas po wyłączeniu. Licznik impulsów zliczający w górę CTU jest używany do zliczania impulsów w górę, co odmiennie od CTD zwiększa wartość z każdym impulsem. To podejście jest często stosowane w systemach, gdzie istotne jest dokładne zliczenie ilości zdarzeń, jak np. produkcja części na taśmie. Każda z tych funkcji ma swoje unikalne zastosowania i wybór niewłaściwej może prowadzić do problemów operacyjnych, jak np. nieprawidłowe odliczanie cykli lub niewłaściwe sekwencje czasowe. Istotne jest, aby dobrze zrozumieć różnice w działaniu tych bloków, aby móc skutecznie projektować i diagnozować systemy automatyki.

Pytanie 24

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok licznika impulsów zliczającego w dół CTD
B. blok timera opóźniającego załączenie TON
C. blok licznika impulsów zliczającego w górę CTU
D. blok timera opóźniającego wyłączenie TOF
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 25

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. czerwony.
B. niebiesko-zielony.
C. niebieski.
D. żółto-zielony.
Przewód o izolacji w kolorze żółto-zielonym jest bezpośrednio związany z pojęciem ochrony przeciwporażeniowej w instalacjach elektrycznych. W systemach elektrycznych na całym świecie kolory przewodów są standaryzowane, aby zapewnić bezpieczeństwo i jednolitość. Żółto-zielona izolacja jest przypisana do przewodu ochronnego PE (ang. Protective Earth). Zadaniem tego przewodu jest zapewnienie, że elementy metalowe nie będą pod napięciem w przypadku awarii izolacji. Taki przewód odprowadza prąd zwarciowy do ziemi, minimalizując ryzyko porażenia prądem elektrycznym. W praktyce, każdy technik elektryk, instalując przewody, musi upewnić się, że kolorystyka jest zgodna z normami, jak na przykład PN-HD 60364-5-54. Dzięki temu, osoby pracujące przy instalacjach mają pewność, że przewody są poprawnie oznakowane. Moim zdaniem, trzymanie się tych standardów to podstawa pracy w branży elektrycznej, bo bezpieczeństwo jest najważniejsze. Dodatkowo, z mojego doświadczenia, poprawne oznaczenie przewodów znacznie ułatwia późniejsze prace konserwacyjne i diagnostyczne.

Pytanie 26

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. OR
B. NAND
C. AND
D. XNOR
Na rysunku przedstawiono konfigurację wejść zwierających, co może wprowadzać błąd w rozumieniu, czy mamy do czynienia z funkcją typu OR, AND, XNOR czy NAND. Często można pomylić funkcje OR i AND z funkcją NAND, nie rozumiejąc, że różnica tkwi w obecności operacji NOT na końcu działania. Funkcja OR zakłada, że wyjście jest prawdziwe, gdy przynajmniej jedno z wejść jest prawdziwe, co w tym przypadku nie ma miejsca, ponieważ struktura logiczna wymaga, aby oba wejścia były fałszywe dla uzyskania wyjścia prawdziwego. Funkcja AND działa odwrotnie, dając wyjście prawdziwe jedynie, gdy oba wejścia są prawdziwe. Z kolei XNOR, jako odmiana XOR, daje wynik prawdziwy, gdy oba wejścia są takie same, co nie pasuje do przedstawionego schematu. Typowym błędem jest niezrozumienie, że bramka NAND jest de facto negacją bramki AND, co oznacza, że wyjście jest fałszywe tylko wtedy, gdy wszystkie wejścia są prawdziwe. Brak zrozumienia tych podstawowych różnic może prowadzić do niepoprawnego zastosowania logiki w systemach sterujących, co w konsekwencji może skutkować wadliwym działaniem systemu lub nawet jego uszkodzeniem.

Pytanie 27

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. OBD II
B. ETHERNET
C. USB
D. RS-232
Sterownik PLC przedstawiony na ilustracji korzysta z interfejsu ETHERNET, co jest powszechnym standardem w nowoczesnych systemach automatyki przemysłowej. Ethernet umożliwia szybkie przesyłanie danych i łatwą integrację z siecią lokalną oraz Internetem. Dzięki temu możemy zdalnie monitorować i kontrolować pracę systemów, co znacznie zwiększa ich elastyczność i efektywność. W praktyce oznacza to, że można na przykład zdalnie wgrywać nowe programy, aktualizować oprogramowanie, a także diagnozować ewentualne problemy bez potrzeby fizycznego dostępu do urządzenia. Z mojego doświadczenia, Ethernet w PLC to właściwie standard. Jest też niezwykle pomocny w integracji z innymi systemami, jak SCADA, co pozwala na kompleksowe zarządzanie procesami produkcyjnymi. Warto też wspomnieć, że Ethernet w sterownikach PLC wspiera protokoły takie jak Modbus TCP/IP czy Profinet, co dodatkowo ułatwia komunikację między różnymi urządzeniami w sieci.

Pytanie 28

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 0110.
B. input SW1 - 01011010, output SW2 - 1001.
C. input SW1 - 01001001, output SW2 - 0000.
D. input SW1 - 10001100, output SW2 - 0000.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 29

Zgodnie z charakterystyką przetwarzania, dla temperatury 80ºC na wyjściu przetwornika pojawi się prąd o natężeniu

Ilustracja do pytania
A. 13 mA
B. 16 mA
C. 10 mA
D. 18 mA
Doskonale! Odpowiedź 16 mA jest prawidłowa, ponieważ związana jest z liniowym charakterem przetwornika prądu w odniesieniu do temperatury. Patrząc na wykres, można zauważyć, że przy 0°C prąd wynosi 0 mA, a przy 100°C wynosi 20 mA. To wskazuje, że przetwornik ma charakterystykę liniową z przelicznikiem 0,2 mA na każdy stopień Celsjusza. Przy 80°C, przeliczenie daje dokładnie 16 mA, co jest zgodne z wykresem. Takie przetworniki są powszechnie używane w przemysłowych systemach automatyki, gdzie precyzyjne odwzorowanie zmiennych fizycznych na sygnał elektryczny jest kluczowe. Dzięki temu, kontrola temperatur w procesach chemicznych czy energetycznych jest bardziej efektywna. Standardy przemysłowe, takie jak 4-20 mA, są często wykorzystywane ze względu na ich odporność na zakłócenia i łatwość integracji z systemami sterowania. Ułatwia to też diagnostykę, bo sygnały poniżej 4 mA mogą wskazywać na awarię czujnika.

Pytanie 30

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami aluminiowymi w izolacji z polwinitu, należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. ADY-w
B. ADS-t
C. ADS-w
D. ALY-t
Wybór przewodu oznaczonego jako ADY-w jest prawidłowy w kontekście wykonania połączeń wysokonapięciowych. Oznaczenie 'A' wskazuje na materiał przewodu – aluminium, co jest standardowym wyborem dla przewodów wykorzystywanych w aplikacjach wysokonapięciowych ze względu na jego lekkość i dobrą przewodność. 'D' oznacza, że żyła jest jednodrutowa, co zapewnia odpowiednią integralność i wytrzymałość mechaniczną przy przesyle wysokiego napięcia. 'Y' sugeruje, że izolacja przewodu wykonana jest z polwinitu, co jest powszechnie stosowane ze względu na swoją odporność na warunki atmosferyczne i izolacyjne właściwości. Dodatkowy symbol 'w' wskazuje, że przewód jest zaprojektowany do pracy na wysokie napięcie, co jest kluczowe w zapewnieniu bezpieczeństwa i efektywności w takich instalacjach. Zastosowanie przewodów ADY-w jest uznawane za standardową praktykę w branży energetycznej, zapewniając zgodność z normami bezpieczeństwa i efektywności energetycznej. Praktyczne zastosowanie to np. linie przesyłowe między stacjami transformatorowymi.

Pytanie 31

Na podstawie danych zawartych w tabeli wskaż co oznacza litera H w oznakowaniu przewodu elektrycznego, układanego na stałe?

Ilustracja do pytania
A. Zewnętrzna powłoka izolacyjna wykonana z materiału bezhalogenowego.
B. Zewnętrzna powłoka izolacyjna wykonana z gumy silikonowej.
C. Izolacja żył wykonana z gumy.
D. Izolacja żył wykonana z polwinitu.
Litera 'H' w oznakowaniu przewodów elektrycznych wskazuje na materiał bezhalogenowy użyty do zewnętrznej powłoki izolacyjnej. To istotna informacja, zwłaszcza w kontekście bezpieczeństwa pożarowego. Materiały bezhalogenowe nie emitują toksycznych gazów podczas spalania, co jest kluczowe w środowiskach, gdzie ludzie mogą być narażeni na dym, jak np. budynki użyteczności publicznej czy transport publiczny. Z mojego doświadczenia, coraz więcej firm stawia na takie rozwiązania, ponieważ pożary mogą stanowić duże zagrożenie dla życia. Takie przewody są zgodne z normami międzynarodowymi, takimi jak IEC 60754 czy EN 50267, które określają limity emisji dymu i toksycznych gazów. W praktyce, instalując przewody z oznaczeniem 'H', zapewniamy wyższy poziom bezpieczeństwa i spełniamy rygorystyczne wymagania ochrony środowiska. Warto zwrócić uwagę, że coraz częściej przepisy wymagają stosowania przewodów bezhalogenowych w miejscach publicznych. Wiedza o materiałach izolacyjnych i ich właściwościach jest kluczem do prawidłowego doboru przewodów w projektach elektroinstalacyjnych.

Pytanie 32

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy imbusowych.
B. wkrętaków płaskich.
C. wkrętaków krzyżowych.
D. kluczy oczkowych.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 33

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. Ex-OR
B. Ex-NOR
C. NOR
D. OR
Analizując błędne odpowiedzi, warto zwrócić uwagę na charakterystyki poszczególnych funkcji logicznych, które mogły wprowadzić w błąd. Funkcja OR, znana także jako suma logiczna, daje wynik prawdy, jeśli przynajmniej jeden z jej argumentów jest prawdziwy. To najprostsze do zrozumienia, ale jej zastosowanie w kontekście przedstawionego diagramu może być mylące, gdyż nie uwzględnia różnicy między sygnałami. NOR to nic innego jak negacja funkcji OR. W przypadku NOR, wyjście jest prawdziwe tylko wtedy, gdy wszystkie wejścia są fałszywe. To odwrotność OR i często używana jest w sytuacjach wymagających zanegowania sumy logicznej. Z kolei Ex-NOR, czyli negacja Ex-OR, działa na zasadzie wykrywania zgodności - wyjście jest prawdziwe, gdy oba wejścia są takie same. Typowy błąd myślowy polega na myleniu podobieństw Ex-NOR z różnicami Ex-OR. Funkcje te mogą wydawać się podobne, jednak ich zastosowania są różne i wymagają zrozumienia specyficznych warunków działania. Warto pamiętać, że w automatyce przemysłowej każda z tych funkcji ma swoje unikalne zastosowania i używa się ich w specyficznych okolicznościach. Poprawne zrozumienie różnic między nimi jest kluczowe dla projektowania skutecznych systemów sterowania.

Pytanie 34

Na rysunku przedstawiono

Ilustracja do pytania
A. ramię robota.
B. podstawę robota.
C. przegub robota.
D. chwytak robota.
Kiedy myślimy o komponentach robota, łatwo jest pomylić pojęcia, bo często wyglądają podobnie. Ramię robota, na przykład, to najczęściej ruchoma część, która przypomina ludzką rękę. Jego głównym celem jest umożliwienie ruchu w wielu osiach. W przeciwieństwie do chwytaka, ramię nie manipuluje bezpośrednio obiektami, ale wspiera inne komponenty, takie jak chwytaki czy narzędzia. Przegub robota to kolejna część, którą łatwo pomylić z chwytakiem. Przeguby umożliwiają ruch pomiędzy segmentami ramienia, ale nie mają zdolności chwytania. Są istotne dla elastyczności robota, ale nie mogą bezpośrednio wpływać na obiekt. Podstawa robota to element, który stabilizuje całą maszynę. Jest to fundament, na którym opiera się cała konstrukcja robota. Bez solidnej podstawy, robot nie mógłby działać stabilnie ani precyzyjnie. Typowe błędy myślowe wynikają z braku rozróżnienia między funkcjami poszczególnych części. W branży robotyki istotne jest zrozumienie, że każdy komponent ma swoje unikalne zadanie i spełnia określoną rolę w całym systemie.

Pytanie 35

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 3
Ilustracja do odpowiedzi A
B. Wynik 1
Ilustracja do odpowiedzi B
C. Wynik 4
Ilustracja do odpowiedzi C
D. Wynik 2
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 36

Wskaż oznaczenie literowe gwintu metrycznego.

A. W
B. Tr
C. M
D. S
Gwint oznaczony literą 'S' nie jest standardowym określeniem w kontekście systemu metrycznego. Może prowadzić to do zamieszania, gdyż takie oznaczenie nie funkcjonuje w istniejących normach gwintów. Często spotykanym błędem jest przypisywanie nowych oznaczeń do istniejących standardów, co wynika z niedoinformowania lub błędnych założeń. Gwint 'Tr' odnosi się do gwintów trapezowych, które mają odmienny kształt i zastosowanie, głównie w mechanizmach przenoszenia ruchu, takich jak śruby napędowe w maszynach. Mają one trapezowy profil i są projektowane z myślą o dużych obciążeniach osiowych, stąd ich specyfika różni się od gwintów metrycznych. Z kolei 'W' to oznaczenie gwintu Whitwortha, który ma korzenie historyczne i był szeroko stosowany w Wielkiej Brytanii przed wprowadzeniem systemu metrycznego. Gwinty Whitwortha mają profil z kątem 55° i są obecnie rzadziej stosowane w przemysłowych zastosowaniach. Często studenci czy młodzi technicy, myśląc o gwintach, nie zwracają uwagi na różnice w profilu czy kącie, co jest kluczowe przy wyborze odpowiedniego rozwiązania. Dlatego tak ważne jest zapoznanie się z normami i ich praktycznym zastosowaniem w branży. Niezrozumienie tych różnic może prowadzić do błędów w montażu czy projektowaniu, co z kolei wpływa na bezpieczeństwo i funkcjonalność konstrukcji. Ważne jest, aby zawsze sprawdzać dokumentację techniczną i normy dla danego zastosowania, by uniknąć takich pomyłek w przyszłości.

Pytanie 37

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. rezystancji żył L1, L2, L3, PEN
B. sumy rezystancji żył L1, L2, L3, PEN
C. sumy rezystancji izolacji żył L1 i L2, L3
D. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN
W przypadku pomiaru rezystancji elektrycznej przewodów, często popełnia się błąd, zakładając, że chodzi o rezystancję samych żył przewodów. W rzeczywistości, w kontekście testów izolacji, nie chodzi o rezystancję przewodów (żył), ale o rezystancję izolacji między nimi. Rezystancja żył samych w sobie jest ważna dla określenia strat energii w przewodzie i skuteczności przesyłu prądu, ale kluczowe jest, aby przewody miały wysoką rezystancję izolacji, co chroni przed niepożądanym przepływem prądu między przewodami. Błędne myślenie w tym przypadku może wynikać z koncentracji na parametrach elektrycznych związanych z przesyłem energii, zamiast na bezpieczeństwie. Sumowanie rezystancji żył lub izolacji może prowadzić do błędnych wniosków, ponieważ pomiar dotyczy rzeczywistej rezystancji izolacyjnej, która powinna być możliwie jak najwyższa. Często zapomina się, że normy branżowe, takie jak PN-EN 61557, szczegółowo opisują właściwe metody pomiaru i interpretację wyników, co eliminuje wiele błędów koncepcyjnych. Ostatecznie, zrozumienie, że kluczowym aspektem jest izolacja między żyłami a żyłą PEN, pozwala na uniknięcie niebezpieczeństw związanych z elektrycznością.

Pytanie 38

Którego z wymienionych przyrządów pomiarowych należy użyć w celu oceny jakości istniejących połączeń elektrycznych w układzie automatyki?

A. woltomierza.
B. watomierza.
C. megaomomierza.
D. omomierza.
Zrozumienie roli różnych przyrządów pomiarowych w automatyce jest kluczowe. Watomierz mierzy moc czynną w obwodach elektrycznych. Jest przydatny, ale nie do oceny jakości połączeń, tylko do analizy zużycia energii. Typowym błędem jest mylenie mocy z rezystancją, co prowadzi do błędnych wniosków w diagnostyce. Z kolei woltomierz mierzy napięcie, i chociaż jest istotny dla określenia różnicy potencjałów, to nie daje pełnego obrazu jakości połączenia. Test napięcia może wykazać obecność prądu, ale nie wykryje wysokiej rezystancji na styku, która wskazywałaby na złe połączenie. Megaomomierz, często zwany miernikiem izolacji, mierzy bardzo wysokie wartości rezystancji, głównie w izolacji przewodów. Jest przydatny przy testach izolacji, ale nie w ocenie typowych połączeń przewodzących. Błąd w rozumieniu funkcji tych przyrządów wynika często z mylnego utożsamiania ich funkcji z ogólną oceną wydajności systemu. Aby poprawnie ocenić jakość połączeń elektrycznych, szczególnie w delikatnych układach automatyki, omomierz staje się niezastąpionym narzędziem. Podsumowując, każdy z przyrządów ma swoje specyficzne zastosowanie i musi być używany zgodnie z jego przeznaczeniem, co jest zgodne z dobrymi praktykami inżynierskimi, jak np. normy IEC, które jasno precyzują zastosowania omawianych urządzeń w różnych kontekstach."]

Pytanie 39

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

A. Mikrometr.
B. Średnicówkę.
C. Czujnik zegarowy.
D. Przymiar kreskowy.
Przymiar kreskowy, często zwany też miarą lub linijką, jest podstawowym narzędziem pomiarowym używanym do mierzenia długości na płaskich powierzchniach. To precyzyjne narzędzie, które pozwala na dokładne odmierzanie korytek montażowych, co jest kluczowe podczas prac konstrukcyjnych i montażowych. Przymiar kreskowy jest wykonany z metalu lub tworzywa sztucznego i ma naniesione podziałki, zazwyczaj w milimetrach i centymetrach. Dzięki swojej prostej konstrukcji i łatwości w użyciu, jest niezastąpiony w warsztatach i na budowach. W praktyce, przy produkcji korytek montażowych, ważne jest, aby długość była dokładnie taka, jaka została zaplanowana, aby uniknąć problemów z montażem. Przymiar kreskowy to narzędzie, które daje pewność, że wszystko jest mierzone precyzyjnie i zgodnie z projektem. W branży budowlanej i mechanicznej, dokładne wymiary są kluczowe dla trwałości i niezawodności konstrukcji, dlatego przymiar kreskowy jest tak powszechnie stosowany. Dodatkowo, jego kompaktowy rozmiar i łatwość w przechowywaniu sprawiają, że jest to narzędzie pierwszego wyboru, gdy mówimy o podstawowych narzędziach pomiarowych. Warto też wspomnieć, że w standardowych praktykach przemysłowych, użycie przymiaru kreskowego jest preferowane ze względu na jego dostępność i niską cenę, co czyni go idealnym dla małych i dużych projektów.

Pytanie 40

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 3
Ilustracja do odpowiedzi A
B. Miernik 4
Ilustracja do odpowiedzi B
C. Miernik 2
Ilustracja do odpowiedzi C
D. Miernik 1
Ilustracja do odpowiedzi D
Wiele osób wybiera błędny miernik, bo patrzy jedynie na jednostkę „V” bez zwracania uwagi na zakres i typ napięcia. Miernik numer 1 ma zakres do 6 V – byłby zbyt mało czuły i mógłby się uszkodzić przy napięciu 10 V. Miernik numer 2 ma zakres aż do 75 V, przez co wskazówka przy pomiarze 10 V niemal się nie poruszy, co uniemożliwia dokładny odczyt. Z kolei miernik numer 4 jest przeznaczony do pomiaru napięcia przemiennego (oznaczenie „~”), a w naszym układzie występuje napięcie stałe (DC), więc jego zastosowanie byłoby błędem technicznym – nie pokaże prawidłowego wyniku, a w skrajnym przypadku może zostać uszkodzony. W praktyce automatyki i elektrotechniki zawsze trzeba dopasować zakres przyrządu do mierzonego sygnału – najlepiej, gdy maksymalna wartość na skali jest nieco wyższa od maksymalnej wartości sygnału. Typowy sygnał analogowy z czujnika lub przetwornika to 0–10 V DC, dlatego właściwy jest woltomierz o zakresie obejmującym ten przedział, np. –5...15 V. Stosowanie miernika do AC lub o zbyt dużym zakresie prowadzi do błędnych wniosków diagnostycznych, co w automatyce może skutkować niewłaściwą regulacją urządzenia, np. zaworu proporcjonalnego. Moim zdaniem właśnie znajomość zakresów i typów napięć odróżnia praktyka od kogoś, kto tylko „mierzy, żeby coś się ruszyło na wskazówce”.