Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 lutego 2026 21:40
  • Data zakończenia: 21 lutego 2026 21:56

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do odkręcenia śruby, którą przedstawiono na zdjęciu należy zastosować klucz

Ilustracja do pytania
A. imbusowy sześciokątny.
B. imbusowy Torx.
C. nasadowy Torx.
D. nasadowy sześciokątny.
Poprawna odpowiedź to klucz nasadowy sześciokątny, ponieważ do odkręcenia śruby z sześciokątną głową wymaga się zastosowania narzędzia o odpowiednim profilu. Klucz nasadowy sześciokątny jest standardowym narzędziem w mechanice, które zapewnia doskonałe dopasowanie do sześciokątnych gniazd śrub, co minimalizuje ryzyko uszkodzenia zarówno śruby, jak i narzędzia. Użycie tego klucza pozwala na skuteczne przeniesienie momentu obrotowego, co jest kluczowe w przypadku mocno dokręconych elementów. W praktyce, klucze nasadowe są często wykorzystywane w warsztatach samochodowych, budowlanych oraz w różnych projektach DIY, gdzie ważna jest precyzja i efektywność. Utrzymanie kluczy w dobrym stanie technicznym oraz ich odpowiednie oznaczenie zgodnie z normami, takimi jak ISO, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 300 mV
B. 150 mV
C. 1000 mV
D. 100 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 4

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. odzież ochronną
B. rękawice elektroizolacyjne
C. hełm ochronny
D. obuwie elektroizolacyjne
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. młota pneumatycznego
B. wiertarki udarowej
C. młotka
D. wkrętarki
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. w trójkąt
B. w gwiazdę
C. równolegle
D. szeregowo
Łączenie czujek w sposób równoległy, trójkątny czy w gwiazdę to kiepski pomysł dla czujek PIR typu NC. Przy połączeniu równoległym każda czujka działa osobno, co może sprawić, że tylko jedna z nich włączy alarm. To może osłabić bezpieczeństwo, bo jeśli jedna czujka nie działa, to może się zdarzyć, że nie wyczuje ruchu. Metoda trójkątna zupełnie nie pasuje do alarmów i może być trudna w diagnozowaniu problemów. A jak dodasz połączenie w gwiazdę, to jeszcze więcej połączeń, co z kolei może sprawić, że system częściej się psuje. Błędne łączenie czujek bierze się często z niezrozumienia działania obwodów alarmowych. Ważne jest, żeby system działał tak, żeby alarm włączał się przy wykryciu intruza, a to można osiągnąć tylko przez połączenie szeregowe.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM
A. 115 200 B/s
B. 1 200 B/s
C. 150 B/s
D. 14 400 B/s
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących prędkości przesyłania danych. Często myli się różne jednostki miary oraz maksymalne prędkości, które są specyficzne dla konkretnego protokołu komunikacyjnego. Na przykład, odpowiedzi takie jak 1 200 B/s czy 150 B/s sugerują bardzo niską prędkość, która jest typowa dla archaicznych systemów komunikacji. Te prędkości były używane w przeszłości, ale w obecnych standardach są zdecydowanie za niskie do efektywnej wymiany danych w nowoczesnych urządzeniach. Z kolei odpowiedź 115 200 B/s, mimo że jest zgodna z maksymalnymi prędkościami niektórych interfejsów, nie odnosi się do kontekstu pytania, który wyraźnie wskazuje na ograniczenia określonego urządzenia. Takie błędne wybory mogą wynikać z braku zrozumienia różnic między różnymi standardami komunikacyjnymi oraz ich zastosowaniem w praktyce. Warto zatem zwrócić uwagę na kontekst oraz specyfikacje techniczne, które konkretne urządzenie oferuje, zanim podejmiemy decyzję o odpowiedzi. Wiedza na temat prędkości przesyłania danych jest kluczowa w pracy z systemami elektronicznymi oraz w inżynierii komputerowej, dlatego tak ważne jest, aby zrozumieć, jakie maksymalne wartości są realistyczne dla danej technologii.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Na podstawie dołączonej dokumentacji technicznej monitorów LCD określ, jaki typ źródła światła zastosowano do podświetlania matrycy?

WyświetlaczTN-film TFT 17''PVA TFT 19''
Ilość kolorów16,77 mln16,77 mln
Przekątna, cale/cm17,0/43,2719/48,2
Rozmiar plamki0,264 mm0,294 mm
Jasność (typ)250 cd/m²250 cd/m²
Rodzaj podświetlenia2 CCFL2 CCFL
Kontrast1000:11500:1
Kąt widzenia CR 5:1/CR 10:1 (poziom/pion)176/170/160/160178/178/176/176
Czas reakcji matrycy5 ms20 ms
Częstotliwość pozioma31,5÷81,1 kHz30÷82 kHz
Częstotliwość pionowa56÷76 Hz56÷75 Hz
Pasmo przenoszenia25÷135 MHz25÷135 MHz
Optymalna rozdzielczość1280x10241280x1024
A. Lampy halogenowe.
B. Lampy fluorescencyjne.
C. Lasery półprzewodnikowe.
D. Lasery gazowe.
Wybór nieodpowiednich żarówek do monitorów LCD często bierze się z braku wiedzy o tym, jak te urządzenia działają. Lampy halogenowe, chociaż czasami używane w innych typach oświetlenia, wcale nie są dobre do podświetlania matryc LCD, bo nagrzewają się za bardzo i wymagają skomplikowanego chłodzenia. W przypadku monitorów LCD użycie halogenów może prowadzić do przegrzewania, co wpływa na ich trwałość oraz obraz. Jeśli chodzi o lasery gazowe czy półprzewodnikowe, to są to nowinki techniczne używane głównie w skanerach lub projektorach, ale w standardowych monitorach LCD raczej się nie pojawiają. Owszem, lasery w monitorach mogłyby być rozważane przy technologiach OLED, ale w LCD to nie ma sensu. Ponadto, mylenie różnych źródeł światła często prowadzi do złych wniosków o wydajności i jakości obrazu. Ważne, żeby zrozumieć zastosowania i ograniczenia różnych technologii, to pomoże lepiej dobierać sprzęt. Na dobrą sprawę można znaleźć w branży wiele wskazówek, które mówią o znaczeniu efektywności źródeł światła w elektronice użytkowej. Dlatego warto poświęcić czas na rozwijanie wiedzy o technologii podświetlenia, żeby lepiej dobierać komponenty w różnych projektach.

Pytanie 15

W celu montażu kabli instalacji alarmowej na ścianie drewnianej w domu należy zastosować elementy oznaczone literą

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego zastosowania różnych typów elementów montażowych. Elementy takie jak B., C. i D. mogą być przeznaczone do innych zastosowań, jednak ich użycie w kontekście montażu kabli na ścianach drewnianych nie jest zalecane. Na przykład, elementy oznaczone literą B. mogą dotyczyć uchwytów do montażu w materiałach budowlanych, takich jak cegła czy beton, co czyni je nieodpowiednimi w przypadku drewna, gdzie ich zastosowanie nie zapewni stabilności. C. może dotyczyć elementów, które są przeznaczone do instalacji w warunkach zewnętrznych, z materiałów odpornych na działanie czynników atmosferycznych, co również może prowadzić do niewłaściwego montażu, gdyż nie uwzględnia specyfikacji drewna. Wreszcie, element D. mógłby być powiązany z systemami mocującymi, które są zbyt skomplikowane lub wymagają dodatkowych narzędzi do instalacji, co w kontekście montażu na drewnie może być zbędne i niepraktyczne. Zrozumienie właściwego doboru materiałów montażowych oraz ich zastosowania w odpowiednich warunkach jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemu alarmowego.

Pytanie 16

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Multiplekser
B. Demultiplekser
C. Komparator
D. Stabilizator
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 17

Ile żył powinien posiadać przewód zakończony z obu stron złączami przedstawionymi na rysunku?

Ilustracja do pytania
A. 4 żyły.
B. 3 żyły.
C. 6 żył.
D. 5 żył.
Odpowiedzi, które wskazują na inne liczby żył, są mylące i często opierają się na nieporozumieniach dotyczących standardów komunikacji. Na przykład, liczba 6 żył sugeruje, że przewód mógłby obsługiwać dodatkowe funkcje, takie jak transmisja wideo czy inne rodzaje danych, co nie jest zgodne z rzeczywistością w przypadku standardu USB 2.0. Z kolei wybór 5 żył może wydawać się logiczny dla kogoś, kto zakłada, że dodatkowy przewód mógłby być użyty do jakiejś innej funkcji, jednakże standard ten nie przewiduje takiej opcji, co prowadzi do nieprawidłowych wniosków. Odpowiedzi bazujące na 3 żyłach ignorują fakt, że złącze USB wymaga zarówno przewodów do danych, jak i do zasilania, co jest kluczowe dla jego działania. Ostatecznie, wybór 4 żył jest nie tylko zgodny z praktykami branżowymi, ale także niezbędny do zapewnienia funkcjonalności złącza. Użytkownicy często mylą standardy USB z innymi rodzajami przewodów, takimi jak te stosowane w różnych typach złączy, co prowadzi do takich błędnych założeń. Zrozumienie tych podstawowych różnic jest kluczowe dla efektywnego wykorzystania technologii w różnych zastosowaniach.

Pytanie 18

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Dostarcza antenie napięcie przemienne.
B. Tłumi i zmienia częstotliwość sygnału antenowego.
C. Zwiększa i przekształca częstotliwość sygnału z anteny.
D. Dostarcza antenie napięcie stałe.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji konwertera w instalacji antenowej. Przykładowo, zasilać antenę napięciem przemiennym jest niepoprawne, ponieważ konwerter zasilany jest napięciem stałym, co jest typowe dla technologii satelitarnych. Zasila go odbiornik, który przesyła odpowiednie napięcie zasilające przez kabel koncentryczny. Odpowiedzi dotyczące tłumienia sygnału są również mylące; konwerter nie tłumi sygnału, ale go wzmacnia. Tłumienie sygnału jest zjawiskiem negatywnym, które objawia się spadkiem jakości sygnału, co jest przeciwieństwem działania konwertera. W rzeczywistości konwerter powinien maksymalizować jakość sygnału, aby zapewnić wydajność odbioru. Właściwe zrozumienie funkcji konwertera jest ważne dla efektywnego zaprojektowania systemu antenowego. W praktyce, nieprawidłowe wybory komponentów lub ich nieodpowiednie instalacje mogą prowadzić do znacznego obniżenia jakości odbioru telewizji satelitarnej. Kluczowe jest zatem zaznajomienie się z zasadami działania konwertera oraz jego właściwościami, aby uniknąć typowych błędów w instalacjach satelitarnych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. podłączyć urządzenie do źródła zasilania
B. przy demontażu obudowy wykazać szczególną ostrożność
C. otwierać urządzenie umieszczone na uziemionej macie
D. zasilać urządzenie poprzez transformator separujący
Otwarcie urządzenia umieszczonego na uziemionej macie jest kluczowym krokiem w zapobieganiu uszkodzeniom spowodowanym przez wyładowania elektrostatyczne (ESD). Uziemiona mata działa jak bariera ochronna, odprowadzając ładunki elektrostatyczne zgromadzone na powierzchni urządzenia lub na osobie wykonującej naprawy. Zgodnie z normą IEC 61340-5-1, takie praktyki są zalecane w środowiskach, gdzie wrażliwe komponenty elektroniczne są regularnie naprawiane. Używanie uziemionej maty minimalizuje ryzyko uszkodzenia delikatnych układów elektronicznych, które mogą być podatne na uszkodzenia spowodowane nawet niewielkimi wyładowaniami. Przykładem zastosowania takiej praktyki jest praca w laboratoriach serwisowych, gdzie technicy muszą często demontować i montować komponenty wrażliwe na ESD. Użycie uziemionej maty, w połączeniu z odpowiednim ubraniem antystatycznym, stanowi kompleksowe podejście do ochrony przed ESD.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Oczkowy
B. Nasadowy
C. Imbusowy
D. Płaski
Klucz imbusowy, znany również jako klucz sześciokątny, jest idealnym narzędziem do odkręcania śrub z łbem walcowym z gniazdem sześciokątnym. Jego konstrukcja pozwala na efektywne przenoszenie momentu obrotowego, co jest kluczowe w pracy z elementami mocującymi, które mogą być narażone na wysokie obciążenia. Dzięki precyzyjnie wymiarowanym końcówkom, klucz imbusowy minimalizuje ryzyko uszkodzenia łba śruby, co jest częstym problemem przy używaniu innych rodzajów kluczy. Użycie klucza imbusowego jest zgodne z najlepszymi praktykami w inżynierii i mechanice, gdzie precyzyjne dopasowanie narzędzi do rodzajów śrub ma kluczowe znaczenie dla zapewnienia trwałości połączeń. Często stosuje się go w mechanice rowerowej, motocykli i w wielu konstrukcjach metalowych, co czyni go wszechstronnym narzędziem w arsenale każdego majsterkowicza.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Zaciskarka do złącz RJ-45 jest stosowana podczas instalacji

A. karty graficznej
B. dysku HDD
C. pamięci RAM
D. routera przewodowego
Zaciskarka wtyków RJ-45 jest kluczowym narzędziem w procesie montażu sieci komputerowych, szczególnie przy instalacji routerów przewodowych. Wtyki RJ-45 są używane do podłączenia kabli sieciowych, co jest niezbędne do zapewnienia komunikacji między urządzeniami w sieci lokalnej. Proces zaciskania wtyków polega na odpowiednim umieszczeniu przewodów w wtyku i użyciu zaciskarki do trwałego połączenia ich z metalowymi stykami wtyku. Przykładem praktycznego zastosowania może być tworzenie kabli do połączeń między routerem a komputerami, co pozwala na szybki i stabilny transfer danych. W branży stosuje się różne standardy, takie jak T568A i T568B, które określają sposób układania przewodów w wtyku. Znajomość tych standardów jest kluczowa dla osiągnięcia optymalnej wydajności i zgodności z normami sieciowymi, co jest zgodne z najlepszymi praktykami w instalacjach sieciowych.

Pytanie 26

Podczas demontażu z płytki przedstawionej na rysunku rezystorów znad wyświetlacza LCD, przy użyciu lutownicy typu hot-air, należy wcześniej wylutować

Ilustracja do pytania
A. wyświetlacz.
B. tranzystor.
C. kondensator.
D. mikrostyki.
Usunięcie wyświetlacza LCD przed demontażem innych komponentów, takich jak rezystory, jest kluczowym krokiem w procesie naprawy lub modernizacji płytki drukowanej. Wyświetlacze LCD są szczególnie wrażliwe na wysoką temperaturę, która jest generowana przez lutownice typu hot-air. W przypadku gdyby nie usunąć wyświetlacza na czas, istnieje ryzyko jego uszkodzenia, co mogłoby prowadzić do wysokich kosztów naprawy lub wymiany. Dobre praktyki w elektronice zalecają, aby zawsze chronić wrażliwe komponenty przed wpływem ciepła. Poza tym, demontując wyświetlacz najpierw, użytkownik zyskuje lepszy dostęp do innych elementów. Przykładowo, w przypadku naprawy urządzenia mobilnego, gdzie komponenty są ściśle umiejscowione, usunięcie wyświetlacza umożliwia bezpieczniejsze i bardziej precyzyjne przeprowadzenie dalszych prac. Często standardy branżowe, takie jak IPC-A-610, podkreślają znaczenie ochrony wrażliwych elementów w procesie produkcji i serwisowania.

Pytanie 27

Z analizy schematu poniższego układu elektronicznego wynika, że wzrost napięcia +Uvar spowoduje

Ilustracja do pytania
A. przesunięcie charakterystyki częstotliwościowej w lewo (nowa częstotliwość rezonansowa będzie mniejsza od fr).
B. pojawienie się składowej stałej napięcia na wyjściu układu.
C. przesunięcie charakterystyki częstotliwościowej w prawo (nowa częstotliwość rezonansowa będzie większa od fr).
D. wzrost amplitudy sygnału wyjściowego przy częstotliwości fr.
Analizując błędne odpowiedzi, można zauważyć kilka powszechnych nieporozumień dotyczących zachowania układów elektronicznych. Odpowiedź wskazująca na wzrost amplitudy sygnału wyjściowego przy częstotliwości fr ignoruje fakt, że wzrost napięcia wpływa na pojemność diody warikapowej, co prowadzi do zmiany częstotliwości rezonansowej, a nie jedynie do zmiany amplitudy sygnału. Inną nieprawidłowością jest założenie, że charakterystyka częstotliwościowa przesunie się w lewo, co sugerowałoby, że częstotliwość rezonansowa zmaleje. W rzeczywistości, zgodnie z zasadami fizyki, zmniejszenie pojemności prowadzi do wzrostu częstotliwości rezonansowej. Przesunięcie charakterystyki w prawo jest zatem poprawne. Ponadto, twierdzenie o pojawieniu się składowej stałej napięcia na wyjściu układu nie uwzględnia dynamiki sygnałów zmiennych w czasie typowych dla obwodów rezonansowych. W przypadku obwodów LC, zmiany napięcia wpływają na charakterystykę, ale nie prowadzą do stałej składowej, co jest zrozumiałe w kontekście teorii obwodów. Zrozumienie mechanizmów działania diod warikapowych i obwodów rezonansowych jest kluczowe dla inżynierów zajmujących się elektroniką, aby unikać tych typowych błędów myślowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć impedancję falową kabla
B. analizować parametry sygnału przy użyciu analizatora widma
C. zmierzyć poziom sygnału w kanale zwrotnym
D. zbadać parametry kabla za pomocą reflektometru
Reflektometria jest kluczowym narzędziem do lokalizacji przerwań w kablach sygnałowych, w tym kabli telewizji kablowej. Reflektometr mierzy czas, w jakim sygnał wraca do urządzenia po odbiciu od przeszkód lub przerw w kablu. Dzięki temu technik może zidentyfikować miejsce przerwania, analizując charakterystykę odbicia sygnału w funkcji odległości. W praktyce, stosując reflektometr, technik może szybko zlokalizować problem, co pozwala na szybszą interwencję i minimalizację przestojów w dostępie do usług telewizyjnych. Jest to standard w branży, ponieważ umożliwia dokładną diagnozę i zmniejsza koszty związane z nieefektywną naprawą. Ponadto, reflektometria pozwala na ocenę innych parametrów kabla, takich jak straty sygnału czy impedancja, co daje pełny obraz stanu infrastruktury. Właściwe stosowanie tej metody jest zgodne ze standardami branżowymi, które podkreślają znaczenie precyzyjnych pomiarów w utrzymaniu jakości usług telewizyjnych.

Pytanie 30

Jakie zakresy miernika należy ustawić w celu sprawdzenia wszystkich parametrów elektrycznych z przedstawionej specyfikacji technicznej czujki ruchu po jej zainstalowaniu?

Specyfikacja techniczna
Typ elementu detekcyjnegoPodwójny, PIR
Kształt geometrycznyProstokątny
Zasięg11m x11m; 88.5°; wiązki centralne 15m
Wskaźnik alarmuZielona dioda LED; Indykacja na 3 sek.
Wysokość instalacji2,1m do 2,7m
Temperatura pracy-20°C do +50°C
Napięcie11 do 16VDC
Pobór prądu11mA max
SoczewkaFresnela (druga generacja)
Wyjścia alarmoweNO
Przełącznik sabotażowyNC
Szybkość detekcji0,2m/sek do 7m/sek
A. 20 mA DC, 200 V AC
B. 200 mA DC, 20 V DC
C. 200 mA AC, 20 V AC
D. 20 mA DC, 200 V DC
Ustawienie miernika na zakres 200 mA DC oraz 20 V DC jest kluczowe dla prawidłowego sprawdzenia parametrów elektrycznych czujki ruchu. Przede wszystkim, czujki tego typu zasilane są napięciem stałym w przedziale od 11 do 16 V DC, co oznacza, że zakres 20 V DC idealnie odpowiada wymaganiom pomiarowym. Umożliwia to dokładne monitorowanie napięcia, co jest istotne dla oceny poprawności zasilania urządzenia. Dodatkowo, maksymalny prąd pobierany przez czujkę wynosi 31 mA, co oznacza, że ustawienie miernika na zakres 200 mA DC daje wystarczającą elastyczność do pomiaru, a jednocześnie nie naraża urządzenia na uszkodzenie. Podczas testów, ważne jest również przestrzeganie zasad bezpieczeństwa oraz stosowanie odpowiednich standardów, takich jak IEC 61010, które definiują wymagania dotyczące bezpieczeństwa urządzeń pomiarowych. Odpowiednie ustawienie miernika pozwala nie tylko na ocenę stanu technicznego czujnika, ale także na wykrycie potencjalnych usterek przed ich zainstalowaniem, co jest praktyką zalecaną w branży elektrycznej.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Element pasywny w sieciach telekomunikacyjnych oraz komputerowych, który posiada gniazda po stronie zewnętrznej oraz styki do montażu kabla od wewnątrz, określamy mianem

A. kanału kablowego
B. skréty
C. złączki
D. panelu krosowniczego
Panel krosowniczy to kluczowy pasywny element w infrastrukturze sieciowej, który pełni rolę centralnego punktu połączeń dla różnych segmentów sieci. Zewnętrzna strona panelu wyposażona jest w gniazda, które umożliwiają podłączenie kabli, natomiast wewnętrzna strona zawiera styki, do których przypina się przewody. Dzięki temu, panel krosowniczy umożliwia łatwe i elastyczne zarządzanie połączeniami w sieci, co jest niezwykle istotne w przypadku rozbudowy lub modyfikacji systemu. W praktyce, korzysta się z paneli krosowniczych w serwerowniach oraz w szafach rackowych, gdzie porządkowanie i organizacja kabli jest kluczowa dla efektywności operacyjnej. Zgodnie z normami TIA/EIA-568, zaleca się stosowanie paneli krosowniczych do zarządzania kablami z kategorii 5e, 6, a także wyższych, co zapewnia odpowiednią jakość połączeń oraz minimalizuje interferencje elektromagnetyczne. Dodatkowo, panele te pozwalają na zastosowanie technik takich jak „plug-and-play”, co znacząco ułatwia prace serwisowe i konserwacyjne.

Pytanie 35

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. matrycach LCD
B. matrycach LED RGB
C. ogniwach fotowoltaicznych
D. światłowodach
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 36

Jakim skrótem opisuje się modulację szerokości impulsów?

A. PSK
B. QAM
C. PWM
D. FSK
Istnieją różne techniki modulacji, które różnią się między sobą w zależności od zastosowania i charakterystyki sygnałów. PSK (Phase Shift Keying) to metoda, która polega na modulacji fazy sygnału nośnego, co jest szczególnie przydatne w komunikacji cyfrowej, gdzie dane są przesyłane w formie bitów. W tym przypadku zmiana fazy sygnału odzwierciedla zmiany w danych, co czyni PSK efektywnym sposobem na przesyłanie informacji, ale nie ma bezpośredniego związku z modulacją szerokości impulsów. FSK (Frequency Shift Keying) to kolejna technika, w której informacje są przesyłane poprzez zmianę częstotliwości nośnej. Podobnie jak w przypadku PSK, FSK jest używane w systemach komunikacyjnych, ale nie dotyczy modulacji szerokości impulsów. QAM (Quadrature Amplitude Modulation) łączy różne amplitudy i fazy sygnału w celu przesyłania danych, co jest stosowane w telekomunikacji, ale także nie odnosi się bezpośrednio do PWM. Często mylące jest to, że wszystkie te techniki dotyczą modulacji sygnałów, jednak każda z nich ma swoje specyficzne zastosowanie i właściwości. Zrozumienie różnic między tymi metodami jest kluczowe, aby uniknąć błędnych wniosków w kontekście wyboru odpowiedniej techniki do konkretnego zastosowania.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. przerwę w torze zasilania
B. zwarcia międzyelektrodowe
C. uszkodzenie toru odchylania poziomego
D. usterkę toru odchylania poziomego
Wybór odpowiedzi związanej z uszkodzeniem toru odchylania poziomego jest błędny, ponieważ objawy samoczynnego wyłączania się telewizora z kineskopem nie są typowe dla tego rodzaju awarii. Uszkodzenie toru odchylania poziomego prowadziłoby raczej do zniekształcenia obrazu, takiego jak zniekształcenie geometrii ekranowej, a nie do nagłego wyłączania się urządzenia. W przypadku toru odchylania poziomego, problemy mogą objawiać się jako smużenie obrazu albo niewłaściwe odchylenie wiązki elektronów, co nie prowadzi do rozbłysku kolorów na ekranie. Ponadto, zwarcia międzyelektrodowe są bardziej prawdopodobne, gdyż skutkują one nagłą zmianą w pracy kineskopu, co może powodować krótkotrwałe rozbłyski. Podobnie, odpowiedzi dotyczące przerwy w torze zasilania nie są adekwatne, ponieważ przerwy w zasilaniu prowadziłyby do całkowitego wyłączenia telewizora, a nie do jego nieregularnego wyłączania się po krótkim czasie. Typowym błędem myślowym jest zakładanie, że zjawisko rozbłysku na ekranie jest związane z problemami z zasilaniem lub torami odchylania, kiedy w rzeczywistości jest to rezultat zwarcia w kineskopie. Dlatego kluczowe jest zrozumienie specyfiki problemu i umiejętność różnicowania objawów związanych z różnymi rodzajami uszkodzeń w telewizorach kineskopowych.

Pytanie 39

Materiał przedstawiony na ilustracji służy do

Ilustracja do pytania
A. wzmacniania ścieżek drukowanych.
B. usuwania spoiwa lutowniczego.
C. naprawy ekranu w kablach koncentrycznych.
D. wykonywania połączeń elastycznych.
Materiał przedstawiony na ilustracji to plecionka do desolderingu, znana również jako "SOLDER REMOVER", która jest kluczowym narzędziem w procesie lutowania i usuwania spoiw lutowniczych. Użycie tej plecionki polega na umieszczeniu jej na obszarze, z którego chcemy usunąć cynę, a następnie podgrzaniu za pomocą lutownicy. W wyniku tego procesu cyna wnika w plecionkę, co pozwala na jej efektywne usunięcie z płytki drukowanej. Stosowanie tej metody jest zgodne z najlepszymi praktykami w elektronice, jako że minimalizuje ryzyko uszkodzenia podzespołów. Oprócz usuwania nadmiaru cyny, plecionki do desolderingu są również stosowane w przypadku naprawy elementów, które zostały źle wlutowane. Warto również dodać, że istnieją różne rodzaje plecionek, które różnią się średnicą oraz materiałem, co pozwala na dostosowanie narzędzia do specyficznych potrzeb naprawczych. Znajomość technik usuwania spoiwa lutowniczego jest kluczowa dla każdego technika elektronika, gdyż skutkuje to lepszą jakością wykonania połączeń oraz dłuższą żywotnością urządzeń elektronicznych.

Pytanie 40

Fotografia przedstawia konwerter typu

Ilustracja do pytania
A. Monoblock
B. Octo
C. Quatro
D. Quad
Odpowiedź Monoblock jest poprawna, ponieważ konwerter typu Monoblock jest zaprojektowany do jednoczesnego odbioru sygnałów z dwóch satelitów znajdujących się na bliskich pozycjach orbitalnych. Posiada on dwie głowice (LNB) umieszczone na jednej wspólnej podstawie, co pozwala na efektywne zarządzanie sygnałem bez konieczności używania dwóch oddzielnych konwerterów. Dzięki swojej konstrukcji pozwala na podłączenie dwóch tunerów satelitarnych, co umożliwia równoczesne oglądanie różnych programów z dwóch satelitów. Monoblock jest często stosowany w instalacjach, gdzie użytkownicy chcą mieć dostęp do szerokiego zakresu programów telewizyjnych, na przykład z różnych operatorów satelitarnych. W kontekście standardów branżowych, konwertery Monoblock są zgodne z wymaganiami instalacji typu multiswitch i są szeroko rekomendowane w przypadku anten o dużych średnicach, co zwiększa ich wydajność. Ich prostota w instalacji oraz wielofunkcyjność czynią je popularnym wyborem wśród użytkowników anten satelitarnych.