Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 grudnia 2025 13:20
  • Data zakończenia: 7 grudnia 2025 13:44

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie medium transmisyjne jest związane z adapterem przedstawionym na ilustracji?

Ilustracja do pytania
A. Z przewodem UTP
B. Z przewodem FTP
C. Ze światłowodem
D. Z przewodem koncentrycznym
Nieprawidłowe odpowiedzi wynikają z nieporozumienia dotyczącego rodzaju medium transmisyjnego do którego przeznaczone jest złącze pokazane na rysunku. Przewody FTP i UTP to typy kabli miedzianych używanych w sieciach Ethernet które przenoszą sygnały elektryczne. Są one szeroko stosowane w lokalnych sieciach komputerowych (LAN) gdzie wymagane są niższe przepustowości i krótsze odległości transmisji. Ich izolacja zapewnia ochronę przed zakłóceniami elektromagnetycznymi jednak nie mogą one konkurować z możliwościami światłowodów w zakresie prędkości i zasięgu. Przewód koncentryczny chociaż posiada pewne właściwości chroniące przed zakłóceniami jest używany głównie w systemach telewizji kablowej lub do łączenia anten z odbiornikami. Koncentracja na przewodach miedzianych pomija znaczące zalety światłowodów które są niezbędne w kontekście dużych odległości i wysokiej przepustowości danych. Światłowody nie tylko eliminują wpływ zakłóceń zewnętrznych ale także obsługują znacznie większą przepustowość co czyni je niezastąpionymi w nowoczesnych sieciach telekomunikacyjnych. Wybór medium transmisyjnego jest kluczowy dla osiągnięcia optymalnej wydajności i niezawodności co czyni światłowody najlepszym wyborem dla zaawansowanej infrastruktury sieciowej.

Pytanie 2

Wskaż komponent, który nie jest zgodny z płytą główną o parametrach przedstawionych w tabeli

PodzespółParametry
Płyta główna GIGABYTE4x DDR4, 4x PCI-E 16x, RAID,
HDMI, D-Port, D-SUB, 2x USB 3.1,
8 x USB 2.0, S-AM3+
A. Pamięć RAM: Corsair Vengeance LPX, DDR4, 2x16GB, 3000MHz, CL15 Black
B. Procesor: INTEL CORE i3-4350, 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
C. Monitor: Dell, 34", 1x DisplayPort, 1x miniDP, 2x USB 3.0 Upstream, 4x USB 3.0 Downstream
D. Karta graficzna: Gigabyte GeForce GTX 1050 OC, 2GB, GDDR5, 128 bit, PCI-Express 3.0 x16
Procesor INTEL CORE i3-4350 jest niekompatybilny z płytą główną o przedstawionych parametrach, ponieważ używa gniazda LGA 1150, które nie pasuje do gniazda S-AM3+ wspieranego przez płytę główną. Gniazdo procesora to kluczowy element w kompatybilności między płytą główną a procesorem. W przypadku niezgodności nie ma fizycznej możliwości zamontowania procesora w płycie głównej. Dobre praktyki branżowe wskazują na konieczność szczegółowego sprawdzenia kompatybilności przed zakupem części komputerowych, aby uniknąć niepotrzebnych kosztów i opóźnień w montażu. Praktycznie, jeśli użytkownik nie sprawdzi kompatybilności komponentów, może to prowadzić do sytuacji, gdzie cała inwestycja w komputer staje się problematyczna, ponieważ wymiana płyty głównej lub procesora pociąga za sobą dodatkowe koszty. Dlatego zawsze zaleca się konsultację specyfikacji technicznych i ewentualnie kontakt z producentem lub ekspertem, aby upewnić się, że wszystkie części są zgodne. Warto również korzystać z narzędzi online, które pomagają w weryfikacji kompatybilności komponentów komputerowych.

Pytanie 3

Aby zwiększyć efektywność komputera, można w nim zainstalować procesor wspierający technologię Hyper-Threading, co umożliwia

A. przesyłanie danych pomiędzy procesorem a dyskiem twardym z prędkością działania procesora
B. realizowanie przez pojedynczy rdzeń procesora dwóch niezależnych zadań równocześnie
C. podniesienie częstotliwości pracy zegara
D. automatyczne dostosowanie częstotliwości rdzeni procesora w zależności od ich obciążenia
Technologia Hyper-Threading, opracowana przez firmę Intel, pozwala na zwiększenie efektywności procesora poprzez umożliwienie jednemu rdzeniowi przetwarzania dwóch wątków jednocześnie. Dzięki temu, gdy jeden wątek czeka na dane z pamięci lub wykonuje operacje, drugi wątek może zająć rdzeń, co skutkuje lepszym wykorzystaniem zasobów CPU. Przykładem zastosowania może być uruchamianie wielozadaniowych aplikacji, takich jak edytory wideo czy środowiska programistyczne, które wymagają równoległego przetwarzania danych. Z perspektywy standardów branżowych, Hyper-Threading jest szczególnie ceniony w serwerach oraz stacjach roboczych, gdzie wielowątkowość jest kluczowa dla wydajności. Użytkownicy mogą zauważyć znaczną poprawę w czasie odpowiedzi systemu operacyjnego oraz w szybkości przetwarzania obliczeń w aplikacjach, które potrafią wykorzystywać wiele wątków jednocześnie. Warto zaznaczyć, że Hyper-Threading nie zwiększa rzeczywistej liczby rdzeni, ale optymalizuje ich wykorzystanie, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii komputerowej.

Pytanie 4

Który standard z rodziny IEEE 802 odnosi się do sieci bezprzewodowych, zwanych Wireless LAN?

A. IEEE 802.3
B. IEEE 802.11
C. IEEE 802.5
D. IEEE 802.15
Pozostałe standardy z grupy IEEE 802, takie jak 802.5, 802.15 i 802.3, dotyczą różnych typów sieci i technologii komunikacyjnych, które nie są związane z bezprzewodowymi sieciami lokalnymi. IEEE 802.5 definiuje standard dla sieci Token Ring, technologii, która jest całkowicie inna od popularnych rozwiązań bezprzewodowych. Token Ring opiera się na architekturze, w której dane są przesyłane w zorganizowany sposób, co różni się od elastyczności, jaką oferują sieci bezprzewodowe. IEEE 802.15 z kolei odnosi się do sieci osobistych (WPAN), koncentrując się na komunikacji na krótkich odległościach, co w praktyce ogranicza jego zastosowanie do scenariuszy takich jak Bluetooth, a nie szerokopasmowe połączenia w ramach sieci lokalnych. Natomiast IEEE 802.3, znany jako standard Ethernet, definiuje zasady dla przewodowych sieci lokalnych, które z kolei różnią się fundamentalnie od bezprzewodowych systemów komunikacyjnych. Wyciąganie błędnych wniosków z tych standardów może prowadzić do nieporozumień w projektowaniu i wdrażaniu sieci, co przejawia się w trudności w uzyskaniu odpowiedniej wydajności oraz w problemach z niezawodnością. Kluczowe jest zrozumienie, że wybór odpowiedniego standardu sieciowego ma ogromne znaczenie dla efektywności oraz bezpieczeństwa komunikacji, dlatego istotne jest stosowanie właściwych rozwiązań w określonych kontekstach.

Pytanie 5

Do stworzenia projektu sieci komputerowej dla obiektu szkolnego najlepiej użyć edytora grafiki wektorowej, którym jest oprogramowanie

A. MS Excel
B. MS Publisher
C. AutoCad
D. Adobe Photoshop
Wybór niewłaściwego narzędzia do projektowania sieci komputerowej często wynika z niepełnego zrozumienia wymogów technicznych oraz specyfiki danego oprogramowania. MS Publisher to program, który głównie służy do edycji publikacji i materiałów drukowanych. Jego funkcje nie są wystarczające do precyzyjnego planowania sieci, ponieważ brakuje mu zaawansowanych opcji rysunkowych i narzędzi CAD, które są kluczowe w projektowaniu inżynieryjnym. Z drugiej strony, Adobe Photoshop to program graficzny, który doskonale nadaje się do edytowania zdjęć i tworzenia grafiki rastrowej, ale nie jest przystosowany do tworzenia rysunków technicznych ani schematów inżynieryjnych, co ogranicza jego zastosowanie w kontekście projektowania sieci. MS Excel, mimo że jest potężnym narzędziem do analizy danych, nie posiada funkcji rysunkowych ani możliwości przestrzennego modelowania, co czyni go nieodpowiednim do wizualizacji i projektowania infrastruktury sieciowej. Powszechnym błędem jest mylenie tych programów, które są dedykowane innym zadaniom, z narzędziami właściwymi do profesjonalnego projektowania, co prowadzi do niewłaściwego podejścia i potencjalnych problemów w realizacji projektu.

Pytanie 6

Na urządzeniu zasilanym prądem stałym znajduje się wskazane oznaczenie. Co można z niego wywnioskować o pobieranej mocy urządzenia, która wynosi około

Ilustracja do pytania
A. 7,5 W
B. 11 W
C. 2,5 W
D. 18,75 W
Odpowiedź 18,75 W jest prawidłowa, ponieważ moc w urządzeniach zasilanych prądem stałym oblicza się, mnożąc napięcie przez natężenie prądu. W tym przypadku mamy do czynienia z napięciem 7,5 V i natężeniem 2,5 A. Wzór na moc to P=U×I, gdzie P to moc, U to napięcie, a I to natężenie. Podstawiając dane: P=7,5 V × 2,5 A=18,75 W. To pokazuje, że urządzenie rzeczywiście pobiera moc 18,75 W, co jest zgodne z poprawną odpowiedzią. Takie obliczenia są kluczowe w branży elektronicznej i elektrycznej, gdzie precyzyjne określenie parametrów zasilania jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej. W praktyce oznacza to, że przy projektowaniu czy analizie obwodów należy zawsze uwzględniać zarówno napięcie, jak i natężenie, aby uniknąć przeciążeń czy uszkodzeń sprzętu. Znajomość tych podstaw jest wymagana przy projektowaniu systemów zasilania w urządzeniach elektronicznych i elektrycznych oraz przy doborze odpowiednich zabezpieczeń.

Pytanie 7

Jaki adres IP należy do urządzenia funkcjonującego w sieci 10.0.0.0/17?

A. 10.0.127.128
B. 10.0.128.127
C. 10.0.254.128
D. 10.0.128.254
Adres IP 10.0.127.128 jest poprawnym adresem w zakresie sieci 10.0.0.0/17, ponieważ maska podsieci /17 oznacza, że pierwsze 17 bitów adresu IP definiuje część sieci, a pozostałe 15 bitów jest przeznaczone dla adresacji urządzeń w tej sieci. W przypadku adresu 10.0.127.128, pierwsze 17 bitów odpowiada za zakres adresów od 10.0.0.0 do 10.0.127.255. Adres ten jest również odpowiedni, ponieważ nie jest adresem rozgłoszeniowym (broadcast), który w tym przypadku wynosi 10.0.127.255, ani adresem sieciowym, którym jest 10.0.0.0. Przykładowo, w praktycznych zastosowaniach, adresy w sieci 10.0.0.0/17 mogą być używane w dużych organizacjach do segmentacji ruchu sieciowego. Dzięki zastosowaniu maski /17 możliwe jest przypisanie do 32,766 adresów IP dla urządzeń, co czyni tę sieć bardzo elastyczną i odpowiednią dla różnych scenariuszy, takich jak lokalne sieci biurowe czy kampusy szkolne. Korzystanie z prywatnych adresów IP, takich jak te w przedziale 10.0.0.0/8, jest zgodne z RFC 1918, co czyni je preferowanym wyborem w architekturze sieciowej.

Pytanie 8

Jaką maksymalną długość kabla typu skrętka pomiędzy panelem krosowniczym a gniazdem abonenckim przewiduje norma PN-EN 50174-2?

A. 90 m
B. 50 m
C. 100 m
D. 10 m
Długości 10 m i 50 m są znacznie poniżej wymagań określonych w normach dla kabli skrętkowych, co może prowadzić do nieprawidłowych założeń dotyczących instalacji sieciowych. Krótsze kable mogą wydawać się bardziej efektywne, jednak w praktyce mogą ograniczać elastyczność układu sieci. Na przykład, w biurze zaprojektowanym na 10 m długości kabli, może być trudno dostosować rozmieszczenie stanowisk pracy, co prowadzi do zwiększenia kosztów związanych z rozbudową lub przelokowaniem instalacji. Z drugiej strony, długość 100 m przekracza dopuszczalne limity określone przez normę PN-EN 50174-2, co może skutkować degradacją sygnału i obniżeniem wydajności sieci. Długie kable mogą generować większe straty sygnału, co jest szczególnie zauważalne w sieciach działających na wyższych prędkościach, takich jak 1 Gbps czy nawet 10 Gbps. Przekroczenie dopuszczalnej długości może prowadzić do błędów w transmisji danych, co w wielu sytuacjach kończy się koniecznością przeprowadzenia kosztownych napraw lub modyfikacji instalacji. Właściwe zrozumienie długości segmentów kabli i ich wpływu na jakość sieci jest kluczowe dla efektywnego projektowania i wdrażania systemów okablowania strukturalnego.

Pytanie 9

Schemat ilustruje ustawienia urządzenia WiFi. Wskaż, które z poniższych stwierdzeń na temat tej konfiguracji jest prawdziwe?

Ilustracja do pytania
A. Dostęp do sieci bezprzewodowej jest ograniczony tylko do siedmiu urządzeń
B. Obecnie w sieci WiFi działa 7 urządzeń
C. Urządzenia w sieci posiadają adresy klasy A
D. Filtrowanie adresów MAC jest wyłączone
Adresy IP klasy A dotyczą dużych sieci i mają zakres od 1.0.0.0 do 126.255.255.255. W przedstawionej konfiguracji urządzenia posiadają adresy z zakresu 192.168.x.x, co klasyfikuje je jako adresy klasy C, powszechnie używane w sieciach lokalnych. To powszechny błąd, by sugerować się pierwszą cyfrą adresu IP bez uwzględnienia pełnego zakresu klasy adresów. Kolejnym niewłaściwym założeniem jest stwierdzenie, że w sieci pracuje 7 urządzeń. Fakt, że 7 urządzeń jest sparowanych lub zarejestrowanych w systemie, nie oznacza, że wszystkie są aktualnie aktywne i pracujące w sieci; status połączenia może być różny i zależy od bieżących aktywności użytkowników. Stwierdzenie o pracy wyłącznie 7 urządzeń opiera się na założeniu, że jedynie te konkretne urządzenia mają zdefiniowane adresy MAC, co jest błędnym wyobrażeniem, gdyż przy wyłączonym filtrowaniu inne urządzenia mogą również uzyskać dostęp. Błędne rozumienie działania filtrowania MAC prowadzi do nieprawidłowej interpretacji dostępności urządzeń w sieci. Kluczowe jest zrozumienie, że liczba sparowanych urządzeń nie przekłada się na liczbę aktywnych połączeń.

Pytanie 10

Zidentyfikuj najprawdopodobniejszą przyczynę pojawienia się komunikatu "CMOS checksum error press F1 to continue press DEL to setup" podczas uruchamiania systemu komputerowego?

A. Wyczyszczona pamięć CMOS.
B. Uszkodzona karta graficzna.
C. Rozładowana bateria podtrzymująca ustawienia BIOS-u
D. Zniknięty plik konfiguracyjny.
Nieprawidłowe odpowiedzi koncentrują się na innych potencjalnych przyczynach błędu CMOS, jednak nie uwzględniają one podstawowego problemu związanego z pamięcią CMOS i jej wymaganą baterią. Usunięcie pliku setup w kontekście BIOS-u jest mało prawdopodobne, ponieważ BIOS przechowuje swoje ustawienia w pamięci, a nie w plikach na dysku twardym. Tego rodzaju informacja może prowadzić do mylnego przekonania, że problem jest związany z systemem operacyjnym, a nie z samym sprzętem. Z drugiej strony, uszkodzona karta graficzna może prowadzić do innych rodzajów błędów, takich jak problemy z wyświetlaniem obrazu, ale nie jest bezpośrednio związana z komunikatem o błędzie CMOS. Wreszcie, skasowana zawartość pamięci CMOS na ogół jest wynikiem rozładowania baterii. Zrozumienie, że to bateria pełni kluczową rolę w zasilaniu pamięci CMOS, pozwala uniknąć typowych błędów myślowych. Użytkownicy często mylnie identyfikują problemy z BIOS-em jako związane z innymi komponentami, co może prowadzić do nieefektywnych napraw i niepotrzebnych kosztów. Dlatego ważne jest, aby rozpoznać, że wiele problemów z komputerami ma swoje źródło w podstawowych aspektach konserwacyjnych, jakim jest wymiana baterii CMOS.

Pytanie 11

Jakie polecenie w systemie Windows powinno być użyte do obserwacji listy bieżących połączeń karty sieciowej w komputerze?

A. Ipconfig
B. Netstat
C. Ping
D. Telnet
Odpowiedzi takie jak 'Ping', 'Telnet' oraz 'Ipconfig' nie są właściwe w kontekście monitorowania aktywnych połączeń karty sieciowej. 'Ping' służy do sprawdzania dostępności hostów w sieci oraz mierzenia czasu odpowiedzi, ale nie oferuje informacji o aktualnych połączeniach ani ich stanie. Użytkownicy mogą mylnie sądzić, że 'Ping' pomoże w diagnozowaniu problemów z połączeniem, jednak jego funkcjonalność ogranicza się do testowania komunikacji, a nie analizy aktywnych połączeń. 'Telnet' jest protokołem umożliwiającym zdalne logowanie się na serwery, co również nie ma związku z monitoringiem połączeń. W rzeczywistości 'Telnet' może być używany do łączenia się z serwerami, ale nie dostarcza informacji o otwartych portach czy parametrach połączeń. Z kolei 'Ipconfig' jest narzędziem służącym do wyświetlania informacji o konfiguracji interfejsów sieciowych w systemie Windows, takich jak adresy IP, maski podsieci czy bramy domyślnej. Mimo że jest to istotne narzędzie w zarządzaniu siecią, nie dostarcza ono danych o aktywnych połączeniach. Wszelkie te narzędzia pełnią różne funkcje, ale ich zastosowanie nie jest odpowiednie w kontekście monitorowania połączeń, co może prowadzić do nieefektywnej diagnostyki problemów w sieci, jeśli użytkownicy nie będą świadomi ich ograniczeń.

Pytanie 12

Na ilustracji przedstawiono ustawienie karty sieciowej, której adres MAC wynosi

Ilustracja do pytania
A. 192.168.56.1
B. 0A-00-27-00-00-07
C. FE80::E890:BE2B:4C6C:5AA9
D. FEC0:0:0:FFFF::2
Adres IPv4, taki jak 192.168.56.1, jest używany do identyfikacji urządzeń w sieci opartej na protokole IP, ale nie jest adresem MAC. Adresy IPv4 składają się z czterech oktetów dziesiętnych oddzielonych kropkami, co różni się od formatu adresu MAC. Błędem jest mylenie tych dwóch formatów, ponieważ każdy z nich pełni różne funkcje w technologii sieciowej. Z kolei adresy IPv6, jak FE80::E890:BE2B:4C6C:5AA9 i FEC0:0:0:FFFF::2, reprezentują nowszy standard adresowania IP, przystosowany do obsługi większej liczby urządzeń. Adresy te mają złożoną strukturę heksadecymalną i są używane do komunikacji w sieciach IPv6. Błędne jest utożsamianie ich z adresami MAC, które są przypisane sprzętowo i nie zależą od protokołu IP. Typowy błąd polega na nieświadomym używaniu różnych typów adresów zamiennie, co może prowadzić do problemów w konfiguracji i diagnozowaniu sieci. Zrozumienie różnic między tymi adresami jest kluczowe dla efektywnego zarządzania sieciami komputerowymi i zapewnienia ich bezpieczeństwa. Znajomość tych różnic pozwala na prawidłową konfigurację urządzeń i rozwiązywanie problemów sieciowych, co jest niezbędne w pracy każdego specjalisty IT.

Pytanie 13

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. uszkodzone porty USB
B. uszkodzony kontroler klawiatury
C. niepoprawne ustawienia BIOS-u
D. uszkodzony zasilacz
Problemy z wyborem awaryjnego trybu uruchomienia systemu Windows przy użyciu klawiatury podłączonej do USB mogą prowadzić do błędnych wniosków na temat ich przyczyny. Uszkodzony zasilacz, mimo że może wpływać na ogólną wydajność komputera, nie ma bezpośredniego wpływu na działanie klawiatury w kontekście jej rozpoznawania podczas uruchamiania systemu. Usterki w zasilaczu mogą prowadzić do niestabilności systemu, ale klawiatura powinna działać, o ile zasilanie jest wystarczające. Uszkodzony kontroler klawiatury jest również mało prawdopodobny, ponieważ klawiatura działa normalnie po uruchomieniu systemu, co sugeruje, że sam sprzęt jest sprawny. Z kolei uszkodzone porty USB mogą powodować problemy z innymi urządzeniami, ale jeżeli klawiatura działa w normalnym trybie, to oznacza, że porty są funkcjonalne. Należy zwrócić uwagę, że problemy z ustawieniami BIOS-u są najczęściej spotykaną przyczyną błędów w rozpoznawaniu urządzeń w trakcie rozruchu, co z kolei może prowadzić do mylnych wniosków dotyczących uszkodzeń sprzętowych. Dlatego ważne jest, aby diagnostyka zaczynała się od analizy ustawień BIOS-u, zamiast zakładać, że problem leży w sprzęcie.

Pytanie 14

Aby sprawdzić stan podłączonego kabla oraz zdiagnozować odległość do miejsca awarii w sieci, należy użyć funkcji przełącznika oznaczonej numerem

Ilustracja do pytania
A. 2
B. 4
C. 1
D. 3
Wybór innych opcji niż numer 3 wynika z nieporozumienia dotyczącego funkcji przełącznika sieciowego. Funkcja 'Port Statistics' oznaczona numerem 1, jest używana do monitorowania ruchu sieciowego na poszczególnych portach przełącznika, co pozwala na analizę wydajności sieci i wykrywanie anomalii w przepływie danych, ale nie służy do testowania kabli. Port Statistics nie dostarcza informacji o fizycznym stanie okablowania ani nie identyfikuje miejsca uszkodzenia kabla. Z kolei funkcja 'Port Mirror' pod numerem 2 jest używana do klonowania ruchu z jednego portu na inny, co jest przydatne przy analizie pakietów w celach diagnostycznych, lecz nie ma bezpośredniego związku z fizycznym testowaniem kabli. Port mirroring umożliwia śledzenie i analizowanie ruchu sieciowego, ale nie pozwala na diagnozę problemów z okablowaniem. Natomiast 'Loop Prevention' pod numerem 4 służy do zapobiegania powstawaniu pętli w sieci, które mogą prowadzić do nadmiarowego ruchu i przeciążeń. Choć jest to istotna funkcja dla stabilności sieci, nie zajmuje się bezpośrednim testowaniem kabli. Każda z tych funkcji pełni różne role w zarządzaniu siecią, a ich mylne zrozumienie może prowadzić do nieefektywnego rozwiązywania problemów sieciowych. Kluczowe jest więc zrozumienie specyficznych zastosowań każdej z funkcji, aby efektywnie diagnozować i rozwiązywać problemy w sieci komputerowej.

Pytanie 15

Aby zapewnić łączność urządzenia mobilnego z komputerem za pośrednictwem interfejsu Bluetooth, konieczne jest

A. stworzyć sieć WAN dla tych urządzeń
B. ustawić urządzenie mobilne przez przeglądarkę
C. zestawić połączenie między urządzeniami kablem krosowym
D. wykonać parowanie urządzeń
Wykonanie parowania urządzeń jest kluczowym krokiem w nawiązywaniu połączenia Bluetooth pomiędzy urządzeniem mobilnym a komputerem. Proces ten polega na wymianie danych zabezpieczających, takich jak kody PIN lub hasła, które są niezbędne do autoryzacji połączenia. Parowanie zapewnia, że tylko zaufane urządzenia mogą wymieniać dane, co jest zgodne z najlepszymi praktykami bezpieczeństwa. Po zakończeniu parowania, urządzenia będą mogły automatycznie się łączyć bez potrzeby ponownego wprowadzania danych. Przykładem zastosowania może być sytuacja, w której użytkownik chce przesłać pliki z telefonu na komputer. Po parowaniu, takie operacje stają się znacznie łatwiejsze, a użytkownik oszczędza czas. Ponadto, Bluetooth ma różne profile, takie jak A2DP do przesyłania dźwięku czy SPP do przesyłania danych, co pozwala na różnorodne zastosowania w zależności od potrzeb użytkownika.

Pytanie 16

Zaprezentowany diagram ilustruje zasadę funkcjonowania

Ilustracja do pytania
A. myszy optycznej
B. drukarki termosublimacyjnej
C. skanera płaskiego
D. cyfrowego aparatu fotograficznego
Mysz optyczna korzysta z zaawansowanej technologii optycznej bazującej na diodach LED i czujnikach obrazowych takich jak matryce CMOS lub CCD aby precyzyjnie śledzić ruch. Podstawową zasadą działania myszy optycznej jest emitowanie światła przez diodę LED które odbija się od powierzchni i wraca przez soczewki do sensora optycznego. Sensor przetwarza odbite światło na obraz który następnie jest analizowany przez układ DSP w celu określenia kierunku i prędkości ruchu myszy. Cały proces odbywa się w czasie rzeczywistym co zapewnia płynność i precyzję działania. Praktyczne zastosowanie tej technologii można zaobserwować w szerokim wachlarzu urządzeń od komputerów osobistych po specjalistyczne zastosowania w grach komputerowych gdzie precyzja i szybkość reakcji są kluczowe. Standardowe praktyki branżowe obejmują stosowanie matryc o wyższej rozdzielczości aby zwiększyć precyzję śledzenia oraz wykorzystywanie bardziej zaawansowanych algorytmów do poprawy dokładności działania co jest szczególnie ważne na powierzchniach o niskiej jakości optycznej. Dzięki temu mysz optyczna jest niezawodnym narzędziem w codziennej pracy i rozrywce.

Pytanie 17

Jakie złącze jest potrzebne do podłączenia zasilania do CD-ROM?

A. Berg
B. 20-pinowe ATX
C. Molex
D. Mini-Molex
Złącze Molex jest standardowym typem złącza stosowanym w zasilaniu komponentów komputerowych, w tym napędów optycznych takich jak CD-ROM. Złącze to, najczęściej w formacie 4-pinowym, dostarcza zasilanie 5V oraz 12V, co czyni je idealnym do zasilania różnych urządzeń. W praktyce, wiele zasilaczy PC posiada złącza Molex, co umożliwia łatwe podłączenie CD-ROM-a bez konieczności stosowania dodatkowych adapterów. Złącze Molex jest szeroko stosowane w branży komputerowej, co potwierdzają standardy ATX, które określają, że tego typu złącza powinny znajdować się w każdym zasilaczu PC. Oprócz napędów optycznych, złącza Molex są często używane do zasilania dysków twardych oraz wentylatorów, co czyni je wszechstronnym rozwiązaniem w budowie komputerów. Warto pamiętać, że złącze Molex ma różne wersje, a jego zastosowanie w nowoczesnych konstrukcjach komputerowych może być ograniczone przez rosnącą popularność złączy SATA, jednak dla tradycyjnych napędów optycznych pozostaje standardem.

Pytanie 18

Na 16 bitach możemy przechować

A. 32767 wartości
B. 65536 wartości
C. 32768 wartości
D. 65535 wartości
Wybór 65535 wartości jako poprawnej odpowiedzi opiera się na błędnym założeniu, że liczba wartości możliwych do zapisania w systemie binarnym jest redukowana o jeden. Często wynika to z mylnego postrzegania, że zakres wartości liczbowych powinien być obliczany jako 'maksymalna wartość minus jeden'. To podejście jest stosowane w przypadku, gdy mówimy o liczbach całkowitych bez znaku, gdzie maksymalna wartość 16-bitowa wynosi 65535. Jednakże ważne jest, aby zrozumieć, że w kontekście liczby reprezentacji bitów, 16-bitowy system binarny w rzeczywistości może reprezentować 65536 wartości, obejmując zakres od 0 do 65535. Podobnie, odpowiedzi 32767 i 32768 opierają się na błędnym rozumieniu zarówno liczb całkowitych z znakiem, jak i bez znaku. W przypadku liczb całkowitych z znakiem, zakres 16-bitowy wynosi od -32768 do 32767, co może wprowadzać w błąd. Użytkownicy często mylą interpretacje zakresów dla różnych typów danych, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że gdy pytanie dotyczy liczby możliwych kombinacji bitów, kluczowe jest odniesienie do potęg liczby 2, co jest praktyką standardową w teorii informacji i informatyce. Systemy komputerowe i programowanie wymagają precyzyjnego zrozumienia takich koncepcji, aby skutecznie zarządzać danymi i uniknąć typowych błędów w logice programowania.

Pytanie 19

Interfejs SLI (ang. Scalable Link Interface) jest używany do łączenia

A. napędu Blu-Ray z kartą dźwiękową
B. czytnika kart z płytą główną
C. dwóch kart graficznych
D. karty graficznej z odbiornikiem TV
Odpowiedzi sugerujące połączenie czytnika kart z płytą główną, napędu Blu-Ray z kartą dźwiękową lub karty graficznej z odbiornikiem TV nie mają związku z funkcjonalnością interfejsu SLI. Czytniki kart pamięci i płyty główne są ze sobą połączone w sposób standardowy, używając interfejsów takich jak USB czy SATA, jednak nie wymagają one specjalnych technologii, jak SLI, które są dedykowane do współpracy z kartami graficznymi. Tak samo, napędy Blu-Ray i karty dźwiękowe współdziałają w ramach standardowych protokołów komunikacyjnych, takich jak HDMI, które obsługują przesył obu sygnałów, ale nie są związane z przyspieszaniem wydajności graficznej. W przypadku połączenia karty graficznej z odbiornikiem TV, używane są standardowe wyjścia wideo, takie jak HDMI lub DisplayPort, które również nie mają nic wspólnego z technologią SLI. Zrozumienie tych różnic jest kluczowe w kontekście projektowania i budowy systemów komputerowych. Często mylnie przyjmuje się, że różne komponenty mogą być łączone w podobny sposób jak karty graficzne przy użyciu SLI, co prowadzi do nieporozumień i błędnych założeń dotyczących możliwości sprzętowych. Warto pamiętać, że SLI jest dedykowane do zwiększenia wydajności w kontekście obliczeń graficznych, a nie do komunikacji między różnymi typami podzespołów.

Pytanie 20

Wskaż poprawną kolejność czynności prowadzących do zamontowania procesora w gnieździe LGA na nowej płycie głównej, odłączonej od źródła zasilania.

Nr czynnościDziałanie
1Odgięcie dźwigni i otwarcie klapki
2Montaż układu chłodzącego
3Zamknięcie klapki i dociśnięcie dźwigni
4Podłączenie układu chłodzącego do zasilania
5Lokalizacja gniazda procesora
6Nałożenie pasty termoprzewodzącej
7Włożenie procesora do gniazda
A. 5, 7, 6, 1, 4, 3, 2
B. 5, 2, 3, 4, 1, 6, 7
C. 5, 6, 1, 7, 2, 3, 4
D. 5, 1, 7, 3, 6, 2, 4
Aby poprawnie zamontować procesor w gnieździe LGA na nowej płycie głównej, należy rozpocząć od lokalizacji gniazda procesora, co jest kluczowe dla dalszych działań. Po zidentyfikowaniu gniazda, odginamy dźwignię i otwieramy klapkę, co umożliwia umiejscowienie procesora w gnieździe. Następnie należy ostrożnie włożyć procesor, uważając na odpowiednie dopasowanie pinów oraz kierunek montażu, co jest zgodne z oznaczeniami na płycie głównej. Po umieszczeniu procesora, zamykamy klapkę i dociągamy dźwignię, co zapewnia stabilne połączenie. W kolejnych krokach nakładamy pastę termoprzewodzącą, co jest niezbędne do efektywnego odprowadzania ciepła, a następnie montujemy układ chłodzący, który powinien być odpowiednio dobrany do specyfikacji procesora. Na końcu podłączamy układ chłodzący do zasilania, co jest kluczowe dla prawidłowego działania systemu. Taka struktura montażu jest zgodna z najlepszymi praktykami w branży i zapewnia długotrwałą wydajność systemu komputerowego.

Pytanie 21

Jaki sterownik drukarki jest uniwersalny dla różnych urządzeń oraz systemów operacyjnych i stanowi standard w branży poligraficznej?

A. Graphics Device Interface
B. PostScript
C. PCL5
D. PCL6
Wybór PCL5, PCL6 lub Graphics Device Interface jako odpowiedzi wskazuje na pewne nieporozumienia związane z rolą i funkcjonalnością tych technologii. PCL, czyli Printer Command Language, to zestaw języków stworzonych przez firmę Hewlett-Packard, które są specyficzne dla urządzeń HP. Chociaż PCL5 i PCL6 oferują różne możliwości, w tym wsparcie dla kolorów i zaawansowane funkcje drukowania, są one ściśle związane z technologią i urządzeniami HP, co czyni je mniej uniwersalnymi niż PostScript. W rzeczywistości, PCL nie jest standardem w branży, a raczej specyfikacją ograniczoną do określonych producentów, co może prowadzić do problemów z kompatybilnością na innych urządzeniach. Z kolei Graphics Device Interface (GDI) jest interfejsem graficznym w systemie Windows, który umożliwia aplikacjom rysowanie na ekranie oraz drukowanie, ale nie jest to rozwiązanie niezależne od systemu operacyjnego. GDI nie został stworzony z myślą o zapewnieniu standardu w poligrafii, a jego zastosowanie jest ściśle związane z platformą Windows. Podsumowując, wybór tych odpowiedzi sugeruje mylne zrozumienie, że PCL i GDI mogą funkcjonować jako uniwersalne standardy, podczas gdy w rzeczywistości PostScript, dzięki swojej niezależności i wszechstronności, odgrywa kluczową rolę w profesjonalnej poligrafii.

Pytanie 22

Jakie polecenie powinno być użyte do obserwacji lokalnych połączeń?

A. route add
B. netstat
C. dir
D. host
Odpowiedzi 'dir', 'host' oraz 'route add' są błędne w kontekście monitorowania lokalnych połączeń sieciowych, ponieważ każde z tych poleceń pełni zupełnie inną funkcję w obszarze zarządzania systemem i siecią. Polecenie 'dir' jest używane do wyświetlania listy plików i folderów w danym katalogu, co nie ma nic wspólnego z monitorowaniem połączeń sieciowych. W sytuacji, gdy administratorzy potrzebują zrozumieć, jakie zasoby są dostępne na dysku, mogą skorzystać z tego polecenia, ale nie w kontekście analizy aktywności sieciowej. Z kolei polecenie 'host' służy do uzyskiwania informacji o adresach IP i domenach, co może być przydatne w kontekście rozwiązywania problemów związanych z DNS, ale nie dostarcza informacji o aktywnych połączeniach. Zrozumienie tego narzędzia jest istotne, jednak nie spełnia ono funkcji monitorowania połączeń. Natomiast 'route add' jest wykorzystywane do modyfikacji tablicy routingu w systemie operacyjnym; pozwala na dodawanie nowych tras, co może być przydatne w kontekście zarządzania ruchem sieciowym, ale również nie dotyczy monitorowania aktywnych połączeń. Te trzy narzędzia, mimo że są ważne w swoich kontekstach, prowadzą do nieporozumienia, gdy są stosowane w sytuacjach, gdzie wymagane jest zrozumienie rzeczywistych połączeń sieciowych. Często mylone jest pojęcie zarządzania plikami czy konfiguracji sieci z monitorowaniem, co może prowadzić do nieefektywnego diagnozowania problemów sieciowych oraz błędnych decyzji w obszarze administracji siecią.

Pytanie 23

Która z usług serwerowych oferuje automatyczne ustawienie parametrów sieciowych dla stacji roboczych?

A. DHCP
B. WINS
C. NAT
D. DNS
DHCP, czyli Dynamic Host Configuration Protocol, to protokół, który automatycznie konfiguruje parametry sieciowe dla stacji roboczych, takie jak adres IP, maska podsieci, brama domyślna oraz serwery DNS. Użycie DHCP w sieciach komputerowych znacznie upraszcza proces zarządzania adresami IP, eliminując konieczność ręcznej konfiguracji każdego urządzenia w sieci. Dzięki DHCP, administratorzy mogą łatwo zarządzać pulą dostępnych adresów IP oraz wprowadzać zmiany w konfiguracji sieci bez konieczności bezpośredniego dostępu do każdego urządzenia. Na przykład, w typowej sieci biurowej, gdy nowe urządzenia są podłączane do sieci, automatycznie otrzymują odpowiednie parametry konfiguracyjne, co pozwala na szybkie i efektywne włączenie ich do infrastruktury sieciowej. Zgodnie z najlepszymi praktykami, stosowanie DHCP jest zalecane w sieciach o dużej liczbie urządzeń, gdzie ręczna konfiguracja byłaby czasochłonna i podatna na błędy. Protokół DHCP jest również zgodny z różnymi standardami IETF, co zapewnia jego niezawodność i szeroką kompatybilność.

Pytanie 24

W systemie operacyjnym Linux proces archiwizacji danych wykonuje się za pomocą polecenia

A. chmod
B. tar
C. cmd
D. rpm
Odpowiedzi 'cmd', 'chmod' oraz 'rpm' nie odnoszą się do funkcji archiwizacji danych w systemie Linux i mogą prowadzić do nieporozumień, jeśli nie zostaną odpowiednio wyjaśnione. 'cmd' to ogólny termin, który odnosi się do linii poleceń w systemie Windows, a nie do żadnego narzędzia w systemach Unix/Linux. Nie ma więc zastosowania w kontekście archiwizacji w systemie Linux. 'chmod', z drugiej strony, to polecenie służące do zmiany uprawnień dostępu do plików i katalogów, co jest kluczowe dla bezpieczeństwa systemu, ale nie ma nic wspólnego z archiwizacją danych. Użytkownicy mogą mylnie sądzić, że zmiana uprawnień jest wystarczająca do zarządzania plikami, podczas gdy archiwizacja wymaga zupełnie innych narzędzi i podejść. 'rpm' jest systemem zarządzania pakietami stosowanym w niektórych dystrybucjach Linuxa, umożliwiającym instalację, usuwanie i zarządzanie oprogramowaniem, ale nie jest narzędziem do archiwizacji danych. Często spotykanym błędem w analizie poleceń jest mylenie ich funkcji w systemie operacyjnym, co prowadzi do konkluzji, że narzędzia do zarządzania pakietami mogą zastąpić narzędzia do archiwizacji. Właściwe zrozumienie różnic między tymi narzędziami jest kluczowe dla efektywnego zarządzania systemem Linux.

Pytanie 25

Na ilustracji pokazano przekrój kabla

Ilustracja do pytania
A. S/UTP
B. koncentrycznego
C. optycznego
D. U/UTP
Kabel optyczny, który działa na zasadzie przesyłania danych za pomocą światła w rdzeniu światłowodowym, różni się fundamentalnie od kabla koncentrycznego. Podstawową różnicą jest zastosowanie i budowa kabla optycznego, który składa się z rdzenia i płaszcza wykonanych z włókna szklanego lub tworzywa sztucznego, umożliwiającego szybki przesył danych na bardzo duże odległości bez zakłóceń elektromagnetycznych, co czyni go idealnym do zastosowań w nowoczesnych sieciach telekomunikacyjnych, takich jak internet czy telewizja cyfrowa. Z kolei kable S/UTP i U/UTP to kategorie skrętki nieekranowanej lub ekranowanej, stosowanej przede wszystkim w sieciach komputerowych do transmisji danych. Kabel S/UTP zawiera dodatkowy ekran wokół całej wiązki przewodów, co zwiększa jego odporność na zakłócenia elektromagnetyczne, jednak nadal strukturalnie i funkcjonalnie różni się od kabla koncentrycznego, który ma pojedynczy przewodnik centralny. Kable te są często używane w lokalnych sieciach komputerowych (LAN), gdzie kluczowe jest zapewnienie odpowiedniej przepustowości oraz minimalizacja interferencji. Wybór niewłaściwego typu kabla może prowadzić do problemów z jakością sygnału i niezawodnością połączenia. Zrozumienie różnic w budowie i zastosowaniach tych kabli jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją sieci telekomunikacyjnych oraz komputerowych, co podkreśla znaczenie znajomości odpowiednich standardów przemysłowych, takich jak TIA/EIA i ISO/IEC.

Pytanie 26

Która z macierzy RAID opiera się na replikacji dwóch lub więcej dysków twardych?

A. RAID 5
B. RAID 1
C. RAID 0
D. RAID 3
RAID 1, znany również jako mirroring, polega na replikacji danych na co najmniej dwóch dyskach fizycznych. W przeciwieństwie do RAID 0, który dzieli dane na dyskach i nie zapewnia redundancji, RAID 1 tworzy kopię zapasową wszystkich danych, co znacząco zwiększa bezpieczeństwo informacji. W przypadku awarii jednego dysku, system może kontynuować działanie, korzystając z drugiego dysku. Przykładem zastosowania RAID 1 są serwery, które wymagają wysokiej dostępności danych, takich jak serwery plików czy bazy danych. Dobrym praktycznym podejściem jest również wykorzystanie RAID 1 w systemach desktopowych, gdzie użytkownik przechowuje ważne dokumenty lub zdjęcia. W branżowych standardach, takich jak ANSI/TIA-942, rekomenduje się implementację rozwiązań RAID jako część planu ochrony danych, co podkreśla znaczenie RAID 1 w zapewnieniu ciągłości działania i minimalizacji utraty danych.

Pytanie 27

Jakiego rodzaju plik należy stworzyć w systemie operacyjnym, aby zautomatyzować rutynowe działania, takie jak kopiowanie lub tworzenie plików oraz folderów?

A. Początkowy
B. Systemowy
C. Konfiguracyjny
D. Wsadowy
Inicjujący plik nie jest odpowiedni do automatyzacji czynności, ponieważ służy on zazwyczaj do uruchamiania programów lub skryptów w odpowiedzi na określone zdarzenia, a nie do wykonywania serii zadań. Może to prowadzić do pomyłek, gdyż jego zastosowanie nie obejmuje powtarzalnych operacji, które są kluczowe w automatyzacji. Z kolei pliki systemowe, choć mogą pełnić istotną rolę w konfiguracji i działaniu systemu operacyjnego, nie są dedykowane do automatyzacji codziennych zadań użytkownika. Systemowe pliki są bardziej związane z wewnętrznymi operacjami systemu, a ich modyfikacje mogą prowadzić do destabilizacji środowiska operacyjnego. Pliki konfiguracyjne natomiast zawierają ustawienia i preferencje programów, ale również nie są odpowiednie do automatyzacji działań, gdyż ich głównym celem jest definiowanie konfiguracji, a nie wykonywanie aktywnych operacji. Typowe błędy myślowe obejmują mylenie różnych typów plików i ich zastosowań, co może skutkować nieefektywnym zarządzaniem zadaniami oraz niepotrzebnym zwiększaniem złożoności procesów. W każdym przypadku, kluczowe jest zrozumienie różnicy między typami plików i ich przeznaczeniem, aby skutecznie wykorzystać je w codziennej pracy.

Pytanie 28

Tusz w żelu wykorzystywany jest w drukarkach

A. igłowych
B. fiskalnych
C. termotransferowych
D. sublimacyjnych
Drukarki termotransferowe wykorzystują inny rodzaj tuszu, zazwyczaj w formie wosków lub żywic. W tym przypadku proces druku polega na przenoszeniu tuszu na materiał za pomocą wysokiej temperatury, co różni się od sublimacji. Tusze igłowe są natomiast stosowane w drukarkach igłowych, które działają na innej zasadzie, a ich mechanizm oparty jest na uderzeniach igieł w papier, co nie jest kompatybilne z tuszami żelowymi. Drukarki fiskalne również nie mają zastosowania dla tuszu żelowego, ponieważ ich mechanizm wystawiania paragonów opiera się na atramentach termicznych lub woskowych, które są bardziej odpowiednie do tego celu. Wybierając tusz do druku, kluczowe jest zrozumienie specyfiki urządzenia oraz jego przeznaczenia. Typowe błędy myślowe obejmują przekonanie, że wszystkie tusze są uniwersalne, co jest nieprawdziwe. W praktyce, dobór odpowiedniego tuszu do specyficznego typu drukarki jest kluczowy dla uzyskania wysokiej jakości wydruków oraz długowieczności materiałów. Zrozumienie różnic pomiędzy technologiami druku pozwala na bardziej świadome podejście do wyboru sprzętu i materiałów eksploatacyjnych.

Pytanie 29

Element wskazany cyfrą 1 na diagramie karty dźwiękowej?

Ilustracja do pytania
A. eliminates sound from multiple sources
B. przekształca sygnał audio na sygnał wideo
C. generuje dźwięk o odpowiedniej długości, wykorzystując krótkie próbki dźwięku
D. eliminuje szumy w linii, stosując krótkie próbki szumu
Element oznaczony cyfrą 1 na schemacie karty dźwiękowej odnosi się do syntezy wavetable. Synteza wavetable polega na generowaniu dźwięku poprzez odtwarzanie próbek dźwiękowych zapisanych w pamięci. Jest to technika syntezy dźwięku, która pozwala na uzyskanie realistycznych barw instrumentów muzycznych, dzięki wykorzystaniu wcześniej nagranych krótkich próbek. Przykładowo, w instrumentach elektronicznych, takich jak syntezatory czy keyboardy, synteza wavetable umożliwia odtwarzanie dźwięków różnych instrumentów z dużą wiernością. Wavetable jest szeroko stosowana w produkcji muzycznej oraz w kartach dźwiękowych komputerów, gdzie zapewnia wysoką jakość dźwięku przy jednoczesnym niskim zapotrzebowaniu na moc obliczeniową. Technika ta jest uważana za jedną z efektywniejszych metod generowania dźwięku o wysokiej jakości przy minimalnym wykorzystaniu zasobów. Dzięki swoim zaletom synteza wavetable stała się standardem w branży audio, a jej wszechstronność i efektywność uczyniły ją preferowaną technologią zarówno w profesjonalnym, jak i amatorskim zastosowaniu.

Pytanie 30

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 3 bity
B. 16 bitów
C. 9 bitów
D. 4 bity
Wybór innych odpowiedzi często wynika z błędnych założeń dotyczących przeliczeń między systemami liczbowymi. Na przykład, 4 bity są wystarczające do zapisania wartości od 0 do 15, ponieważ 2^4 = 16, co nie obejmuje liczby 256. Takie podejście do tematu wydaje się logiczne, jednak nie uwzględnia faktu, że liczby heksadecymalne mogą przekraczać ten zakres. Podobnie, 3 bity mogą reprezentować tylko liczby z zakresu 0-7 (2^3 = 8), co w żadnym wypadku nie pokrywa wartości 256. Odpowiedź 16 bitów również nie jest uzasadniona w tym kontekście, ponieważ 16 bitów jest w stanie reprezentować liczby z zakresu od 0 do 65535, co jest nadmiarem dla danej liczby, ale nie jest to minimalna ilość bitów, która jest wymagana. Zrozumienie, że do prawidłowego przeliczenia liczby heksadecymalnej do binarnej należy uwzględnić najmniejszą potęgę liczby 2, jest kluczowym aspektem, który pozwala uniknąć typowych błędów myślowych związanych z konwersją numerów. W rzeczywistości, umiejętność efektywnego przekształcania systemów liczbowych jest niezbędna w inżynierii komputerowej oraz informatyce, gdzie precyzyjne obliczenia i reprezentacje danych mają ogromne znaczenie.

Pytanie 31

Aby wymusić na użytkownikach lokalnych systemów z rodziny Windows Server regularną zmianę haseł oraz stosowanie haseł o odpowiedniej długości, które spełniają kryteria złożoności, należy ustawić

A. zasady blokady konta w zasadach grupowych
B. konta użytkowników w Ustawieniach
C. zasady haseł w lokalnych zasadach zabezpieczeń
D. parametry konta użytkownika w narzędziu zarządzania komputerem
Odpowiedź "zasady haseł w zasadach zabezpieczeń lokalnych" jest poprawna, ponieważ to w tym miejscu można skonfigurować wymogi dotyczące złożoności haseł oraz okresowej zmiany haseł dla kont użytkowników w systemach Windows Server. Umożliwia to administratorom kontrolowanie polityki haseł, co jest kluczowym elementem zabezpieczeń w środowiskach IT. Przykładowo, można ustalić minimalną długość hasła, wymusić użycie znaków specjalnych, cyfr oraz wielkich liter, co znacząco zwiększa odporność na ataki brute-force. W dobrych praktykach bezpieczeństwa IT, takich jak standardy NIST, podkreśla się znaczenie silnych haseł oraz regularnej ich zmiany. Dzięki odpowiednim ustawieniom w zasadach zabezpieczeń lokalnych można również wprowadzić blokady konta po kilku nieudanych próbach logowania, co dodatkowo zwiększa bezpieczeństwo. To podejście jest zgodne z politykami bezpieczeństwa wielu organizacji, które mają na celu minimalizację ryzyka naruszeń danych.

Pytanie 32

W lokalnej sieci protokołem odpowiedzialnym za dynamiczną konfigurację adresów IP jest

A. DHCP
B. FTP
C. TCP/IP
D. DNS
Wybranie odpowiedzi, która nie jest protokołem DHCP, pokazuje, że może jest jakieś nieporozumienie w temacie ról różnych protokołów w sieciach komputerowych. Na przykład, DNS to protokół, który tłumaczy nazwy domenowe na adresy IP, więc jest ważny dla surfowania po Internecie, ale nie zajmuje się przydzielaniem adresów IP. TCP/IP, z kolei, to zestaw protokołów do komunikacji w sieciach, ale nie ma nic wspólnego z dynamicznym przydzielaniem adresów IP. A FTP, no cóż, to protokół do przesyłania plików, a nie do przydzielania adresów. Te pomyłki mogą wynikać z mylenia funkcji różnych protokołów. Każdy z nich ma swoją rolę w sieci, ale tylko DHCP jest stworzony do tego, żeby dynamicznie przydzielać adresy IP w czasie rzeczywistym. Warto zrozumieć te różnice, bo to naprawdę ważne dla dobrego zarządzania nowoczesnymi sieciami.

Pytanie 33

Okablowanie pionowe w sieci strukturalnej łączy jakie elementy?

A. główny punkt rozdzielczy z gniazdem abonenckim
B. pośredni punkt rozdzielczy z gniazdem abonenckim
C. główny punkt rozdzielczy z pośrednimi punktami rozdzielczymi
D. dwa gniazda abonenckie
Analizując błędne odpowiedzi, warto zauważyć, że każda z nich wskazuje na częściowe zrozumienie struktury sieci, jednak ich twierdzenia są niekompletne lub błędne. Wskazanie, że okablowanie pionowe łączy dwa gniazda abonenckie, jest mylące, ponieważ takie połączenie odnosi się do okablowania poziomego, które łączy gniazda z urządzeniami końcowymi. Z kolei stwierdzenie, że okablowanie to łączy główny punkt rozdzielczy z pojedynczym gniazdem abonenckim, również jest niewłaściwe, gdyż nie uwzględnia struktury rozdzielczej. Dodatkowo błędne jest przedstawienie pośredniego punktu rozdzielczego jako jedynego elementu łączącego z gniazdem; w rzeczywistości pośrednie punkty rozdzielcze występują w sieci jako część większej całości, a ich rola polega na rozdzielaniu sygnału w ramach struktur pionowych. Tworzenie sieci wyłącznie z pojedynczego punktu rozdzielczego nie zapewnia odpowiedniej redundancji ani możliwości rozbudowy, co jest kluczowe w nowoczesnych systemach komunikacyjnych. Dlatego ważne jest, aby w projektowaniu sieci uwzględniać zasady strukturalne, które umożliwią efektywne i przyszłościowe zarządzanie infrastrukturą.

Pytanie 34

Algorytm wykorzystywany do weryfikacji, czy ramka Ethernet jest wolna od błędów, to

A. CRC (Cyclic Redundancy Check)
B. CSMA (Carrier Sense Multiple Access)
C. MAC (Media Access Control)
D. LLC (Logical Link Control)
Wybierając odpowiedzi LLC, MAC lub CSMA, można wpaść w pułapki myślenia, które nie rozróżniają funkcji protokołów i metod dostępu do medium od mechanizmów detekcji błędów. LLC (Logical Link Control) jest warstwą protokołu w modelu OSI, która odpowiada za zarządzanie komunikacją na poziomie ramki, ale nie zajmuje się bezpośrednim wykrywaniem błędów. Jego funkcje obejmują zapewnienie odpowiedniej komunikacji między warstwami, ale sama kontrola błędów to nie jego główny cel. MAC (Media Access Control) natomiast odpowiada za kontrolę dostępu do medium transmisyjnego oraz przesyłanie danych, jednak także nie realizuje wykrywania błędów na poziomie ramki. Z kolei CSMA (Carrier Sense Multiple Access) to mechanizm, który określa, jak stacje w sieci współdzielą medium, ale nie ma nic wspólnego z wykrywaniem błędów, co jest kluczowe w kontekście tego pytania. Błędne odpowiedzi mogą wynikać z nieprecyzyjnego zrozumienia funkcji poszczególnych komponentów sieciowych oraz ich relacji w procesie przesyłania danych. W rzeczywistości, CRC jest jedynym algorytmem pośród wymienionych, który bezpośrednio zajmuje się wykrywaniem błędów w przesyłanych ramkach Ethernet, co czyni go istotnym elementem zapewniającym integralność danych w sieciach komputerowych.

Pytanie 35

Licencja Windows OEM nie zezwala na wymianę

A. sprawnego zasilacza na model o lepszych parametrach
B. sprawnej płyty głównej na model o lepszych parametrach
C. sprawnego dysku twardego na model o lepszych parametrach
D. sprawnej karty graficznej na model o lepszych parametrach
Wymiana komponentów w komputerze, takich jak zasilacz, karta graficzna czy dysk twardy, nie wpływa na ważność licencji Windows OEM, ponieważ licencja ta jest powiązana z płytą główną. Zrozumienie tego aspektu jest kluczowe, ponieważ wiele osób może mylnie sądzić, że wymiana tych elementów również powoduje unieważnienie licencji. Przykładem błędnego rozumienia może być myślenie, że zasilacz, jako element zewnętrzny, jest kluczowym komponentem dla aktywacji Windows, co w rzeczywistości nie jest prawdą. Zasilacz dostarcza energię elektryczną do wszystkich podzespołów, nie ma jednak wpływu na licencjonowanie oprogramowania. Karta graficzna, mimo że jest ważnym elementem w kontekście wydajności graficznej, również nie zmienia statusu licencji. Dysk twardy, na którym zainstalowany jest system operacyjny, może być wymieniany, a Windows OEM pozostanie aktywny, o ile płyta główna pozostaje bez zmian. Tego rodzaju myślenie często prowadzi do nieporozumień i może skutkować niepotrzebnym wydatkowaniem środków na nowe licencje, podczas gdy w rzeczywistości wymiana innych podzespołów nie wymaga takich działań. Warto zatem dokładnie zapoznać się z warunkami licencji oraz zasadami modernizacji sprzętu, aby uniknąć nieprzyjemnych niespodzianek.

Pytanie 36

Jakie narzędzie służy do usuwania izolacji z włókna światłowodowego?

A. zaciskarka
B. stripper
C. cleaver
D. nóż
Wybór złych narzędzi do ściągania izolacji z włókna światłowodowego może naprawdę narobić problemów z jakością połączeń. Nóż może się wydawać przydatny, ale brakuje mu precyzji, więc łatwo można uszkodzić włókno. A takie uszkodzenia mogą prowadzić do strat w sygnale, a w najgorszym wypadku nawet do zniszczenia włókna. Cleaver, chociaż używa się go do cięcia włókien, nie nadaje się do zdejmowania izolacji. On bardziej wygładza końcówkę włókna przed spawaniem. Zaciskarka jest z kolei do łączenia włókien, więc jej użycie w tym kontekście nie ma sensu. Używanie niewłaściwego narzędzia nie tylko wydłuża czas pracy, ale i zwiększa ryzyko błędów, co w przypadku instalacji światłowodowych jest po prostu nieakceptowalne. Dlatego w profesjonalnych instalacjach ważne jest korzystanie z odpowiednich narzędzi, jak stripper, które spełniają normy branżowe i gwarantują dobrą jakość wykonania.

Pytanie 37

Ile hostów można zaadresować w podsieci z maską 255.255.255.248?

A. 6 urządzeń.
B. 510 urządzeń.
C. 246 urządzeń.
D. 4 urządzenia.
Wiele osób myli się przy obliczaniu liczby dostępnych hostów w podsieciach, co może prowadzić do błędnych wniosków. Odpowiedzi sugerujące, że w podsieci z maską 255.255.255.248 można zaadresować 246 lub 510 hostów, opierają się na niepoprawnym zrozumieniu zasad adresacji IP. W rzeczywistości, aby obliczyć liczbę dostępnych adresów dla hostów, należy wziąć pod uwagę ilość bitów zarezerwowanych dla adresów w podsieci. Dla maski /29, 3 bity są przeznaczone na adresy hostów, co daje 2^3 = 8 możliwych adresów. Z tych adresów, 2 są zawsze zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co efektywnie pozostawia 6 adresów do wykorzystania przez urządzenia w sieci. Odpowiedzi wskazujące na 4 hosty również są błędne, ponieważ także nie uwzględniają poprawnego obliczenia dostępnych adresów. Typowe błędy polegają na nieprawidłowym dodawaniu hostów lub myleniu zasad dotyczących rezerwacji adresów w danej podsieci. Dlatego, aby uniknąć podobnych pomyłek, ważne jest zrozumienie podstaw działającej logiki adresacji IP oraz umiejętność poprawnego stosowania masek podsieci w praktyce. Właściwe przeszkolenie w zakresie adresacji IP i praktyk sieciowych jest niezwykle istotne dla specjalistów IT, co zapewnia efektywne projektowanie i zarządzanie nowoczesnymi sieciami komputerowymi.

Pytanie 38

Który z pakietów powinien być zainstalowany na serwerze Linux, aby komputery z systemem Windows mogły udostępniać pliki oraz drukarki z tego serwera?

A. Samba
B. Vsftpd
C. Proftpd
D. Wine
Wybór Wine, Vsftpd lub Proftpd jako odpowiedzi na pytanie o pakiet umożliwiający współdzielenie plików i drukarek z Windows jest nieprawidłowy, ponieważ każdy z tych programów ma zupełnie inne zastosowanie. Wine jest emulatorem, który pozwala na uruchamianie aplikacji Windows na systemach Unixowych, ale nie oferuje funkcji współdzielenia plików ani drukarek. Natomiast Vsftpd to serwer FTP, który umożliwia transfer plików przez protokół FTP, co jest przydatne do przesyłania plików, ale nie wspiera protokołów SMB/CIFS, które są wymagane do współdzielenia zasobów między Linux a Windows. Proftpd również jest serwerem FTP, z podobnymi ograniczeniami. Typowym błędem myślowym w tym przypadku jest mylenie różnych protokołów i technologii, a także niezdawanie sobie sprawy z tego, że do efektywnej współpracy między różnymi systemami operacyjnymi konieczne jest użycie odpowiednich narzędzi. Właściwe zrozumienie roli każdego z tych pakietów jest kluczowe dla prawidłowego zarządzania infrastrukturą IT. W środowisku wieloplatformowym, takim jak firmy z komputerami zarówno z systemem Windows, jak i Linux, użycie Samba jest nie tylko zalecane, ale wręcz standardowe. Niezrozumienie tego kontekstu prowadzi do nieefektywności i problemów z dostępem do zasobów w sieci.

Pytanie 39

Które bity w 48-bitowym adresie MAC identyfikują producenta?

A. Pierwsze 8 bitów
B. Ostatnie 24 bity
C. Pierwsze 24 bity
D. Ostatnie 8 bitów
Błędne odpowiedzi w tym pytaniu wskazują na nieporozumienia dotyczące struktury adresu MAC. Pierwsze 8 bitów nie wystarcza do pełnej identyfikacji producenta, ponieważ nie jest to wystarczająca liczba bitów, aby objąć wszystkie możliwe organizacje produkujące sprzęt sieciowy. Ostatnie 8 bitów również nie odnosi się do identyfikatora producenta, ponieważ te bity są zazwyczaj używane do identyfikacji konkretnego urządzenia w ramach danej organizacji. Odpowiedź wskazująca na ostatnie 24 bity jest również myląca, ponieważ te bity są rezerwowane dla indywidualnego identyfikatora sprzętu, a nie dla producenta. W związku z tym, kluczowym błędem myślowym jest niezrozumienie, że identyfikacja producenta wymaga większej liczby bitów, aby pokryć globalny rynek producentów. Ponadto, w kontekście standardów IEEE, OUI jest krytycznym elementem, który zapewnia, że każdy producent ma unikalną przestrzeń adresową. Bez tej struktury, mogłyby dochodzić do konfliktów adresowych w sieci, co prowadziłoby do problemów z komunikacją i identyfikacją urządzeń. Zrozumienie tej struktury jest kluczowe dla administratorów sieci, którzy muszą umieć analizować i diagnozować problematykę sieciową oraz zarządzać różnorodnością urządzeń.

Pytanie 40

Złośliwe oprogramowanie, które może umożliwić atak na zainfekowany komputer, np. poprzez otwarcie jednego z portów, to

A. keylogger
B. wabbit
C. trojan
D. exploit
Mówiąc o złośliwym oprogramowaniu, termin 'exploit' to techniki albo kawałki kodu, które wykorzystują luki w oprogramowaniu, żeby przejąć kontrolę nad systemem. Exploit działa trochę inaczej niż trojan, bo nie jest zamaskowane jako coś legalnego. Zwykle trzeba coś zrobić, na przykład wejść na zainfekowaną stronę, albo otworzyć złośliwy plik. Natomiast 'wabbit' to specyficzny typ wirusa, który sam się klonuje i rozprzestrzenia, ale nie otwiera portów. A 'keylogger' to program, który rejestruje twoje kliknięcia, także to coś innego, bo on nie otwiera portów. Często mylimy te pojęcia, bo klasifikacja złośliwego oprogramowania bywa trudna. Ważne jest, żeby rozumieć, że każdy rodzaj malware działa na swój sposób i ma różne funkcje, a to ma znaczenie, kiedy mówimy o ochronie przed zagrożeniami w sieci.