Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 lutego 2026 23:43
  • Data zakończenia: 13 lutego 2026 00:05

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do zdejmowania izolacji z przewodów elektrycznych należy zastosować narzędzie przedstawione na rysunku

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Szczypce do ściągania izolacji, oznaczone literą D, są specjalistycznym narzędziem zaprojektowanym do zdejmowania izolacji z przewodów elektrycznych. Dzięki swojej konstrukcji, pozwalają na precyzyjne i kontrolowane usunięcie izolacji bez uszkadzania samego przewodu. To kluczowe, ponieważ uszkodzenie przewodu może prowadzić do niebezpieczeństw związanych z przewodnictwem elektrycznym, takich jak zwarcia czy przerwy w obwodzie. W praktyce, użycie odpowiednich szczypiec eliminuje ryzyko przypadkowego przecięcia przewodu, co jest powszechnym problemem przy używaniu nieodpowiednich narzędzi. Zaleca się, aby w każdej instalacji elektrycznej stosować narzędzia zgodne z normami bezpieczeństwa oraz z zasadami BHP, co zapewnia nie tylko wygodę pracy, ale przede wszystkim bezpieczeństwo użytkowników. Zastosowanie szczypiec do ściągania izolacji jest niezbędne w procesach montażowych i konserwacyjnych, gdzie precyzja i bezpieczeństwo są kluczowe. Dobrze dobrane narzędzia w znaczący sposób zwiększają efektywność pracy oraz minimalizują ryzyko wystąpienia usterek.

Pytanie 2

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. odprowadzić bezpośrednio do ścieków
B. osuszyć z nadmiaru wody
C. przefiltrować przy użyciu węgla aktywnego
D. oczyścić z resztek oleju
Odpowiedź 'oczyścić z cząstek oleju' jest poprawna, ponieważ kondensat pochodzący z filtrów do zgrubnego oczyszczania powietrza często zawiera cząstki oleju, które mogą być szkodliwe dla środowiska oraz niezgodne z przepisami dotyczącymi odprowadzania ścieków. Oczyszczanie kondensatu z takich zanieczyszczeń jest kluczowe, aby zapewnić jego bezpieczne i zgodne z normami technicznymi usunięcie. W praktyce, w wielu zakładach przemysłowych stosuje się specjalistyczne separatory oleju, które skutecznie wydzielają olej z wody. Dzięki takiemu procesowi, kondensat można następnie poddać dalszym procesom oczyszczania lub bezpiecznie odprowadzić do systemu kanalizacyjnego, zgodnie z lokalnymi regulacjami prawnymi. Niezastosowanie się do tych zasad może prowadzić do zanieczyszczenia wód gruntowych oraz naruszenia norm środowiskowych, co wiąże się z poważnymi konsekwencjami prawnymi i finansowymi.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Spadek temperatury oleju przed filtrem
B. Wzrost ciśnienia oleju za filtrem
C. Spadek temperatury oleju za filtrem
D. Wzrost ciśnienia oleju przed filtrem
Zrozumienie objawów zanieczyszczenia filtra hydraulicznego wymaga analizy mechanizmów, które rządzą przepływem oleju w systemie. Wzrost ciśnienia oleju za filtrem nie świadczy o zanieczyszczeniu, ponieważ w zdrowym układzie ciśnienie za filtrem powinno być niższe niż przed filtrem, co wynika z oporu, jaki filtr stawia przepływającemu olejowi. Zjawisko to może być mylnie interpretowane jako wskaźnik problemu. Również spadek temperatury oleju przed filtrem nie jest związany z zanieczyszczeniem, ponieważ temperatura oleju może być wpływana przez inne czynniki, takie jak warunki atmosferyczne czy obciążenie pracy. Spadek temperatury za filtrem również nie jest wskaźnikiem zanieczyszczenia, ponieważ filtr działa jako element, który może obniżać temperaturę oleju, usuwając z niego zanieczyszczenia, które mogą prowadzić do wzrostu temperatury. Chociaż na pierwszy rzut oka te objawy mogą wydawać się logiczne, są one przykładem nieprawidłowego rozumienia procesów hydraulicznych, które wymaga gruntownej wiedzy na temat działania systemów hydraulicznych oraz ich komponentów. W praktyce, monitorowanie ciśnienia i temperatury oleju w systemie to kluczowe aspekty utrzymania sprawności hydrauliki, które powinny być ściśle powiązane z regularną konserwacją i kontrolą filtrów.

Pytanie 5

Ilustracja przedstawia proces

Ilustracja do pytania
A. spawania łukowego.
B. zgrzewania.
C. cięcia plazmą.
D. szlifowania.
Cięcie plazmą to zaawansowana technologia obróbcza, która wykorzystuje wysokotemperaturową plazmę do precyzyjnego cięcia metali. Na przedstawionej ilustracji dostrzegamy charakterystyczny wygląd procesu, gdzie jasna plazmowa wiązka koncentruje się na materiale, umożliwiając jego szybkie i dokładne przecięcie. Ta metoda jest szczególnie ceniona w przemyśle, gdzie wymagana jest wysoka jakość cięcia oraz minimalne zniekształcenie krawędzi. Cięcie plazmowe charakteryzuje się dużą prędkością pracy, co pozwala na oszczędność czasu podczas produkcji i obróbki. Technologia ta jest często wykorzystywana w maszynach CNC, co dodatkowo zwiększa jej precyzję i powtarzalność. Standardy branżowe, takie jak ISO 9013, opisują wymagania dotyczące jakości cięcia plazmowego, co czyni tę metodę nie tylko skuteczną, ale i zgodną z międzynarodowymi normami. Warto zaznaczyć, że cięcie plazmą znajduje zastosowanie w wielu branżach, od produkcji stalowej, przez przemysł motoryzacyjny, aż po konstrukcje budowlane.

Pytanie 6

Aby zaświeciła się lampka H1 należy wcisnąć

Ilustracja do pytania
A. wyłącznie przycisk S3
B. przyciski S1 i S2
C. wyłącznie przycisk S1
D. przyciski S1 i S3
Aby lampka H1 zaświeciła się, konieczne jest wciśnięcie przycisków S1 i S2 jednocześnie. To podejście opiera się na zasadzie zamykania obwodu elektrycznego, co jest fundamentalne w zastosowaniach automatyki i elektryki. Przyciśnięcie przycisku S1 zamyka obwód do cewki przekaźnika K, co pozwala na jej zasilenie. Z kolei przycisk S2 zamyka obwód zasilania lampki H1. W momencie, gdy oba przyciski są wciśnięte, prąd może swobodnie przepływać przez cewkę, co skutkuje zadziałaniem przekaźnika i zaświeceniem lampki. W praktycznych zastosowaniach automatyki, takie rozwiązania są powszechnie stosowane w systemach sterowania, gdzie konieczne jest wykorzystanie kombinacji przycisków do osiągnięcia określonego efektu, co zwiększa bezpieczeństwo oraz kontrolę nad procesami. Warto również zaznaczyć, że w projektach elektrycznych istotne jest przestrzeganie zasad bezpieczeństwa, takich jak stosowanie odpowiednich zabezpieczeń oraz odpowiednich oznaczeń dla różnych elementów obwodów.

Pytanie 7

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. analizy stopnia zużycia
B. oceny stopnia naprężenia
C. weryfikacji czystości paska
D. sprawdzenia wymiarów
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. d1 < d2
B. d1 > d2
C. d1 ≤ d2
D. d1 = d2
W przypadku, gdy d1 jest mniejsze od d2, granice trwałości połączenia wciskowego zostaną przekroczone. To podejście jest błędne, ponieważ element wciskany nie będzie miał odpowiedniego oparcia, co może prowadzić do poluzowania lub wręcz całkowitego wyjścia elementu z otworu. W inżynierii mechanicznej i projektowaniu, każdy element połączenia musi być odpowiednio dostosowany do wymagań funkcjonalnych oraz warunków pracy. Stosowanie zależności, gdzie d1 jest mniejsze lub równe d2, prowadzi do sytuacji, w której element wciskany nie osiąga wymaganego momentu siły, co może skutkować nieprawidłowym funkcjonowaniem urządzenia. Dodatkowo, częstym błędem jest zakładanie, że elementy mogą być montowane bez uwzględnienia tolerancji produkcyjnych, co jest kluczowe w zastosowaniach przemysłowych. Warto zwrócić uwagę, że standardy branżowe, takie jak normy ISO w zakresie połączeń mechanicznych, definiują wymagania dotyczące wymiarów i tolerancji dla połączeń wciskowych, co jest niezbędne do zapewnienia jakości i niezawodności. Każde połączenie powinno być projektowane w oparciu o konkretne obliczenia i analizy, które potwierdzają, że d1 musi być większe od d2, aby zminimalizować ryzyko awarii.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Pojemnościowy.
B. Magnetyczny.
C. Indukcyjny.
D. Optyczny.
Czujniki indukcyjne, pojemnościowe i optyczne są często stosowane w automatyzacji procesów, ale ich zastosowanie w kontekście detekcji położenia butelek na stanowisku napełniania może prowadzić do nieporozumień. Czujnik indukcyjny, który jest zaprojektowany do wykrywania obiektów metalowych, może okazać się efektywny w sytuacjach, gdy metalowe elementy są obecne, jednak w przypadku butelek wykonanych z plastiku lub szkła, jego użycie będzie nieadekwatne. Z kolei czujnik pojemnościowy, choć skuteczny w detekcji materiałów nieprzewodzących, może w niektórych sytuacjach być niewłaściwie skonfigurowany, co prowadzi do fałszywych alarmów lub braku reakcji. Optyczne czujniki, które wykorzystują technologię fotonową, mogą być również ograniczone przez warunki środowiskowe, takie jak zanieczyszczenia na obiekcie lub zmiana oświetlenia, co wpływa na ich zdolność do prawidłowego działania. Typowym błędem myślowym jest zakładanie, że każdy czujnik może być użyty w dowolnej aplikacji bez uwzględnienia specyfiki materiałów i warunków operacyjnych. W praktyce, skuteczność czujnika zależy od jego technologii oraz parametrów środowiskowych, w których jest zainstalowany, co jest kluczowe dla zapewnienia efektywności procesów przemysłowych.

Pytanie 12

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. mechanicznego.
B. indukcyjnego.
C. magnetycznego.
D. ultradźwiękowego.
Wybór odpowiedzi, która zakłada, że symbol przedstawia czujnik ultradźwiękowy, indukcyjny lub mechaniczny, może wynikać z nieporozumienia dotyczącego zasad działania tych technologii. Czujniki ultradźwiękowe działają na zasadzie emisji fal dźwiękowych, które następnie są analizowane na podstawie czasu ich powrotu, co czyni je doskonałymi w zastosowaniach związanych z pomiarami odległości w warunkach, gdzie nie można zastosować tradycyjnych metod. Natomiast czujniki indukcyjne wykorzystują pole elektromagnetyczne do detekcji metalowych obiektów, co jest zupełnie inną zasadą działania niż w przypadku czujników magnetycznych, które są bezpośrednio związane z wykrywaniem pola magnetycznego. Warto również zauważyć, że czujniki mechaniczne, choć mają swoje miejsce w różnych aplikacjach, nie są w stanie działać w oparciu o pole magnetyczne, lecz wykorzystują bezpośrednie oddziaływanie mechaniczne do detekcji ruchu lub siły. Typowym błędem myślowym jest mylenie różnych technologii czujników oraz ich zastosowań, co prowadzi do nieprawidłowych wniosków. Aby uniknąć takich sytuacji, warto zapoznać się z podstawami działania poszczególnych typów czujników oraz ich odpowiednich zastosowań w praktyce, co pozwoli na lepsze zrozumienie ich funkcji oraz ograniczeń.

Pytanie 13

Które sprzęgło należy zastosować do połączenia napędu z maszyną, jeżeli ich wały nie są współosiowe i mają przenosić duże obciążenia przy dużych prędkościach obrotowych?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór niepoprawnego sprzęgła do połączenia napędu z maszyną często wynika z niepełnego zrozumienia wymagań dotyczących konstrukcji układów napędowych. Sprzęgła sztywne, które mogą być sugerowane wśród niewłaściwych opcji, nie są w stanie efektywnie radzić sobie z niewspółosiowością wałów. Te urządzenia nie tylko nie zapewniają elastyczności, ale także mogą wprowadzać dodatkowe napięcia mechaniczne, co prowadzi do szybszego zużycia i potencjalnych awarii. Ponadto, stosowanie sprzęgieł sztywnych w warunkach dużych obciążeń i prędkości obrotowych zwiększa ryzyko uszkodzeń, zarówno w samych sprzęgłach, jak i w innych elementach maszyny. Często mylone jest również założenie, że większa sztywność sprzęgła przekłada się na lepsze przenoszenie mocy, co jest mylne w kontekście realnych warunków pracy. Wały napędowe w rzeczywistości mogą mieć różne odchylenia i błędy montażowe, co sprawia, że elastyczność jest kluczowa. Wybór źle dopasowanego sprzęgła może prowadzić do niebezpiecznych sytuacji w pracy maszyn, które są niezgodne z normami bezpieczeństwa, takimi jak ISO 4413, co podkreśla znaczenie prawidłowego doboru komponentów w systemach hydraulicznych i napędowych. Z tego względu ważne jest, aby inżynierowie stosowali sprzęgła elastyczne, które są w stanie lepiej dostosować się do rzeczywistych warunków operacyjnych, a tym samym zapewnić większą trwałość oraz niezawodność całego układu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Podanie napięcia na zaciski przedstawionego na rysunku mostka prostowniczego powoduje zadziałanie zabezpieczenia B, W celu usunięcia usterki należy

Ilustracja do pytania
A. odwrotnie wlutować diodę D2
B. odwrotnie wlutować kondensator C
C. wymienić bezpiecznik aparatowy B
D. odwrotnie wlutować diodę D3
Odwrotne wlutowanie diody D2, kondensatora C, czy nawet wymiana bezpiecznika B nie rozwiązuje problemu zadziałania zabezpieczenia. Zrozumienie działania mostka prostowniczego wymaga znajomości podstawowych zasad dotyczących elektronicznych elementów półprzewodnikowych oraz ich roli w konwersji prądu. Dioda D2 nie ma związku z problemem, ponieważ jej orientacja nie wpływa na funkcjonowanie diody D3, która, jak wspomniano, jest odpowiedzialna za zjawisko zwarcia. Podobnie kondensator C pełni rolę wygładzającą napięcie wyjściowe, a jego niewłaściwe wlutowanie również nie prowadzi do zadziałania zabezpieczenia. Wymiana bezpiecznika B jest działaniem reaktywnym, które nie eliminuje źródła problemu, a jedynie naprawia skutki. Typowym błędem myślowym jest mylenie działania elementów w obwodzie i skupianie się na naprawie skutków, a nie przyczyn. Dlatego kluczowe jest zrozumienie, że problem tkwi w konkretnej diodzie, a nie innych elementach układu. W praktyce, przed przystąpieniem do naprawy lub diagnozowania usterki, zaleca się dokładne zapoznanie się ze schematem i funkcją każdego z komponentów, co pozwala unikać zbędnych błędów i zwiększa efektywność naprawy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Poboru prądu
B. Rezystancji izolacji
C. Napięcia zasilania
D. Ciągłości uzwojeń
Rezystancja izolacji jest kluczowym parametrem w diagnostyce usterkowych urządzeń mechatronicznych, zwłaszcza w kontekście wyłączników różnicowoprądowych. Gdy wyłącznik taki zadziała w momencie załączenia zasilania, najczęściej świadczy to o wystąpieniu nieszczelności w izolacji, która prowadzi do upływu prądu do ziemi lub innych części układu. Pomiar rezystancji izolacji pozwala na określenie stanu izolatorów i wykrycie potencjalnych uszkodzeń, które mogą prowadzić do zagrożeń elektrycznych. W praktyce, wartości rezystancji poniżej 1 MΩ mogą wskazywać na poważne problemy i wymagają natychmiastowej interwencji. Standardy takie jak IEC 60364 oraz normy dotyczące bezpieczeństwa elektrycznego wyraźnie określają minimalne wartości rezystancji izolacji, które powinny być przestrzegane w obiektach przemysłowych oraz mieszkalnych. Dobrą praktyką jest regularne przeprowadzanie takich pomiarów, aby zapewnić niezawodność i bezpieczeństwo instalacji elektrycznych, co z kolei chroni użytkowników oraz urządzenia przed uszkodzeniami.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na rysunku przedstawiono połączenie dwóch elementów. Jest to połączenie

Ilustracja do pytania
A. nitowane.
B. śrubowe.
C. lutowane.
D. spawane.
Połączenie śrubowe, jak wskazuje rysunek, jest jednym z najczęściej stosowanych typów połączeń w inżynierii mechanicznej. Umożliwia łatwe łączenie elementów, co jest szczególnie istotne w konstrukcjach, gdzie wymagana jest możliwość demontażu. Śruby i nakrętki, których używa się w tym typie połączenia, są dostępne w różnych klasach wytrzymałości, co pozwala na dostosowanie połączenia do specyfiki zastosowania. Na przykład w konstrukcjach budowlanych lub maszynowych stosuje się śruby o wysokiej wytrzymałości, aby zapewnić stabilność i bezpieczeństwo. Ponadto, połączenia śrubowe można stosować w różnych materiałach, takich jak stal, aluminium czy tworzywa sztuczne. Warto również zauważyć, że połączenia te podlegają normom, takim jak PN-EN ISO 898-1, które określają wymagania dotyczące materiałów oraz obliczeń związanych z ich użyciem. Dzięki elastyczności i prostocie montażu, połączenia śrubowe są fundamentem wielu projektów inżynieryjnych i są powszechnie wykorzystywane w różnych branżach, od budownictwa po przemysł motoryzacyjny.

Pytanie 23

Wyłącznik silnikowy może zadziałać na skutek

A. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
B. uruchomienia silnika przy niewielkim obciążeniu
C. braku jednej fazy zasilającej silnik
D. użycia stałego napięcia w obwodzie sterowania silnika
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 24

Po wciśnięciu przycisku sterującego zaworu rozdzielającego IV nastąpi

Ilustracja do pytania
A. wysunięcie tłoka siłownika 1A2 i wsunięcie tłoka siłownika 1A1
B. wsunięcie tłoków obu siłowników 1A1 i 1A2
C. wysunięcie tłoków obu siłowników 1A1 i 1A2
D. wysunięcie tłoka siłownika 1 Al i wsunięcie tłoka siłownika 1A2
Poprawna odpowiedź to "wsunięcie tłoków obu siłowników 1A1 i 1A2". Po wciśnięciu przycisku sterującego zaworu rozdzielającego 1V, ciśnienie z portu P zostaje przekierowane do portów A i B. W wyniku tego działania obydwa siłowniki, 1A1 i 1A2, są narażone na działanie ciśnienia, co skutkuje ich wsunięciem. Tego rodzaju mechanizmy są powszechnie stosowane w automatyce oraz hydraulice, gdzie precyzyjne sterowanie ciśnieniem i ruchem siłowników jest kluczowe dla efektywności systemu. W praktyce, zrozumienie działania zaworów rozdzielających oraz ich wpływu na siłowniki jest niezbędne dla inżynierów i techników zajmujących się automatyzacją procesów. Na przykład, w aplikacjach przemysłowych, takich jak linie montażowe, właściwe zarządzanie ciśnieniem może znacząco wpłynąć na prędkość i precyzję operacji, co z kolei przekłada się na wydajność produkcji. Warto także zwrócić uwagę na odpowiednie rozwiązania zabezpieczające, które powinny być wdrażane w systemach hydraulicznych, aby zapewnić ich niezawodność i bezpieczeństwo eksploatacji.

Pytanie 25

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Tłocznik
B. Gwintownik
C. Narzynka
D. Skrobak
Dla nacinania gwintu zewnętrznego nie można zastosować gwintownika, ponieważ jest to narzędzie przeznaczone do wykonywania gwintów wewnętrznych. Gwintowniki są zaprojektowane tak, aby pasowały do otworów, w których gwint ma być wycinany, a ich konstrukcja oraz geometria skrawająca są dostosowane do tego celu. Użycie gwintownika do gwintu zewnętrznego prowadziłoby do nieprawidłowego kształtu gwintu oraz potencjalnych uszkodzeń elementów złącznych. Skrobak, z kolei, jest narzędziem stosowanym głównie do wygładzania powierzchni oraz usuwania nadmiaru materiału, nie ma jednak zastosowania w procesie nacinania gwintów. Tłoczniki są używane w procesach tłoczenia blach, a ich zastosowanie w gwintowaniu jest również nieadekwatne. Przykłady błędnych wniosków mogą wynikać z mylenia funkcji narzędzi skrawających. Niezrozumienie różnych typów gwintów oraz ich zastosowania w konkretnych operacjach może prowadzić do nieefektywności produkcji, a w skrajnych przypadkach do uszkodzenia maszyn. Dlatego istotne jest, aby każdy operator obrabiarek znał podstawy funkcjonalności narzędzi skrawających oraz ich poprawne zastosowanie w zależności od rodzaju gwintu, który zamierzają wykonać.

Pytanie 26

Który rodzaj prądów i napięć można zmierzyć miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Prąd stały i zmienny, napięcia stałe i zmienne.
B. Prąd tylko zmienny, napięcia stałe i zmienne.
C. Prąd tylko zmienny, napięcia tylko zmienne.
D. Prąd stały i zmienny, napięcia tylko zmienne.
Ten miernik, który widzisz na zdjęciu, to cęgowy miernik prądu. Jest naprawdę praktyczny, bo pozwala na pomiar prądów zmiennych oraz napięć, zarówno stałych, jak i zmiennych. Dzięki zastosowaniu cęgów, możesz zmierzyć natężenie prądu bez stykania się z przewodami, co znacznie poprawia bezpieczeństwo. Z tego, co widzę na oznaczeniach, możesz używać go do pomiaru prądu w trybie AC, co jest super przydatne, zwłaszcza w elektryce, gdzie prąd zmienny to norma. Dodatkowo, jego funkcje pomiaru napięcia, zarówno stałego, jak i zmiennego, sprawiają, że nadaje się do różnych zastosowań, na przykład w diagnostyce urządzeń elektronicznych czy przy pracach instalacyjnych. Pamiętaj tylko, żeby zawsze ustawiać miernik prawidłowo przed pomiarem i trzymać się zasad bezpieczeństwa. Uważam, że ten miernik to must-have dla każdego elektryka i technika zajmującego się instalacjami elektrycznymi.

Pytanie 27

Elementem zaworu, oznaczonym na rysunku znakiem X jest

Ilustracja do pytania
A. elektromagnes z przyłączem.
B. przyłącze wspomagania pneumatycznego.
C. przyłącze przetwornika ciśnienia.
D. czujnik położenia suwaka.
Analiza pozostałych odpowiedzi ukazuje różne błędne koncepcje związane z działaniem i budową zaworów elektromagnetycznych. Czujnik położenia suwaka, choć istotny w kontekście monitorowania pozycji, nie jest elementem, który steruje bezpośrednio przepływem medium. Jego rola ogranicza się do detekcji, a nie aktywnego wpływania na mechanizm zaworu. Przyłącze wspomagania pneumatycznego również nie jest związane z elementem oznaczonym znakiem X. Przyłącze to jest używane do zasilania systemów pomocniczych, które nie mają bezpośredniego wpływu na mechanizm zaworu. Z kolei przyłącze przetwornika ciśnienia jest dedykowane do pomiaru ciśnienia w układzie, co stanowi zupełnie inną funkcjonalność niż elektromagnes. Wybór niewłaściwych odpowiedzi może wynikać z mylnego założenia, że każdy z tych elementów pełni funkcję decyzyjną w kontekście przepływu medium. Należy pamiętać, że każdy komponent w systemie automatyki ma swoją specyfikę i zrozumienie ich ról jest kluczowe dla prawidłowego projektowania oraz eksploatacji systemów. Błędy te często wynikają z braku wiedzy na temat podstawowych zasad działania i integracji poszczególnych elementów, co może prowadzić do nieefektywności w projektowaniu układów pneumatycznych oraz ich późniejszej obsługi.

Pytanie 28

Cewkę zaworu elektromagnetycznego o napięciu znamionowym 24 V AC i częstotliwości 50 Hz, której rezystancja jest równa jej reaktancji, podłączono do napięcia stałego o wartości 24 V. Ile razy wzrosną straty mocy w cewce zaworu, w wyniku takiego podłączenia, w stosunku do strat mocy w znamionowych warunkach pracy?

Ilustracja do pytania
A. √2
B. 4
C. 2
D. 1,5
Wybór niewłaściwej odpowiedzi może wynikać z błędnego zrozumienia zasad dotyczących impedancji oraz strat mocy w obwodach prądu zmiennego i stałego. W przypadku cewki działającej w obwodzie AC, jej zachowanie obarczone jest efektem reaktancji, co oznacza, że część energii jest przechowywana w polu magnetycznym i nie doprowadza do bezpośrednich strat mocy. Gdy cewka zostaje zasilona napięciem stałym, znikają efekty reaktancyjne, a cała moc w obwodzie przekształca się w straty w postaci ciepła, co znacząco zwiększa straty w porównaniu do warunków przy zasilaniu AC. Odpowiedzi takie jak '1,5' czy '4' mogą sugerować próby przybliżenia tego wzrostu na podstawie błędnych założeń dotyczących pracy cewki. Często występujące błędy związane z nieprawidłowym doborem napięcia lub zrozumieniem proporcji pomiędzy rezystancją a reaktancją mogą prowadzić do niewłaściwych wniosków. Warto zwrócić uwagę, że zrozumienie podstawowych zasad działania elementów indukcyjnych jest kluczowe dla właściwego projektowania i eksploatacji obwodów elektrycznych, co jest zgodne z najlepszymi praktykami w branży elektrotechnicznej.

Pytanie 29

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. przełączania obiegu
B. szybkiego spustu
C. podwójnego sygnału
D. regulacji ciśnienia
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 30

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. oczkowego
B. nasadkowego
C. imbusowego
D. dynamometrycznego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 31

Przedstawiony na rysunku element elektroniczny należy zamontować na płytce obwodu drukowanego poprzez

Ilustracja do pytania
A. zgrzewanie.
B. lutowanie.
C. klejenie.
D. spawanie.
Lutowanie to kluczowy proces w montażu elektronicznym, który zapewnia trwałe połączenia elektryczne i mechaniczne pomiędzy elementami a płytką obwodu drukowanego (PCB). Proces ten polega na topnieniu stopu lutowniczego, który po ostygnięciu tworzy solidne i przewodzące połączenie. W przypadku diod, lutowanie jest szczególnie istotne, ponieważ wymaga precyzyjnego umiejscowienia oraz odpowiedniej temperatury, aby uniknąć uszkodzenia delikatnych elementów. W praktyce lutowania stosuje się różne techniki, takie jak lutowanie na ciepło, lutowanie na fali czy lutowanie ręczne, które są dostosowane do różnych aplikacji. Standardy IPC (Institute for Interconnecting and Packaging Electronics) nakładają wymagania dotyczące jakości lutowania, co jest istotne dla niezawodności i trwałości urządzeń elektronicznych. Dlatego zwróć szczególną uwagę na wybór odpowiedniego stopu lutowniczego oraz technikę lutowania, aby zapewnić wysoką jakość połączeń na PCB.

Pytanie 32

Na podstawie danych katalogowych przetwornika różnicy ciśnień dobierz napięcie zasilania dla prądowego sygnału wyjściowego.

Zasilanie [VDC]
  • 15÷30 (sygn. wyj. 0÷10 V)
  • 10÷30 (sygn. wyj. 0÷5 V)
  • 5÷12 (sygn. wyj. 0÷3 V)
  • 10÷36 (sygn. wyj. 4÷20 mA)
Sygnały wyjściowe
  • 4÷20 mA
  • 0÷10 V, 0÷5 V, 1÷5 V
  • 0÷3 V (low-power)
  • Możliwe jest również wykonanie przetworników z dowolnym napięciowym sygnałem wyjściowym, mniejszym od 0÷10 V (np. 0÷4 V, 2÷8 V itp.)
A. 15÷30 VDC
B. 10÷30 VDC
C. 10÷36 VDC
D. 5÷12 VDC
Wybór napięcia zasilania 10÷36 VDC dla przetwornika różnicy ciśnień jest zgodny z jego wymaganiami technicznymi. Przetworniki ciśnienia z prądowym sygnałem wyjściowym 4-20 mA wymagają odpowiedniego zasilania, aby zapewnić poprawne funkcjonowanie i dokładność odczytów. Wartość napięcia zasilania powinna być zgodna z danymi katalogowymi, które wskazują, że zasilanie w zakresie 10÷36 VDC jest optymalne. Przykładem zastosowania takich przetworników są systemy automatyki przemysłowej, w których monitoruje się ciśnienie w procesach technologicznych. W takich przypadkach, nieodpowiednie napięcie zasilania mogłoby prowadzić do zniekształceń sygnałów wyjściowych, co z kolei wpływa na dokładność monitorowania i kontrolowania procesów. Ponadto, zgodnie z normami branżowymi, dostosowanie zasilania do wymagań urządzenia jest kluczowym aspektem zapewnienia niezawodności i trwałości systemów pomiarowych.

Pytanie 33

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. awarii stojana silnika
C. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
D. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 34

Jaka powinna być zależność pomiędzy rezystancją wewnętrzną \( R_w \) źródła napięcia, a rezystancją odbiornika \( R_o \), przyłączonego do tego źródła, aby ze źródła była przekazywana maksymalna moc do odbiornika?

A. \( R_o > 0,1 \, R_w \)
B. \( R_o = R_w \)
C. \( R_o = \sqrt{R_w} \)
D. \( R_o < 10 \, R_w \)
Wielu osobom może się wydawać, że wystarczy, aby rezystancja odbiornika była po prostu większa lub mniejsza od wartości rezystancji źródła, żeby uzyskać dobre rezultaty – stąd te pomysły typu „większe niż 0,1 Rw” czy „mniejsze niż 10 Rw”. Niestety, to tak nie działa w rzeczywistych układach. Z punktu widzenia teorii obwodów, moc przekazywana do odbiornika zależy nie tylko od tego, żeby był on „jakikolwiek”, ale od precyzyjnego dopasowania. Przy zbyt małej rezystancji odbiornika (dużym prądzie) większość mocy wydziela się na rezystancji wewnętrznej źródła, więc odbiornik praktycznie nie skorzysta. Z kolei jeśli obciążenie jest bardzo duże (rezystancja odbiornika dużo większa niż rezystancja źródła), prąd będzie bardzo mały i znowu – moc na odbiorniku spada. Propozycja, że moc jest maksymalna dla \( R_o = \sqrt{R_w

Pytanie 35

Produkcja sprężonego powietrza w systemach pneumatycznych obejmuje przynajmniej jego

A. osuszanie, filtrowanie i smarowanie
B. sprężanie, filtrowanie i smarowanie
C. sprężanie, osuszanie i filtrowanie
D. sprężanie, osuszanie i smarowanie
Odpowiedź "sprężaniu, osuszaniu i filtrowaniu" jest super, bo te trzy procesy są naprawdę kluczowe, żeby przygotować dobre sprężone powietrze w układach pneumatycznych. Sprężanie to zwiększenie ciśnienia powietrza, dzięki czemu można je przechowywać i wykorzystywać w różnych maszynach. Potem mamy osuszanie, które jest mega ważne, bo wilgoć w powietrzu może zaszkodzić sprzętom, a tego przecież nie chcemy. Osuszacze, jak te chłodnicze i adsorpcyjne, pomagają pozbyć się pary wodnej. Filtrowanie to kolejny krok, który pozwala wyeliminować zanieczyszczenia, które mogą zaszkodzić elementom układów. Właściwe filtry, na przykład zgodne z normą ISO 8573, dbają o to, żeby powietrze było czyste, co jest istotne dla trwałej i pewnej pracy tych systemów. Przykładowo, w przemyśle motoryzacyjnym jakość sprężonego powietrza jest kluczowa podczas montażu i obróbki.

Pytanie 36

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Rzeczywiste
B. Jednostronne
C. Graniczne
D. Nominalne
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.

Pytanie 37

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. bocznikowe
B. synchroniczne
C. szeregowe
D. obcowzbudne
Silniki obcowzbudne, w których uzwojenie wzbudzenia jest zasilane z osobnego źródła prądowego, nie mają takich samych właściwości rozruchowych jak silniki szeregowe. W silnikach tych, moment rozruchowy zależy od wartości prądu wzbudzenia, które jest ustalone niezależnie od prądu wirnika. To oznacza, że w momencie startu silnika obcowzbudnego moment obrotowy jest mniejszy, a ich główną zaletą jest stabilność prędkości przy różnych obciążeniach, co czyni je bardziej odpowiednimi do aplikacji wymagających stałej prędkości, takich jak wentylatory czy pompy. Silniki synchroniczne są z kolei stosowane w zastosowaniach, gdzie wymagane są precyzyjne obroty i synchronizacja z siecią elektryczną. Ich konstrukcja i sposób działania sprawiają, że nie są one w stanie wygenerować dużego momentu rozruchowego, co czyni je mniej praktycznymi dla aplikacji, w których istotne jest szybkie uruchomienie. Silniki bocznikowe, z drugiej strony, mają połączenie równoległe uzwojenia wzbudzenia z wirnikiem, co również wpływa na niższy moment rozruchowy w porównaniu do silników szeregowych. W praktyce, wybór odpowiedniego silnika powinien być podyktowany specyfiką aplikacji oraz wymaganiami dotyczącymi momentu obrotowego i dynamiki rozruchu, aby uniknąć typowych błędów w doborze silnika do konkretnego zadania.

Pytanie 38

Zastosowany w podsystemie pneumatycznym zespół, którego wygląd i symbole graficzne przedstawiono na rysunkach, umożliwia

Ilustracja do pytania
A. płynną regulację wilgotności sprężonego powietrza zasilającego układ.
B. zasilanie układu pneumatycznego sprężonym powietrzem o stałym ciśnieniu.
C. zasilanie układu pneumatycznego sprężonym powietrzem o stałej wartości przepływu.
D. płynną regulację temperatury sprężonego powietrza zasilającego układ.
Wybranie odpowiedzi, która sugeruje płynną regulację temperatury sprężonego powietrza, świadczy o nieporozumieniu w zakresie funkcji tego zestawu. Regulacja temperatury powietrza jest procesem, który zazwyczaj nie jest realizowany przez standardowe zespoły przygotowania powietrza. Zamiast tego, standardowe elementy, takie jak chłodnice powietrza, są stosowane do tego celu. Również koncepcja regulacji wilgotności sprężonego powietrza jest mylna. Wilgotność powietrza jest kontrolowana w sposób bardziej zaawansowany, często z użyciem osuszaczy, które eliminują nadmiar wilgoci. Dodatkowo, odpowiedź dotycząca stałej wartości przepływu sprężonego powietrza również odbiega od rzeczywistości. W kontekście pneumatyki, przepływ powietrza może być regulowany, ale zespół przygotowania powietrza, jak ten przedstawiony na zdjęciu, nie ma zastosowania do takiego zadania. Przerwy w zrozumieniu tych różnic mogą prowadzić do nieefektywnego wykorzystania systemów pneumatycznych oraz do potencjalnych awarii. Kluczowe jest zrozumienie, że każdy element w systemie pneumatycznym ma swoje specyficzne zadanie, które nie może być realizowane przez inne urządzenia. Dlatego tak ważne jest, aby znać nie tylko funkcje, ale i ograniczenia poszczególnych komponentów, co jest niezbędne do zapewnienia niezawodności i efektywności operacyjnej w przemyśle.

Pytanie 39

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy urządzenia przedstawionego na rysunku?

Ilustracja do pytania
A. Pierścień Segera.
B. Podkładka dystansująca.
C. Nakrętka koronowa.
D. Zawleczka zabezpieczająca.
Pierścień Segera to naprawdę ważny element w wielu zastosowaniach inżynieryjnych. Służy do zabezpieczania łożysk przed ich przypadkowym wysunięciem z obudowy. Jego specyficzny kształt i sprężystość sprawiają, że świetnie trzyma się w rowkach na wałku lub w otworze, co naprawdę skutecznie zapobiega przesunięciom wzdłuż osi. Widziałem, że używa się pierścieni Segera w takich rzeczach jak silniki czy różne przekładnie. To naprawdę ważne dla uniknięcia uszkodzeń spowodowanych ruchem łożysk. Standardy branżowe, jak ISO 14120, mówią, jak ważne są odpowiednie zabezpieczenia mechaniczne, więc pierścień Segera to musi być kluczowy element, gdy projektujemy i produkujemy maszyny. Fajnie jest też zauważyć, że inne elementy jak nakrętki koronowe czy zawleczki mają swoje zastosowania, ale nie dają takiej ochrony jak pierścień Segera, jeśli chodzi o łożyska.

Pytanie 40

Na podstawie przedstawionej tabliczki znamionowej pompy hydraulicznej określ jej maksymalną wydajność.

Ilustracja do pytania
A. 40 dm3
B. 250 bar
C. 24 V DC
D. 6 dm3/min
Odpowiedź 6 dm3/min jest prawidłowa, ponieważ na tabliczce znamionowej pompy hydraulicznej znajduje się informacja o wydatku pompy, oznaczona jako 'WYDATEK POMPY: Q = 6 litr/min'. Przy konwersji jednostek, 6 litrów na minutę jest równoznaczne z 6 dm3/min, co zostaje potwierdzone w standardach dotyczących oznaczania wydajności urządzeń hydraulicznych. Wydajność pompy jest kluczowym parametrem, który wpływa na efektywność całego układu hydraulicznego. Przykładowo, w zastosowaniach przemysłowych, takich jak malowanie natryskowe lub systemy hydrauliczne w maszynach, właściwa wydajność pompy ma bezpośredni wpływ na jakość i wydajność pracy. Znajomość maksymalnej wydajności pompy pozwala na odpowiedni dobór komponentów oraz optymalizację procesów, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W przypadku pompy hydraulicznej, jej wydajność jest także istotna podczas doboru odpowiednich węży i złączy, które muszą sprostać wymogom ciśnienia i przepływu.