Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 23:36
  • Data zakończenia: 7 grudnia 2025 23:45

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. kondensator.
B. dioda.
C. rezystor.
D. tranzystor.
Tranzystor, który został przedstawiony na zdjęciu, jest kluczowym elementem w nowoczesnej elektronice, szczególnie w układach analogowych i cyfrowych. Posiada on trzy wyprowadzenia: bramkę (G), dren (D) oraz źródło (S), które są charakterystyczne dla tranzystora polowego typu MOSFET. Tranzystory są powszechnie używane do wzmacniania sygnałów oraz jako przełączniki w obwodach elektronicznych. Na przykład, w zastosowaniach audio, tranzystory mogą wzmacniać sygnały, pozwalając na wytwarzanie dźwięku o wyższej mocy. W systemach cyfrowych, tranzystory stanowią podstawę działania układów logicznych, umożliwiając realizację operacji arytmetycznych i logicznych. Dodatkowo, tranzystory są niezbędne w projektach fotowoltaicznych, gdzie kontrolują przepływ prądu z paneli słonecznych do akumulatorów. Warto również podkreślić, że znajomość działania tranzystorów jest niezbędna dla każdego inżyniera elektronika, ponieważ są one fundamentem wielu nowoczesnych technologii.

Pytanie 2

Który materiał o właściwościach podanych w tabeli należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
Materiał 1.2,7040
Materiał 2.2,75320
Materiał 3.7,70320
Materiał 4.8,8535
A. Materiał 4.
B. Materiał 1.
C. Materiał 3.
D. Materiał 2.
Materiał 2 jest najodpowiedniejszym wyborem do konstrukcji lekkiej i odpornej na odkształcenia, co wynika z jego korzystnych właściwości fizycznych. Gęstość materiału wynosząca 2,75 g/cm3 oznacza, że jest on stosunkowo lekki w porównaniu do innych materiałów, co jest kluczowe w projektach wymagających mobilności i łatwego transportu. Wysoka granica plastyczności na poziomie 320 MPa zapewnia, że materiał ten może wytrzymać znaczące obciążenia bez deformacji, co jest niezbędne w kontekście zastosowań mechatronicznych, gdzie precyzja i niezawodność są kluczowe. Przykłady zastosowania Materiału 2 obejmują elementy konstrukcyjne w robotyce, gdzie wymagana jest zarówno lekkość, jak i wytrzymałość, jak również w produkcji różnych komponentów w systemach automatyki. Wybór odpowiednich materiałów jest zgodny z dobrymi praktykami inżynieryjnymi, gdzie zawsze należy dążyć do optymalizacji masy i wytrzymałości, co pozwala na zwiększenie efektywności energetycznej i poprawę wydajności całego systemu.

Pytanie 3

Moc wyjściowa zasilacza przedstawionego na ilustracji wynosi

Ilustracja do pytania
A. 240 W
B. 24 W
C. 12 W
D. 120 W
Moc wyjściowa zasilacza wynosząca 120 W została obliczona na podstawie danych znajdujących się na etykiecie, która wskazuje, że zasilacz dostarcza 12V DC przy maksymalnym prądzie 10A. Zgodnie z prawem Ohma i wzorem na moc elektryczną (P = V * I), gdzie P to moc (w watach), V to napięcie (w woltach), a I to natężenie prądu (w amperach), obliczamy moc jako 12V * 10A = 120W. Jest to kluczowa umiejętność w inżynierii elektrycznej, gdyż znajomość mocy zasilaczy jest niezbędna do zapewnienia odpowiedniego zasilania dla urządzeń elektronicznych. Na przykład, przy projektowaniu systemów zasilania dla komponentów komputerowych, ważne jest, aby zasilacz dostarczał wystarczającą moc, by uniknąć problemów z wydajnością i stabilnością systemu. Dobrą praktyką jest również uwzględnienie marginesu bezpieczeństwa, co jest istotne w kontekście długoterminowej niezawodności urządzenia. Z tego powodu, znajomość mocy wyjściowej zasilacza oraz umiejętność jej obliczania są niezbędne w pracy każdego inżyniera.

Pytanie 4

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 11°15'
B. 22°30'
C. 2°49'
D. 5°38'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 5

Którego narzędzia z przedstawionych na ilustracjach należy użyć, aby wlutować elementy tak jak na rysunku?

Ilustracja do pytania
A. Narzędzia 1.
B. Narzędzia 4.
C. Narzędzia 2.
D. Narzędzia 3.
Narzędzie 1 to lutownica kolbowa, która jest powszechnie stosowanym narzędziem w elektronice do precyzyjnego lutowania elementów elektronicznych na płytkach drukowanych. Lutownice kolbowe charakteryzują się stałą temperaturą oraz możliwością precyzyjnego prowadzenia końcówki, co jest kluczowe przy pracy z delikatnymi komponentami, które mogą ulec uszkodzeniu pod wpływem nadmiernego ciepła. Użycie lutownicy kolbowej umożliwia szybkie i efektywne połączenie elementów, zapewniając jednocześnie wysoką jakość lutów, co jest istotne dla niezawodności całego układu. W przypadku lutowania, istotne jest również stosowanie odpowiednich rodzajów lutowia oraz topników, które mogą wpłynąć na jakość połączenia. Lutownice kolbowe są zgodne z najlepszymi praktykami w branży, pozwalając na wykonanie trwalszych i estetycznych lutów, co jest często wymagane w produkcji urządzeń elektronicznych.

Pytanie 6

Jaką funkcję pełni element V2 w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Zmniejsza prędkość wysuwania tłoczyska siłownika.
B. Zmniejsza prędkość wsuwania tłoczyska siłownika.
C. Zwiększa prędkość wsuwania tłoczyska siłownika.
D. Zwiększa prędkość wysuwania tłoczyska siłownika.
Każde z błędnych podejść do funkcji elementu V2 w układzie hydraulicznym może wynikać z nieporozumienia dotyczącego działania zaworów oraz wpływu, jaki mają na prędkość ruchu tłoczyska. Przykładowo, stwierdzenie, że element ten zmniejsza prędkość wysuwania tłoczyska, jest oparte na fałszywym założeniu, że zawór ma jakikolwiek wpływ na ten proces. W rzeczywistości, zawór jednokierunkowy, jak V2, jedynie blokuje ciecz w przeciwnym kierunku, co oznacza, że jego funkcja nie zmienia prędkości wysuwania. Innym błędnym założeniem jest przekonanie, że zawór może zwiększać prędkość wysuwania tłoczyska. W rzeczywistości, podczas wysuwania ciśnienie w układzie nie przechodzi przez zawór V2, co nie pozwala na jego otwarcie. Ponadto, niektóre osoby mogą mylić funkcję zaworu z działaniem siłowników, co prowadzi do nieprawidłowych wniosków związanych z dynamiką ruchu. Ważne jest zrozumienie, że ścisłe pojęcie hydrauliki, w tym rola zaworów, jest kluczowe w praktycznych zastosowaniach inżynieryjnych. Aby uniknąć tych nieporozumień, warto zapoznać się z literaturą techniczną oraz uczestniczyć w szkoleniach dotyczących hydrauliki, które wyjaśniają te kwestie w kontekście rzeczywistych aplikacji.

Pytanie 7

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z wybranego wejścia na jedno wyjście
B. Przesyłanie danych z jednego wejścia do wybranego wyjścia
C. Kodowanie sygnałów na wejściach
D. Porównywanie sygnałów podawanych na wejścia
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 8

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. szeregowe
B. synchroniczne
C. obcowzbudne
D. bocznikowe
Silniki prądu stałego szeregowe charakteryzują się tym, że uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem wirnika. Taki układ oznacza, że prąd płynący przez wirnik jest również tym samym prądem, który zasila uzwojenie wzbudzenia. W rezultacie, przy rozruchu silnika szeregowego, w momencie zerowej prędkości obrotowej, prąd osiąga wartość maksymalną, co generuje bardzo duży moment obrotowy. Jest to szczególnie istotne w zastosowaniach, gdzie wymagany jest wysoki moment startowy, na przykład w napędzie dźwigów, taśmociągów czy wózków widłowych. W kontekście standardów przemysłowych, silniki te często stosowane są w aplikacjach, gdzie wymagane jest szybkie pokonywanie oporów, co czyni je niezastąpionymi w wielu dziedzinach przemysłu. Dodatkowo, ich prosta konstrukcja oraz stosunkowo niskie koszty produkcji sprawiają, że są popularnym wyborem w wielu zastosowaniach.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Czarnym
B. Żółtym
C. Brązowym
D. Niebieskim
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 11

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Filtr.
B. Smarownica.
C. Zawór spustowy.
D. Osuszacz powietrza.
Wybór odpowiedzi wskazujących na inne urządzenia, takie jak filtr, osuszacz powietrza czy zawór spustowy, może wynikać z pomyłek w interpretacji symboli graficznych. Filtry, na przykład, pełnią funkcję oczyszczania cieczy lub gazów z zanieczyszczeń, a ich symbole często przedstawiają struktury oparte na siatkach lub wkładach filtracyjnych. Osuszacze powietrza wykorzystują różne metody do usuwania wilgoci z powietrza, co jest kluczowe w wielu aplikacjach przemysłowych oraz w klimatyzacji. Zawory spustowe, z kolei, są używane do regulacji przepływu cieczy i mogą być reprezentowane przez symbole wskazujące ich funkcję otwierania i zamykania przepływu. Te błędne wybory mogą zatem wynikać z niepełnej wiedzy na temat zastosowania i interpretacji symboli, co z kolei prowadzi do mylnych wniosków. Kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzną funkcję, a ich symbole są tak zaprojektowane, aby jednoznacznie komunikować tę funkcjonalność. Pomocne może być zapoznanie się z dokumentacją techniczną oraz normami branżowymi, które precyzują, jak i kiedy należy używać tych urządzeń, aby uniknąć nieporozumień w przyszłości.

Pytanie 12

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. szczelinomierz
B. pirometr
C. tensometr
D. hallotron
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 13

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. butów z izolowaną podeszwą
B. okularów ochronnych
C. bawełnianego fartucha ochronnego
D. opaski uziemiającej
Użycie opaski uziemiającej podczas wymiany tranzystora wyjściowego w układzie CMOS sterownika PLC jest kluczowe dla zapewnienia bezpieczeństwa i zminimalizowania ryzyka uszkodzenia komponentów. Opaska uziemiająca działa jako środek ochronny, który odprowadza ładunki elektrostatyczne z ciała osoby pracującej, zapobiegając ich nagromadzeniu. W obwodach CMOS, które są bardzo wrażliwe na zjawisko ESD (elektrostatyczne wyładowania), nawet niewielkie ładunki mogą prowadzić do uszkodzenia tranzystorów i innych komponentów. Stosowanie opaski uziemiającej jest zgodne z dobrymi praktykami w branży elektronicznej, które zalecają uziemianie operatorów w celu ochrony delikatnych układów. Dodatkowo, przy wymianie tranzystora, ważne jest, aby pracować w odpowiednim środowisku, które ogranicza ryzyko ESD, na przykład poprzez stosowanie mat antystatycznych oraz unikanie materiałów, które mogą generować ładunki elektrostatyczne. Przykładem dobrych praktyk jest przestrzeganie norm IPC, które definiują standardy dotyczące ochrony przed ESD w procesach produkcyjnych oraz serwisowych.

Pytanie 14

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. redukcji tętnień
C. zmniejszenia składowej stałej
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 15

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy dwupołożeniowy (3/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. pięciodrogowy dwupołożeniowy (5/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 16

Przy wykonaniu elementu przedstawionego na rysunku była zastosowana obróbka

Ilustracja do pytania
A. ciągnięcia.
B. frezowania.
C. toczenia.
D. tłoczenia.
Obróbka elementu przedstawionego na rysunku za pomocą toczenia jest prawidłowa, ponieważ toczenie to jedna z podstawowych metod obróbki skrawaniem, która pozwala na uzyskanie gładkich powierzchni cylindrycznych. W procesie toczenia narzędzie skrawające porusza się wzdłuż obrabianego materiału, co prowadzi do usunięcia nadmiaru materiału wzdłuż jego długości. Elementy wykonane w tej technologii charakteryzują się dużą precyzją oraz powtarzalnością wymiarów. Przykłady zastosowania toczenia obejmują produkcję wałów, tulei oraz innych elementów symetrycznych, które wymagają wysokiej jakości powierzchni. Dobrą praktyką w obróbce toczeniem jest stosowanie odpowiednich parametrów skrawania, takich jak prędkość, głębokość skrawania oraz posuw, aby zapewnić optymalną jakość oraz wydajność procesu. W przypadku toczenia istotne jest również dobieranie właściwych narzędzi skrawających, które powinny być dostosowane do rodzaju obrabianego materiału oraz wymagań dotyczących jakości powierzchni.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Na którym rysunku przedstawiono fotorezystor?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Fotorezystor jest elementem elektronicznym, którego rezystancja zmienia się w zależności od natężenia światła, co czyni go kluczowym komponentem wielu aplikacji związanych z optyką i automatyzacją. Rysunek oznaczony literą C przedstawia fotorezystor z typową czarną obudową, często z czerwonymi paskami, co jest charakterystyczne dla tego typu elementów. Fotorezystory znajdują zastosowanie w czujnikach światła, regulacji oświetlenia oraz w automatycznych systemach sterowania, takich jak lampy uliczne, które włączają się po zmroku. W praktyce, ich działanie opiera się na zjawisku fotoprzewodnictwa, gdzie absorpcja fotonów przez materiał półprzewodnikowy powoduje wzrost liczby nośników ładunku, co zmniejsza rezystancję. Wykorzystanie fotorezystorów w projektach DIY oraz w sprzęcie elektronicznym, takimi jak aparaty fotograficzne czy systemy alarmowe, pokazuje ich wszechstronność i znaczenie w nowoczesnych technologiach. Zrozumienie funkcji i zastosowań fotorezystorów jest kluczowe dla każdego inżyniera elektronika oraz projektanta systemów automatyki.

Pytanie 19

W procesie TIG stosuje się technikę spawania

A. elektrodą topliwą w osłonie dwutlenku węgla
B. łukiem plazmowym
C. elektrodą wolframową w osłonie argonowej
D. strumieniem elektronów
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaką wartość ciśnienia wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 8 500 barów
B. 12 300 barów
C. 850 barów
D. 570 barów
Wartość ciśnienia wskazana na mierniku wynosi 850 barów, co jest zgodne z jego wskazaniem na skali. Mierniki ciśnienia są kluczowymi urządzeniami w różnych dziedzinach inżynierii i technologii, gdzie precyzyjne pomiary są niezbędne do zapewnienia bezpieczeństwa oraz efektywności procesów. W przemyśle naftowym, gazowym oraz chemicznym, dokładne pomiary ciśnienia są istotne dla monitorowania i kontrolowania procesów, co pomaga uniknąć awarii oraz zwiększa wydajność produkcji. Wartości ciśnienia są istotne dla obliczeń dotyczących przepływu, a także dla doboru odpowiednich materiałów i sprzętów, które muszą wytrzymać określone warunki pracy. Używając mierników ciśnienia, ważne jest, aby zwracać uwagę na ich kalibrację oraz zgodność z normami branżowymi, takimi jak ISO 6789, które określają wymagania dotyczące dokładności i niezawodności pomiarów. Wiedza o aktualnych wartościach ciśnienia może również wspierać procesy diagnostyczne w systemach hydraulicznych i pneumatycznych, co jest niezbędne do ich prawidłowego funkcjonowania.

Pytanie 22

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. śrubowe toczne
B. cierne pośrednie
C. korbowe
D. jarzmowe
Odpowiedź 'śrubowe toczne' jest poprawna, ponieważ w tokarkach CNC ruch posuwowy, który jest kluczowy dla precyzyjnego wykonywania obróbki skrawaniem, jest realizowany za pomocą przekładni śrubowych tocznych. Te systemy wykorzystują śruby o dużym skoku, co pozwala na dokładne i płynne przesunięcie narzędzia skrawającego wzdłuż osi roboczej. Przekładnie te są preferowane w aplikacjach CNC, ponieważ zapewniają wysoką precyzję oraz powtarzalność, co jest zgodne z normami branżowymi dotyczącymi jakości obróbki. Na przykład, w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe są bardzo rygorystyczne, wykorzystanie przekładni śrubowych tocznych pozwala na osiągnięcie wymaganych parametrów przy zachowaniu efektywności produkcji. Warto również zauważyć, że systemy te są stosowane w wielu nowoczesnych maszynach, co czyni je standardem w branży obróbczej. W zakresie najlepszych praktyk, operatorzy powinni regularnie kontrolować stan tych przekładni, aby zapewnić ich długowieczność i niezawodność w pracy.

Pytanie 23

Przedstawiony proces to

Ilustracja do pytania
A. spawanie łukowe.
B. zgrzewanie.
C. szlifowanie.
D. cięcie plazmą.
Cięcie plazmą to naprawdę fajny i efektywny sposób na obrabianie metali. Używa się tam zjonizowanego gazu, który działa jak super szybki nóż i pozwala na precyzyjne cięcie. Na tym zdjęciu widać, jak plazma świeci, a do tego te iskry – to wszystko jest znakiem, że proces zachodzi. W przemyśle, zwłaszcza w motoryzacji i budownictwie, cięcie plazmą jest bardzo cenione, bo daje świetną jakość krawędzi. Z tego, co wiem, to nawet normy ISO podkreślają, że ta metoda jest jedną z bardziej precyzyjnych. Właściwe wykorzystanie tej technologii pozwala również na zmniejszenie ilości odpadów, co jest zdecydowanie na plus. Wiedza o tym, jak to działa, jest mega ważna, jeśli chcesz być konkurencyjny na rynku.

Pytanie 24

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. ze ślimaka i ślimacznicy.
B. z koła koronowego i ślimaka.
C. ze ślimaka i zębatki.
D. z wieńca zębatego i ślimaka.
Poprawna odpowiedź wskazuje na skład przekładni, która składa się z ślimaka oraz ślimacznicy. Ślimak jest elementem o spiralnym kształcie, który zazwyczaj pełni rolę elementu napędowego. Jego konstrukcja pozwala na wytwarzanie ruchu obrotowego, który jest następnie przenoszony na ślimacznicę – koło z zębami wewnętrznymi, które współpracuje z ślimakiem. Ta specyficzna kombinacja elementów mechanicznych jest szeroko stosowana w różnych aplikacjach inżynieryjnych, np. w przekładniach stosowanych w maszynach przemysłowych, w mechanizmach w windach czy w układach napędowych. Dzięki spiralnej geometrii, przekładnie ślimakowe charakteryzują się dużą zdolnością do przenoszenia momentu obrotowego oraz możliwością redukcji prędkości obrotowej. Tego rodzaju przekładnie są cenione za swoją kompaktowość oraz efektywność, co sprawia, że są zgodne z nowoczesnymi standardami projektowania inżynieryjnego, które kładą nacisk na wydajność oraz niezawodność.

Pytanie 25

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu dziewięciożyłowego
B. Skrętki czteroparowej, ekranowanej
C. Przewodu koncentrycznego
D. Skrętki dwuprzewodowej
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Wartość napięcia wskazana przez woltomierz wynosi

Ilustracja do pytania
A. 4 V
B. 8 V
C. 17 V
D. 40 V
Wybierając inną wartość napięcia, można napotkać kilka typowych błędów myślowych, które prowadzą do nieprawidłowych wniosków. Przykład 4 V może wydawać się atrakcyjny w kontekście niskich napięć, jednak nie ma żadnego uzasadnienia w kontekście wizualnego odczytu woltomierza. Wartość 40 V jest znacznie wyższa niż wskazanie urządzenia, co może sugerować brak zrozumienia skali pomiarowej. Wartości napięcia często są mylone z innymi wielkościami elektrycznymi, co prowadzi do nieporozumień. Wybierając 17 V, można zauważyć podobny błąd w ocenie, bowiem wskazanie woltomierza znacznie odbiega od tej wartości. Takie pomyłki mogą wynikać z nieznajomości zasad odczytu oraz braku ostrożności w interpretacji wskazań. Kluczowe jest rozumienie, że woltomierze są narzędziami, które wymagają precyzyjnego stosowania oraz umiejętności interpretacji wyników w kontekście zastosowanego sprzętu. Wiedza na temat właściwego użytkowania instrumentów pomiarowych jest niezbędna do uzyskania wiarygodnych wyników. Dlatego warto kształcić się w zakresie podstawowych zasad pomiarowych oraz ich zastosowania w praktyce.

Pytanie 28

Jakiego koloru powinna być izolacja przewodu PE?

A. Niebieski.
B. Zielony.
C. Brązowy.
D. Żółto-zielony.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 29

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Proszek
B. Silikon
C. Olej
D. Pastę
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 30

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 160 N
B. 140 N
C. 130 N
D. 150 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 31

W przedstawionym na rysunku układzie sterowania siłownikiem jednostronnego działania, którego schemat przedstawiono na rysunku, tłoczysko siłownika wysuwa się po naciśnięciu jednego z przycisków. W opisanej sytuacji znakiem "?" oznaczono zawór

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
W sytuacji przedstawionej w pytaniu, wybór błędnych odpowiedzi wiąże się z niezrozumieniem podstawowych zasad działania zaworów w układach pneumatycznych. Odpowiedzi takie jak A, B czy D mogą sugerować inne typy zaworów, które nie są dostosowane do wymogów pracy z siłownikami jednostronnego działania. Na przykład, zawory 3/2, które mogą być przedstawione w odpowiedziach, nie posiadają wystarczającej liczby portów ani możliwości precyzyjnego kierowania przepływem, co skutkuje niemożnością realizacji funkcji wysuwania lub chowania tłoczyska siłownika. Często myślenie, że prostsze zawory mogą zaspokoić potrzeby skomplikowanego układu, prowadzi do poważnych problemów operacyjnych, takich jak niepełne wysunięcie siłownika lub brak możliwości jego wycofania. W branży automatyzacji, nieodpowiedni dobór elementów sterujących może prowadzić do awarii sprzętu lub wypadków, co jest niezgodne z wytycznymi BHP i normami SAE J1939. Dlatego kluczowe jest zrozumienie, że każdy element układu, w tym zawór, musi być dobierany w oparciu o specyfikacje aplikacji oraz wymagania techniczne, aby zapewnić bezpieczne i efektywne działanie całego systemu.

Pytanie 32

Wyłącznik silnikowy może zadziałać na skutek

A. użycia stałego napięcia w obwodzie sterowania silnika
B. uruchomienia silnika przy niewielkim obciążeniu
C. braku jednej fazy zasilającej silnik
D. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Trial
B. Freeware
C. GNU GPL
D. Adware
Odpowiedź 'Trial' jest poprawna, ponieważ odnosi się do rodzaju licencji oprogramowania, która pozwala użytkownikom na korzystanie z programu przez określony czas, zazwyczaj od kilku dni do kilku miesięcy. Po upływie tego czasu użytkownik jest zobowiązany do zakupu licencji lub usunięcia oprogramowania z urządzenia. Licencje trial są powszechnie stosowane w branży oprogramowania, aby umożliwić użytkownikom przetestowanie produktu przed podjęciem decyzji o zakupie. Przykłady takich programów to popularne aplikacje biurowe, programy graficzne czy oprogramowanie antywirusowe. Dzięki modelowi trial, dostawcy mogą zwiększyć zainteresowanie ich produktami oraz umożliwić użytkownikom dokonanie świadomego wyboru, co jest zgodne z zasadami transparentności i uczciwości w marketingu oprogramowania. Warto zauważyć, że niektóre wersje trial mogą mieć ograniczone funkcje lub mogą wymuszać dodatkowe rejestracje, co również jest stosowane jako element strategii sprzedażowej.

Pytanie 35

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. sprawny NC.
B. sprawny NO.
C. niesprawny NO.
D. niesprawny NC.
Przycisk S1, który oceniłeś jako sprawny NC, działa tak, że w spoczynku obwód jest zamknięty. To się zgadza z tym, jak powinien działać. Jeśli rezystancja wynosi 0,22 Ω przed naciśnięciem, to znaczy, że wszystko jest ok, bo obwód faktycznie jest zamknięty – to jest bardzo ważne dla zestyków NC. Kiedy naciśniesz przycisk, rezystancja skacze do ∞ Ω, co oznacza otwarcie obwodu, i to też jest typowe dla NO. Przyciski NC używa się w różnych sytuacjach, na przykład w automatyce przemysłowej, gdzie potrzebujesz, żeby maszyny się zatrzymywały w razie awarii. Dobrze jest wiedzieć, że w systemach awaryjnego zatrzymywania przyciski te w normalnych warunkach są zamknięte dla bezpieczeństwa, a w nagłych sytuacjach otwierają się, co chroni przed zagrożeniem. Wiedza o tym, jak działają przyciski NC, jest naprawdę istotna, nie tylko dla bezpieczeństwa, ale także w kontekście norm, które obowiązują w branży inżynieryjnej. To wszystko ma ogromne znaczenie w codziennej pracy.

Pytanie 36

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Optycznego
B. Indukcyjnego
C. Pojemnościowego
D. Rezystancyjnego
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Które urządzenie zostało przedstawione na fotografii?

Ilustracja do pytania
A. Zawór czasowy.
B. Zawór szybkiego spustu.
C. Zespół przygotowania powietrza.
D. Serwonapęd.
Ten zespół przygotowania powietrza, który widzisz na zdjęciu, jest super ważny w systemach pneumatycznych. Odpowiada za oczyszczanie, regulację ciśnienia i smarowanie powietrza, co jest kluczowe, żeby wszystko działało jak należy. Składa się z trzech podstawowych elementów: filtru, regulatora ciśnienia i smarownicy. Filtr ma za zadanie usunąć zanieczyszczenia i wilgoć z powietrza, co ma duże znaczenie dla trwałości sprzętu pneumatycznego. Z kolei regulator ciśnienia dostosowuje to ciśnienie do potrzeb konkretnej aplikacji, co zapobiega uszkodzeniom maszyn przez zbyt wysokie ciśnienie. A smarownica wprowadza olej do systemu, co zmniejsza tarcie i wydłuża żywotność części. W praktyce, znajdziesz to w różnych branżach, jak automatyka, produkcja czy obróbka metali, gdzie dobre zarządzanie powietrzem jest naprawdę istotne dla sprawności i bezpieczeństwa. Ważne jest, żeby regularnie serwisować te urządzenia, bo to pomaga uniknąć awarii i zapewnić im efektywność na dłużej.

Pytanie 39

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość obrotową
B. prędkość liniową
C. naprężenia mechaniczne
D. napięcie elektryczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.