Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 14:48
  • Data zakończenia: 8 grudnia 2025 15:06

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. I
B. III
C. IV
D. II
Odpowiedź I jest poprawna, ponieważ oświetlenie miejscowe, które ma na celu dostarczenie światła do określonego obszaru, często stosuje oprawy klasy I. Oprawy te są zaprojektowane w taki sposób, aby zapewniały odpowiednią izolację i ochronę przed porażeniem prądem, co jest kluczowe w kontekście ich użycia w miejscach pracy i w przestrzeni publicznej. Klasa I oznacza, że urządzenia te muszą być uziemione, co znacząco zwiększa bezpieczeństwo ich użytkowania. Przykładowo, w biurach czy warsztatach, gdzie oświetlenie miejscowe jest niezbędne do precyzyjnego wykonania zadań, oprawy klasy I zapewniają, że pracownicy są chronieni przed ryzykiem porażenia prądem. W praktyce, oświetlenie miejscowe może być realizowane poprzez lampy biurkowe, które często mają dodatkowe funkcje regulacji intensywności światła. Stosowanie opraw klasy I w takich sytuacjach jest zgodne z normami bezpieczeństwa, co podkreśla znaczenie tego typu oświetlenia w przestrzeniach użytkowych.

Pytanie 2

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, wkrętak, obcinaczki
B. Wiertarka z zestawem wierteł, szczypce płaskie, piła
C. Wiertarka z zestawem wierteł, młotek, piła
D. Osadzak gazowy, młotek, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 3

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 4

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ zgodnie z systemem TN-S, przewód ochronny PE (przewód uziemiający) i przewód neutralny N (przewód zerowy) muszą być rozdzielone na całej długości instalacji. W tym systemie przewód PE jest przeznaczony wyłącznie do celów ochronnych, co zapobiega ryzyku przypadkowego wprowadzenia prądu do obwodów neutralnych. Poprawne rozdzielenie tych przewodów ma kluczowe znaczenie dla bezpieczeństwa użytkowników, ponieważ zmniejsza ryzyko porażenia prądem. W praktyce oznacza to, że w rozdzielni elektrycznej przewody te powinny być traktowane jako odrębne, co jest zgodne z normami PN-IEC 60364 oraz PN-EN 50110, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W instalacjach TN-S, przewód PE powinien być odpowiednio uziemiony, co znacznie poprawia ochronę przed zwarciami i innymi awariami. Warto zauważyć, że standardy te są stosowane w wielu krajach, co podkreśla ich uniwersalność i znaczenie dla zachowania wysokiego poziomu bezpieczeństwa. Przykładem zastosowania tego rozwiązania są budynki użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 5

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 1 000 V
C. 2 500 V
D. 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 6

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - sprawny, 2 - niesprawny.
B. Oba niesprawne.
C. 1 - niesprawny, 2 - sprawny.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 7

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (60 ÷ 90) %
B. (0 ÷ 10) %
C. (40 ÷ 60) %
D. (90 ÷ 100) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 8

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
B. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
C. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
D. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 9

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 10

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie lakieru elektroizolacyjnego
B. zabezpieczenie klinami ochronnymi
C. nałożenie oleju elektroizolacyjnego
D. wyłożenie izolacją żłobkową
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 11

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w puszkach instalacyjnych gniazd odbiorczych
B. na linii zasilającej budynek
C. w rozdzielnicach mieszkaniowych
D. w złączu budynku
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 12

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Podczas zasilania silnika jego wirnik będzie stał
B. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
C. Silnik będzie pracować na biegu jałowym
D. Silnik będzie zasilany prądem w kierunku przeciwnym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 13

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Kontynuowanie użytkowania do czasu planowanej konserwacji.
D. Natychmiastowe odłączenie zasilania i wymiana przewodu.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 14

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.

Pytanie 15

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Kontroli stanu osłon elementów wirujących
B. Oceny stanu przewodów ochronnych oraz ich podłączenia
C. Sprawdzenia działania systemów chłodzenia
D. Sprawdzenia szczotek i szczotkotrzymaczy
Podczas analizy działań związanych z oględzinami urządzenia napędowego z silnikiem elektrycznym, ważne jest zrozumienie, że wiele czynności może być wykonanych w czasie pracy, a inne wymagają zatrzymania silnika. Kontrola stanu osłon części wirujących, sprawdzenie działania układów chłodzenia oraz ocena stanu przewodów ochronnych i ich podłączenia to czynności, które można przeprowadzić bez konieczności zatrzymywania maszyny. Osłony mają kluczowe znaczenie w zapewnieniu bezpieczeństwa, zapobiegając kontaktowi z ruchomymi częściami silnika, co jest zgodne z zasadami BHP oraz standardami ochrony. Kontrola układów chłodzenia jest niezbędna dla zapewnienia prawidłowego funkcjonowania silników elektrycznych, ponieważ ich przegrzanie może prowadzić do awarii. Sporadyczne sprawdzanie przewodów ochronnych oraz ich podłączenia jest istotne z punktu widzenia ochrony elektrycznej, co jest podkreślone w normach PN-IEC 60364, dotyczących instalacji elektrycznych. Ignorowanie tych czynności może prowadzić do poważnych usterek technicznych lub zagrożeń dla zdrowia i życia operatorów. Wiele osób myli te aspekty, myśląc, że wszystkie kontrole można przeprowadzić wyłącznie w czasie postoju urządzenia. To błędne podejście może skutkować ignorowaniem potencjalnych zagrożeń, które mogłyby być zidentyfikowane podczas działania. Dlatego istotne jest, aby operatorzy byli dobrze przeszkoleni i świadomi, które czynności mogą być bezpiecznie wykonane w trakcie użytkowania, a które wymagają zatrzymania urządzenia.

Pytanie 16

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. łącznika grupowego.
B. gniazda antenowego.
C. gniazda komputerowego.
D. łącznika świecznikowego.
W przypadku odpowiedzi wskazujących na inne elementy instalacji elektrycznej, takie jak gniazdo antenowe, łącznik grupowy czy łącznik świecznikowy, należy zauważyć, że każdy z tych komponentów ma zupełnie inną funkcję oraz zastosowanie. Gniazdo antenowe służy do podłączenia anteny telewizyjnej lub radiowej, co wiąże się z przesyłaniem sygnałów wideo lub audio, a nie z transmisją danych jak w przypadku gniazda komputerowego. Z kolei łącznik grupowy, stosowany zazwyczaj do sterowania różnymi obwodami oświetleniowymi, nie ma nic wspólnego z infrastrukturą sieciową, gdyż jego funkcja polega na włączaniu i wyłączaniu źródeł światła w określonych konfiguracjach. Łącznik świecznikowy działa na podobnej zasadzie, umożliwiając kontrolowanie pojedynczego źródła światła i nie może być mylony z gniazdem sieciowym. Błędne odpowiedzi często wynikają z nieporozumienia dotyczącego tych elementów i ich zastosowań. Kluczowe jest zrozumienie, że gniazda komputerowe są projektowane specjalnie do obsługi sygnałów sieciowych, co jest istotne w kontekście technologii informacyjnej i komunikacyjnej oraz w budowie nowoczesnych sieci LAN, gdzie wymagana jest odpowiednia jakość i prędkość transmisji danych.

Pytanie 17

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 024-6
B. 015-6
C. 014-6
D. 025-6
Wybór wtyczki 025-6 jest poprawny, ponieważ zapewnia ona odpowiednią wydajność prądową dla betoniarki o mocy 12 kVA przy zasilaniu 400V. Przy tej mocy, wartość prądu oblicza się ze wzoru: I = P / (√3 * U), co daje około 17,32 A. Wtyczka 025-6 jest przystosowana do obciążeń do 32 A, co oznacza, że bezproblemowo obsłuży podłączone urządzenie. Dodatkowo, istotne jest, aby wtyczki i gniazda były zgodne z obowiązującymi normami, takimi jak IEC 60309, które określają wymagania dla wtyczek do urządzeń o dużym poborze mocy. W praktyce, wybór odpowiedniej wtyczki ma kluczowe znaczenie dla bezpieczeństwa i efektywności zasilania sprzętu elektrycznego, zwłaszcza w warunkach budowlanych, gdzie obciążenia mogą się zmieniać. Użycie wtyczki o niewłaściwej wydajności prądowej może prowadzić do przegrzewania, uszkodzeń sprzętu, a w najgorszym przypadku do zagrożeń pożarowych.

Pytanie 18

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je lakierem elektroizolacyjnym
B. pokryć je olejem elektroizolacyjnym
C. wyłożyć je izolacją żłobkową
D. wstawić w nie kliny ochronne
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 19

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 20

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. IT
B. TN-S
C. TN-C
D. TT
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 21

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
W przypadku odpowiedzi A, C oraz D, można zauważyć, że błędnie klasyfikują one rodzaje żarówek, co może prowadzić do dezinformacji na temat ich właściwości i zastosowań. Żarówka A, stanowiąca tradycyjną żarówkę żarnikową, wykorzystuje włókno wolframowe i charakteryzuje się dużą ilością emitowanego ciepła, co skutkuje niższą efektywnością energetyczną. W związku z tym, w wielu krajach wprowadzono ograniczenia dotyczące ich produkcji i sprzedaży. Żarówka C to żarówka energooszczędna, która działa na zasadzie fluorescencji, a jej kształt i konstrukcja różnią się od klasycznych żarówek halogenowych. Mimo że oferuje znacznie niższe zużycie energii, ma tendencję do generowania zimnego, nieprzyjemnego światła, co może nie być odpowiednie w wielu zastosowaniach. Żarówka D, oznaczająca źródło LED, jest nowoczesnym rozwiązaniem, które łączy w sobie wiele zalet, takich jak długa żywotność i niskie zużycie energii, ale jej konstrukcja i działanie różnią się od halogenów. Osoby udzielające odpowiedzi mogą mylić te różnice ze względu na podobieństwo w zastosowaniach oświetleniowych, jednakże każdy z tych typów żarówek ma swoje unikalne cechy oraz ograniczenia, które warto znać przed dokonaniem wyboru.

Pytanie 22

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchronicznego z obcym wzbudzeniem.
B. Obcowzbudnego prądu stałego.
C. Indukcyjnego pierścieniowego.
D. Indukcyjnego klatkowego.
Analizując dostępne odpowiedzi, można zauważyć kilka powszechnych nieporozumień związanych z różnymi typami silników elektrycznych. Silnik obcowzbudny prądu stałego jest konstrukcją, która charakteryzuje się oddzielnym źródłem zasilania dla pola magnetycznego, co nie znajduje odzwierciedlenia w schemacie i jego budowie. Silniki tego typu mają zupełnie inną architekturę i przeznaczenie, często używane w aplikacjach wymagających dużej kontroli nad prędkością obrotową, ale nie są w stanie dostarczyć tej samej elastyczności co silniki pierścieniowe. Z kolei silnik indukcyjny klatkowy, który posiada wirnik wykonany w formie klatki, jest prostszy w budowie i nie pozwala na taką regulację momentu obrotowego jak silnik pierścieniowy. Ta konstrukcja jest bardziej powszechna w zastosowaniach przemysłowych, jednak nie ma możliwości tak szczegółowego dostosowania parametrów pracy. Natomiast silnik synchroniczny z obcym wzbudzeniem, który również został wymieniony w odpowiedziach, opiera się na stałym polu magnetycznym i charakteryzuje się innym sposobem działania. W odróżnieniu od silników indukcyjnych, synchroniczne wykorzystują stałe źródło pola, co sprawia, że ich zastosowanie jest inne i wymagające. Zrozumienie różnic między tymi typami silników jest kluczowe, aby podejmować właściwe decyzje w kontekście wyboru odpowiedniej technologii do konkretnych zastosowań przemysłowych. Kluczowe jest, aby pamiętać o specyfikach konstrukcyjnych i ich wpływie na właściwości użytkowe, co może prowadzić do znacznych nieporozumień w praktyce inżynieryjnej.

Pytanie 23

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. W jednej z faz wystąpił zanik napięcia.
B. Instalacja działa poprawnie.
C. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
D. Wystąpiła asymetria napięciowa między fazami.
Słabsze świecenie diody L2 w porównaniu do diod L1 i L3 wyraźnie wskazuje na asymetrię napięciową między fazami. Asymetria ta może być spowodowana różnymi obciążeniami poszczególnych faz, co prowadzi do nierównomiernego rozkładu napięcia. W praktyce, taki stan może wystąpić na przykład w instalacjach, gdzie urządzenia elektryczne są podłączone do różnych faz. W przypadku zróżnicowanego obciążenia, jedna faza może być bardziej obciążona niż inne, co skutkuje obniżeniem napięcia. Zgodnie z normami branżowymi, takim jak IEC 61000, utrzymanie symetrii napięciowej jest kluczowe dla optymalnej pracy urządzeń elektrycznych oraz zapobiegania ich uszkodzeniom. W praktyce, monitorowanie parametrów zasilania oraz stosowanie rozwiązań stabilizacyjnych, takich jak transformatory trójfazowe, może pomóc w minimalizacji tego typu problemów. Dlatego, w przypadku zauważenia słabszego świecenia diody, należy przeprowadzić analizę obciążenia fazowego oraz zainwestować w odpowiednie technologie zabezpieczające.

Pytanie 24

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 1.
B. Wyłącznik 2.
C. Wyłącznik 3.
D. Wyłącznik 4.
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 25

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. podtynkowej.
B. natynkowej.
C. prefabrykowanej.
D. prowadzonej w tynku.
Wybór opcji dotyczącej instalacji natynkowej, prowadzonej w tynku lub prefabrykowanej może wynikać z błędnych założeń dotyczących charakterystyki tych typów instalacji. Instalacje natynkowe polegają na montażu przewodów na powierzchni ściany, co jest niezgodne z funkcją urządzenia przedstawionego na rysunku. Frezarka do rowków, jaką widać, służy do tworzenia bruzd, co jest typowe dla instalacji podtynkowej, a nie natynkowej. Wybór opcji prowadzonej w tynku także jest mylny, ponieważ odnosi się do sytuacji, gdzie kable są umieszczane w tynkach, ale nie w bruzdach, co również wymaga innego podejścia technologicznego. Prefabrykowane instalacje natomiast obejmują z góry przygotowane elementy, które są montowane w całości, co nie ma związku z używaniem narzędzi do frezowania. Kluczowym błędem myślowym jest zrozumienie, że każda z tych opcji ma inne zastosowania, a ich wybór oparty jest na konkretnych wymaganiach konstrukcyjnych. Zrozumienie różnic między tymi typami instalacji jest niezbędne do właściwego podejścia do prac elektrycznych i zapewnienia bezpieczeństwa oraz funkcjonalności w budownictwie.

Pytanie 26

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
C. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
D. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 27

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 5 lat
B. raz na pół roku
C. co najmniej raz na 10 lat
D. raz na rok
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 28

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. YKY
B. OMY
C. AsXSn
D. GsLGs
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 29

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NO + 2NO + 1NC
C. 3NO + 1NO + 2NC
D. 3NC + 1NO + 2NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 30

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 750 obr./min
B. 720 obr./min
C. 1 500 obr./min
D. 1 450 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * f<sub>N</sub>) / p, gdzie n to prędkość obrotowa w obr./min, f<sub>N</sub> to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku f<sub>N</sub> wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 31

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 173 var
B. 519 var
C. 300 var
D. 100 var
W przypadku odpowiedzi innych niż 173 var, pojawiają się typowe nieporozumienia dotyczące relacji między mocą czynną a mocą bierną w układach trójfazowych. Wartości takie jak 519 var, 100 var czy 300 var są wynikiem błędnej interpretacji wzorów związanych z mocą elektryczną. Na przykład, odpowiedzi 519 var i 300 var mogą wynikać z niepoprawnego zastosowania wzoru, w którym zignorowano czynnik √3, prowadząc do zawyżenia wyniku. Z kolei 100 var może być mylone z mocą czynną, co pokazuje nieporozumienie między pojęciami mocy czynnej i biernej. Moc czynna, mierzona przez watomierz, odnosi się do energii, która jest rzeczywiście wykorzystywana do wykonania pracy, podczas gdy moc bierna jest związana z energią, która oscyluje między źródłem a obciążeniem, nie wykonując przy tym żadnej pracy. Zrozumienie tych różnic jest kluczowe w kontekście norm i standardów branżowych, takich jak IEC 61000, które definiują wymagania dotyczące jakości energii i jej wpływu na urządzenia elektryczne. Dlatego ważne jest, aby przy rozwiązywaniu podobnych problemów zawsze odnosić się do odpowiednich wzorów i zachować ostrożność w interpretacji wyników pomiarów mocy.

Pytanie 32

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Tuleja redukcyjna
B. Tuleja kołnierzowa
C. Podkładka sprężysta
D. Podkładka dystansowa
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 33

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Kolejność faz zasilających.
B. Ciągłość przewodów.
C. Rezystancję uziemienia odbiornika.
D. Prąd upływu.
Dobra robota z wyborem odpowiedzi! To narzędzie, które widzisz na zdjęciu, to tester kolejności faz. Jest naprawdę ważny w elektryce, bo sprawdza, czy fazy są odpowiednio podłączone w instalacjach trójfazowych. Zrozumienie tej kolejności jest kluczowe, bo jak fazy się zamienią, to mogą być problemy z działaniem urządzeń, szczególnie silników. Bezpieczne uruchamianie nowych instalacji to podstawa, a ten tester naprawdę się przydaje. W branży elektrycznej normy mówią, że musimy pilnować tej kolejności, żeby uniknąć nieprawidłowości i niebezpieczeństw. Poza tym, jeśli w systemie jest nierównomierne obciążenie, to ten tester też może pomóc to zdiagnozować, a to ważne dla oszczędności energii.

Pytanie 34

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 10 mm2
B. 25 mm2
C. 16 mm2
D. 4,0 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 35

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. E27
B. MR16
C. E14
D. GU10
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 36

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi C, A, D lub jakiejkolwiek innej opcji niż B może wynikać z nieporozumień dotyczących klasyfikacji przewodów instalacyjnych. Warto zauważyć, że błędne odpowiedzi mogą wynikać z pomylenia typu przewodu z innymi, które mają różne zastosowania i właściwości. Przewody YDYt, w przeciwieństwie do innych typów, takich jak YDY, charakteryzują się jednolitą budową oraz możliwością przybijania do ścian, co jest kluczowe dla ich funkcji. W przypadku opcji A, można by pomyśleć, że jest to przewód odporny na uszkodzenia, jednak jego konstrukcja nie odpowiada wymaganiom dla YDYt, ponieważ nie ma odpowiedniej izolacji ani układu żył. Argumenty za innymi odpowiedziami często wynikają z niepełnego rozumienia cech i zastosowania przewodów. Na przykład, przewody wielodrutowe mogą wprowadzać w błąd z punktu widzenia ich zastosowania w instalacjach wtynkowych. Warto zwrócić uwagę, że błędne odpowiedzi mogą sugerować, że przewody te są stosunkowo łatwe do zainstalowania wszędzie, co w rzeczywistości może prowadzić do problemów z bezpieczeństwem elektrycznym oraz estetyką wykończenia. Dlatego tak ważne jest dokładne zrozumienie właściwości przewodów i ich przeznaczenia w kontekście norm oraz najlepszych praktyk w branży elektrycznej.

Pytanie 37

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 38

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 mA oraz znamionowy prąd ciągły 40 mA
B. 0,03 mA oraz napięcie znamionowe 40 V
C. 0,03 A oraz napięcie znamionowe 40 V
D. 0,03 A oraz znamionowy prąd ciągły 40 A
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 39

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 40

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Prąd różnicowy oraz czas reakcji
B. Napięcie w sieci oraz prąd obciążeniowy
C. Napięcie w sieci oraz prąd różnicowy
D. Obciążenie prądowe i czas reakcji
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.