Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 8 grudnia 2025 12:54
  • Data zakończenia: 8 grudnia 2025 13:06

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Woltomierza AC z opcją TRUE RMS
B. Galwanometru do pomiaru napięcia zmiennego
C. Galwanometru do pomiaru napięcia stałego
D. Woltomierza AC bez opcji TRUE RMS
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. jest komponentem wyłącznie dekoracyjnym
B. gwarantuje efektywne działanie systemu przeciwsabotażowego
C. emituje promieniowanie podczerwone w stronę intruza
D. ma za zadanie skupiać wiązki detekcji na pyroelemencie
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 7

Na rysunkach pokazano schemat ideowy układu stabilizatora napięcia zawierającego dwie identyczne diody Zenera D1 i D2 oraz charakterystykę statyczną diod. Jaka jest wartość napięcia UAB, jeżeli przez diody płynie prąd wsteczny o wartości 40 mA?

Ilustracja do pytania
A. 1,4 V
B. 5 V
C. 4,4 V
D. 9,4 V
Wybierając inną wartość napięcia, pojawiają się istotne błędy w zrozumieniu działania diod Zenera. Dioda Zenera w trybie zaporowym działa jako regulator napięcia, a jej charakterystyka statyczna jasno wskazuje, w jakim zakresie prąd wsteczny wpływa na napięcie. W przypadku prądu wstecznego o wartości 40 mA, napięcie na diodzie Zenera nie może być niższe niż 4,7 V, ponieważ to jest minimalna wartość dla tego prądu na podstawie charakterystyki. Wybór wartości 4,4 V ignoruje zasadniczą cechę działania diod Zenera, a także może prowadzić do błędnych wniosków dotyczących projektowania układów. Napięcie 5 V również jest zbyt niskie, ponieważ nie odpowiada rzeczywistej charakterystyce diod przy podanym prądzie. Z kolei wartość 1,4 V jest całkowicie nieadekwatna, ponieważ dioda nie osiągnie stabilizacji tego napięcia w trybie Zenera przy prądzie 40 mA. Częstym błędem jest zakładanie, że napięcie na diodzie może być niższe, co prowadzi do nieefektywnego projektowania układów elektronicznych. Stabilizatory napięcia z diodami Zenera muszą być zaprojektowane z uwzględnieniem całego zakresu charakterystyki diod, aby zapewnić stabilność i niezawodność działania układu.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm
A. Trzy krótkie dzwonki, wyłączone diody LED.
B. Szybkie zapalanie diody LED czerwonej.
C. Wyłączona dioda LED niebieska, bez brzęczyka.
D. Włączone diody LED czerwona i niebieska.
Odpowiedź, w której masz trzy krótkie dzwonki i wyłączone diody LED, jest trochę myląca. To dlatego, że te dźwięki nie pokazują stanu programowania. W systemach zbliżeniowych takie dzwonki mogą być mylnie odbierane jako znak, że coś działa, a nie jak sygnał, że jesteśmy w trybie programowania. Ważne jest, żeby znać, co oznaczają dźwięki w kontekście systemów zabezpieczeń. Na przykład, jeśli diody LED świecą się na czerwono i niebiesko, to mogą pokazywać inne stany, jak alarm lub jakiś błąd, co jest zupełnie inne niż programowanie. Często ludzie mylą te sygnały, co prowadzi do zbędnych nieporozumień przy konfiguracji systemu. Ignorowanie, co sygnalizują diody LED, może prowadzić do błędnej interpretacji i mieć poważne konsekwencje dla bezpieczeństwa. Takie błędne odpowiedzi pokazują, że warto lepiej zrozumieć, jak działa sygnalizacja w systemach zbliżeniowych.

Pytanie 11

Na rysunku przestawiono

Ilustracja do pytania
A. czujnik ultradźwiękowy.
B. mikrofon stereofoniczny.
C. mikrofony pojemnościowe.
D. czujnik gazu.
Czujnik ultradźwiękowy, który został przedstawiony na rysunku, jest szeroko stosowany w różnych dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Działa na zasadzie emisji fal ultradźwiękowych i analizy ich odbicia od obiektów, co pozwala na dokładne pomiary odległości. Popularny model HC-SR04, który znajduje się na zdjęciu, używany jest w projektach DIY oraz w edukacji do nauki o pomiarach i interakcji z otoczeniem. Czujniki ultradźwiękowe charakteryzują się wysoką precyzją oraz prostotą w użyciu, co czyni je idealnym wyborem do zastosowań w robotyce i automatyce. W praktyce, czujniki te są wykorzystywane do detekcji przeszkód w robotach mobilnych, monitorowania poziomu cieczy w zbiornikach oraz w systemach alarmowych. Zastosowanie czujników ultradźwiękowych w przemyśle, w kontekście standardów bezpieczeństwa oraz efektywności operacyjnej, podkreśla ich znaczenie w nowoczesnych technologiach.

Pytanie 12

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o tych samych wymiarach
B. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
C. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
D. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
Wstawienie kondensatora o pojemności odpowiadającej pojemności znamionowej odczytanej ze schematu urządzenia jest kluczowe dla zapewnienia prawidłowego działania układów elektronicznych. Kondensatory są komponentami, które pełnią istotne funkcje w obwodach, takie jak filtracja, przechowywanie energii czy stabilizacja napięcia. Użycie kondensatora o właściwej pojemności zapewnia, że układ pracuje zgodnie z założeniami projektowymi. Na przykład, w aplikacjach audio, niewłaściwa pojemność może prowadzić do zniekształceń dźwięku, a w obwodach zasilania, do niestabilności napięcia. Praktyczne podejście do wymiany kondensatorów obejmuje także przestrzeganie norm, takich jak IEC 60384, które regulują klasyfikację, parametry i metody testowania kondensatorów. Zachowanie tych standardów zapewnia bezpieczeństwo i niezawodność urządzenia. Ponadto, w przypadku wymiany kondensatora, warto również zwrócić uwagę na jego napięcie pracy oraz typ (elektrolityczny, ceramiczny, mylarowy itp.), co jest zgodne z dobrą praktyką serwisową.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Na rysunku pokazano schemat ideowy zasilacza stabilizowanego, w którym uszkodzeniu uległ stabilizator napięcia zaznaczony symbolem X. Ze względu na uszkodzenie obudowy stabilizatora nie jest możliwa identyfikacja jego oznaczeń. Zgodnie z instrukcją serwisową zasilacza wartości zaznaczonych na rysunku napięć i prądów są następujące: U1 = 20 V, U2= 15 V, I = 1,8 A. W tabeli wymieniono listę dostępnych zamienników stabilizatora wraz z wartościami wybranych parametrów elektrycznych. Jako zamiennik należy użyć stabilizatora oznaczonego symbolem

SymbolMaks. napięcie wejścioweNapięcie wyjścioweMaks. prąd wyjściowyTyp obudowy
LM78M1535 V15 V500 mATO-220
LM78S1535 V15 V2 ATO-220
LM780535 V5 V1 ATO-220
LM79L15-35 V-15 V100 mATO-92
Ilustracja do pytania
A. LM7805
B. LM78S15
C. LM78M15
D. LM79L15
Stabilizator LM78S15 jest odpowiednią odpowiedzią, ponieważ jego wyjściowe napięcie wynoszące 15 V idealnie odpowiada wymaganiom schematu, gdzie napięcie U2 wynosi 15 V. Dodatkowo, maksymalny prąd wyjściowy stabilizatora wynoszący 2 A przewyższa wymagany prąd 1,8 A, co zapewnia wystarczającą rezerwę dla stabilnej pracy zasilacza. Wybór stabilizatora z odpowiednim napięciem i prądem jest kluczowy w praktyce, aby uniknąć uszkodzeń układów zasilanych, co jest zgodne z najlepszymi praktykami w projektowaniu zasilaczy. Używanie stabilizatorów, które nie spełniają minimalnych wymagań dotyczących napięcia lub prądu, może prowadzić do niestabilności pracy urządzenia, co jest niepożądane w aplikacjach wymagających niezawodności. Dodatkowo, warto dodać, że stabilizatory SMPS (Switched Mode Power Supply) są często stosowane w nowoczesnych projektach, choć LM78S15 należy do grupy stabilizatorów liniowych, które charakteryzują się prostotą zastosowania oraz niskim poziomem szumów, co czyni je popularnym wyborem w wielu projektach elektronicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Dołączenie obciążenia R do przedstawionego na rysunku dzielnika napięcia

Ilustracja do pytania
A. spowoduje wzrost lub spadek napięcia na rezystorze R2, zależnie od wartości R
B. spowoduje spadek napięcia na rezystorze R2
C. nie zmieni wartości napięcia na R2
D. spowoduje wzrost napięcia na rezystorze R2
Dołączenie obciążenia R równolegle do rezystora R2 w dzielniku napięcia powoduje spadek napięcia na R2. Wynika to z faktu, że dodanie rezystora obniża całkowitą rezystancję układu, co prowadzi do zwiększenia przepływającego przez obwód prądu. Zgodnie z prawem Ohma, napięcie na rezystorze jest iloczynem prądu i jego rezystancji, stąd większy prąd wywołuje mniejsze napięcie na R2, które jest teraz dzielone z rezystorem R. W praktyce, taki układ jest często wykorzystywany w obwodach pomiarowych, gdzie zmieniające się obciążenie musi być uwzględnione w obliczeniach. Kluczowe jest, aby dobrze rozumieć zasady działania dzielników napięcia, co jest standardową praktyką w projektowaniu układów elektronicznych. Tego rodzaju analizy są niezbędne w kontekście inżynierii elektrycznej i elektroniki, gdzie precyzyjne zarządzanie napięciami i prądami jest kluczowe dla stabilności i wydajności systemu.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. nie przekazuje składowej stałej sygnału
B. jest zworą dla sygnału stałego
C. tak jak dioda, przewodzi sygnał w jednym kierunku
D. tworzy przerwę dla sygnału o wysokiej częstotliwości
Wzmacniacze prądu stałego są projektowane z myślą o obsłudze sygnałów stałych, w związku z czym zastosowanie sprzężenia pojemnościowego byłoby nieodpowiednie. W odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, nie uwzględnia się faktu, że kondensator na dłuższą metę działa jak izolator w obwodach stałoprądowych, co w praktyce oznacza, że nie przepuszcza składowej stałej sygnału. Natomiast w kontekście sygnałów zmiennych, kondensator działa jako element przejściowy, co jest mylone z jego rolą w obwodach DC. Również stwierdzenie, że kondensator stanowi przerwę dla sygnału o dużej częstotliwości, jest nieprecyzyjne. W rzeczywistości kondensator przewodzi wysokie częstotliwości, co czyni go odpowiednim do sprzężenia w wzmacniaczach AC. Dodatkowo, koncepcja, że kondensator przewodzi sygnał tylko w jednym kierunku, jest błędna. Kondensatory nie mają kierunkowości przewodzenia jak diody; zamiast tego gromadzą ładunek i mogą działać w różnych kierunkach w zależności od napięcia. Typowe błędy myślowe prowadzące do takich nieprawidłowych odpowiedzi często wynikają z mylenia podstawowych zasad działania kondensatorów oraz ich ról w różnych typach obwodów. Warto przypomnieć, że zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji układów elektronicznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie elementy należy zastosować, aby zapewnić współdziałanie układów TTL oraz CMOS z napięciem zasilania 5 V?

A. dioda podciągająca
B. diaka podciągającego
C. rezystora podciągającego
D. kondensatora podciągającego
Wybór diaka, kondensatora lub diody jako elementu podciągającego nie jest prawidłowy ze względu na różnice w ich funkcji i zachowaniu w obwodach cyfrowych. Diak jest elementem półprzewodnikowym, który działa jako przełącznik, aktywując się przy określonym napięciu, co sprawia, że jego zastosowanie w roli podciągania sygnału logicznego nie przynosi oczekiwanych rezultatów. Nie pełni on funkcji stabilizacji poziomu logicznego, co jest kluczowe w przypadku współpracy układów TTL i CMOS. Z kolei kondensator, chociaż może być używany do tłumienia szumów sygnału, nie zapewni wymaganej stabilności sygnałów ani nie podciągnie ich do poziomu '1'. Jego funkcja jest całkowicie inna, związana z magazynowaniem energii, co nie ma zastosowania w kontekście utrzymania poziomu sygnału. Dioda, mimo że jest użyteczna w wielu aplikacjach, nie ma zdolności do podciągania sygnału logicznego do odpowiedniego poziomu. Zamiast tego, może jedynie ograniczać kierunek przepływu prądu. Błędne zrozumienie funkcji tych komponentów może prowadzić do nieefektywnych rozwiązań w obwodach elektronicznych, a także problemów z kompatybilnością między różnymi typami układów cyfrowych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Którą funkcję logiczną realizują bramki NAND połączone według schematu?

Ilustracja do pytania
A. NOR
B. OR
C. EX-NOR
D. EX-OR
Wybór odpowiedzi EX-NOR, NOR czy OR wskazuje na niezrozumienie podstaw funkcji logicznych oraz właściwości bramek NAND. Funkcja EX-NOR, będąca negacją EX-OR, zwraca wartość wysoką, gdy wszystkie wejścia są takie same, co jest sprzeczne z naturą działania EX-OR, która wymaga różnych stanów na wejściu. Z kolei funkcja NOR, będąca negacją OR, zawsze zwraca stan niski, gdy przynajmniej jedno z wejść jest wysokie, co jest całkowicie niezgodne z działaniem bramek NAND w przedstawionym schemacie. Odpowiedź OR z kolei nie uwzględnia faktu, że w przypadku zastosowania bramek NAND wyjście może być wysokie jedynie w sytuacji, gdy oba wejścia są niskie, co jest zupełnie innym zachowaniem niż w przypadku funkcji OR. Typowym błędem myślowym jest zakładanie, że bramki NAND mogą realizować wszystkie funkcje logiczne w sposób bezpośredni, gdy tymczasem ich połączenia wymagają zrozumienia bardziej skomplikowanych interakcji między sygnałami. Koncepcje te są podstawowymi elementami teorii układów cyfrowych, które są niezbędne w projektowaniu i analizie logiki cyfrowej. Stosowanie bramek NAND do budowy innych funkcji logicznych stanowi jeden z kluczowych aspektów w edukacji związanej z elektroniką i projektowaniem układów cyfrowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g
A. Ruchu.
B. Magnetyczna.
C. Wibracyjna.
D. Akustyczna.
Czujka magnetyczna, która została opisana w tabeli, charakteryzuje się specyfiką, która czyni ją idealnym rozwiązaniem dla wielu zastosowań przemysłowych i zabezpieczeń. Niewielkie rozmiary oraz masa czujki są istotnymi czynnikami, które wpływają na jej wszechstronność. Czujki magnetyczne są często wykorzystywane w systemach alarmowych, do detekcji otwarcia drzwi i okien, a także w różnych aplikacjach automatyki budynkowej. Ich wysoka trwałość, wynikająca z minimalnej liczby przełączeń przy obciążeniu 20 V, 20 mA, wskazuje na mocne parametry elektryczne, które są niezbędne w środowiskach, gdzie niezawodność jest kluczowa. Materiał stykowy, jakim jest Ruten (Ru), zapewnia doskonałą przewodność oraz odporność na korozję, co jest typowe dla wysokiej jakości czujników. Zastosowanie czujników magnetycznych zgodnie z dobrymi praktykami i normami branżowymi, takimi jak standardy IEC, zapewnia ich efektywność i długowieczność w trudnych warunkach operacyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W jakim typie pamięci przechowywane są indywidualne preferencje użytkownika podczas programowania cyfrowego odbiornika satelitarnego z opcją nagrywania wybranego kanału telewizyjnego?

A. RAM
B. ROM
C. EEPROM
D. EPROM
Wybór innych rodzajów pamięci, takich jak RAM, EPROM czy ROM, jest nieprawidłowy z kilku kluczowych powodów. RAM (Random Access Memory) to pamięć ulotna, która przechowuje dane tylko podczas pracy urządzenia; po wyłączeniu zasilania wszystkie dane są tracone. To czyni ją całkowicie nieodpowiednią do przechowywania indywidualnych ustawień użytkownika, które muszą być zachowywane między sesjami użytkowania. Z drugiej strony, EPROM (Erasable Programmable Read-Only Memory) również nie jest idealnym rozwiązaniem, ponieważ wymaga specjalnych procedur do kasowania danych, zazwyczaj poprzez wystawienie na promieniowanie UV, co czyni ją mniej praktyczną i elastyczną w zastosowaniach, gdzie często zachodzi potrzeba modyfikacji zapisanych ustawień. ROM (Read-Only Memory) to pamięć tylko do odczytu, która jest programowana w momencie produkcji i nie może być modyfikowana w trakcie użytkowania, co naturalnie wyklucza ją z potencjalnych zastosowań, gdzie wymagana jest możliwość zapisywania oraz aktualizowania danych. Wybór niewłaściwego rodzaju pamięci może prowadzić do problemów z użytecznością urządzenia oraz ograniczeń w jego funkcjonalności. W każdym nowoczesnym rozwiązaniu technologicznym, które wymaga elastyczności i możliwości aktualizacji danych, stosowanie EEPROM jest najlepszą praktyką, szczególnie w kontekście zapisów użytkowników oraz personalizacji urządzeń.

Pytanie 36

Którą wartość pojemności wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 200 nF
B. 20 pF
C. 200 pF
D. 20 nF
Pomiar pojemności wykonany za pomocą miernika wykazuje wartość "20.0" przy ustawieniu zakresu na 20 nF. To oznacza, że zmierzona pojemność wynosi dokładnie 20 nanofaradów (nF), co jest wartością stosowaną w wielu aplikacjach elektronicznych, takich jak układy filtrów, oscylatory czy kondensatory w zasilaczach. Wartości pojemności w nanofaradach są szczególnie ważne w kontekście wysokich częstotliwości, gdzie nawet niewielkie zmiany pojemności mogą wpływać na działanie całego układu. W praktyce, przy projektowaniu i analizie obwodów elektronicznych, umiejętność poprawnego odczytywania wartości pojemności i ich interpretacji w kontekście zastosowania jest kluczowa. Umożliwia to lepsze zrozumienie zachowania układów oraz ich optymalizację w celu uzyskania pożądanych parametrów pracy. Warto również pamiętać o standardach dotyczących tolerancji kondensatorów, co wpływa na wybór odpowiednich komponentów w projektach elektronicznych.

Pytanie 37

Element, którego napięcie na wyjściu jest uzależnione od porównania dwóch napięć na wejściu, to

A. układ różniczkujący.
B. komparator.
C. układ całkujący.
D. sumator.
Wybór jednego z alternatywnych odpowiedzi, jak sumator, układ całkujący lub układ różniczkujący, wskazuje na pewne nieporozumienia dotyczące podstawowych funkcji układów elektronicznych. Sumator to układ, który łączy dwa lub więcej napięć, generując ich sumę na wyjściu. Jego działanie jest zastosowane w wielu aplikacjach, takich jak mieszanie sygnałów audio, ale nie polega na porównywaniu napięć. Układ całkujący, z kolei, przetwarza sygnał, generując napięcie proporcjonalne do całki z jego wartości w czasie, co jest istotne w aplikacjach takich jak regulacja PID, ale również nie odnosi się do bezpośredniego porównania napięć. Układ różniczkujący działa na zasadzie obliczania pochodnej sygnału, co jest kluczowe w systemach reakcji na zmiany sygnału, jednak także nie spełnia kryterium porównywania dwóch napięć. Typowym błędem w podejściu do tego typu pytań jest mylenie funkcji układów oraz ich zastosowań, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że komparator charakteryzuje się unikalną funkcjonalnością, która odróżnia go od pozostałych typów układów, a jego umiejętność szybkiego reagowania na niewielkie różnice napięć czyni go niezastąpionym w praktycznych zastosowaniach inżynieryjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. fototranzystorów
B. rezystorów
C. kondensatorów
D. diody
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.