Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 lutego 2026 06:51
  • Data zakończenia: 19 lutego 2026 07:02

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który typ oprogramowania należy zastosować do utworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAD
B. CAQ
C. CAM
D. SCADA
SCADA (Supervisory Control and Data Acquisition) jest kluczowym typem oprogramowania wykorzystywanym w automatyzacji procesów przemysłowych, szczególnie w kontekście monitorowania i kontrolowania systemów w czasie rzeczywistym. W przypadku przedstawionego procesu mieszania w zbiornikach, SCADA zapewnia nie tylko wizualizację stanu procesów, ale również interfejs do zarządzania nimi. Przykładem zastosowania SCADA jest monitorowanie poziomów cieczy w zbiornikach, gdzie dane są zbierane z różnych czujników, a operatorzy mogą wprowadzać zmiany w procesie, zapewniając jego efektywność i bezpieczeństwo. SCADA wspiera też analizy historyczne, co pozwala na optymalizację procesów i podejmowanie lepszych decyzji operacyjnych. Dodatkowo, systemy SCADA są zgodne z normami IEC 61131-3, które określają standardy programowania w systemach automatyki, co czyni je niezawodnymi narzędziami w przemyśle.

Pytanie 2

Symbol graficzny oznacza zawór

Ilustracja do pytania
A. dławiący.
B. redukcyjny.
C. przełączający.
D. maksymalny.
Symbol graficzny przedstawiony na zdjęciu jednoznacznie wskazuje na zawór maksymalny, który odgrywa kluczową rolę w układach hydraulicznych i pneumatycznych. Zawór maksymalny, znany również jako zawór przelewowy, służy do regulacji i ograniczania maksymalnego ciśnienia w systemie. Jego zasada działania opiera się na otwieraniu się zaworu w momencie, gdy ciśnienie przekroczy ustawioną wartość, co skutkuje odprowadzeniem nadmiaru cieczy lub gazu. Praktyczne zastosowania obejmują przemysł motoryzacyjny, gdzie zabezpiecza silniki przed nadciśnieniem, oraz systemy hydrauliczne w maszynach budowlanych, gdzie ochrona przed uszkodzeniem komponentów jest kluczowa. Dobrą praktyką jest regularne przeglądanie i testowanie zaworów maksymalnych, aby zapewnić ich prawidłowe działanie, co jest zgodne z normami ISO 4414 i PN-EN 982. Odpowiednia kalibracja zaworów maksymalnych jest również niezbędna dla zachowania efektywności oraz bezpieczeństwa w eksploatacji.

Pytanie 3

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Czapkę z daszkiem
B. Maskę osłaniającą twarz
C. Okulary ochronne
D. Rękawice i nauszniki ochronne
Okulary ochronne są kluczowym środkiem ochrony indywidualnej dla pracowników obsługujących tokarki precyzyjne. Ich zastosowanie ma na celu zabezpieczenie oczu przed odłamkami, pyłem oraz innymi niebezpiecznymi substancjami, które mogą powstawać podczas obróbki materiałów. Standardy BHP w przemyśle zalecają noszenie okularów ochronnych z odpowiednimi filtrami, które chronią przed szkodliwym promieniowaniem oraz zapewniają odpowiednią widoczność. Przykładowo, podczas frezowania lub toczenia metalu, mogą występować odpryski, które stanowią bezpośrednie zagrożenie dla wzroku. Dobre praktyki wskazują, że okulary powinny być przystosowane do specyficznych warunków pracy, a ich wybór powinien być zgodny z normami PN-EN 166 oraz PN-EN 170. Ponadto, pracownicy powinni być przeszkoleni w zakresie korzystania z tych środków ochrony, aby maksymalizować ich skuteczność.

Pytanie 4

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
B. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
C. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
D. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
Odpowiedź podana jako prawidłowa opisuje właściwą kolejność cykli pracy sterownika PLC. Proces ten zaczyna się od inicjalizacji sterownika, która przygotowuje system do działania, ustalając wszystkie niezbędne parametry i konfiguracje. Następnie następuje aktualizacja stanu wejść, gdzie sterownik odczytuje dane z urządzeń zewnętrznych, takich jak czujniki. Kolejnym krokiem jest wykonanie programu, w którym sterownik przetwarza zebrane dane i podejmuje decyzje na podstawie zdefiniowanych algorytmów. Na końcu następuje aktualizacja stanu wyjść, co oznacza wysłanie sygnałów do urządzeń wykonawczych, takich jak siłowniki czy przekaźniki. Przykładowo, w aplikacji automatyki przemysłowej, po odczytaniu sygnału z czujnika temperatury, sterownik może podjąć decyzję o włączeniu systemu chłodzenia. Dobre praktyki wskazują, że ta sekwencja cykli zapewnia maksymalną efektywność i niezawodność w działaniu systemu PLC, co jest kluczowe w przemysłowych zastosowaniach automatyki.

Pytanie 5

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Czyszczenie zaworu zwrotnego.
B. Kontrola stanu oleju.
C. Wymiana paska klinowego.
D. Wymiana filtra ssącego.
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 6

Cyfrą 1 oznaczono złącze

Ilustracja do pytania
A. IEE-488
B. BNC
C. IEEE 1294
D. D-Sub DE-9
Złącze D-Sub DE-9, oznaczone na zdjęciu cyfrą 1, odgrywa kluczową rolę w komunikacji komputerowej i elektronicznej. Jego charakterystyczna konstrukcja, z dziewięcioma pinami w układzie w kształcie litery 'D', sprawia, że jest ono powszechnie rozpoznawane w branży. To złącze jest często wykorzystywane w interfejsach RS-232 do komunikacji szeregowej, co czyni je bardzo istotnym w kontekście starszych urządzeń komputerowych oraz wielu obecnych aplikacji w automatyce przemysłowej. D-Sub DE-9 jest także często stosowane w kartach graficznych, skanerach, drukarkach oraz urządzeniach peryferyjnych. Wysoka niezawodność i łatwość podłączenia sprawiają, że złącze to pozostaje standardem do dziś. Aby lepiej zrozumieć jego zastosowanie, warto zaznaczyć, że w kontekście interfejsów komputerowych, D-Sub DE-9 umożliwia przesyłanie danych na odległość, co jest kluczowe w wielu aplikacjach przemysłowych oraz w telekomunikacji, gdzie niezawodność połączenia ma fundamentalne znaczenie.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Układ, którego schemat przedstawiono na rysunku, wymaga zasilania

Ilustracja do pytania
A. sprężonym powietrzem i olejem hydraulicznym.
B. sprężonym powietrzem i energią elektryczną.
C. wyłącznie sprężonym powietrzem.
D. olejem hydraulicznym i energią elektryczną.
Zasilanie układu jedynie sprężonym powietrzem jest niewystarczające w kontekście przedstawionego schematu. Choć sprężone powietrze jest kluczowe dla działania siłowników pneumatycznych, to jednak w układzie tym występują również komponenty elektryczne, takie jak czujniki i elektrozawory, które wymagają energii elektrycznej do prawidłowego funkcjonowania. Ignorowanie tego aspektu prowadzi do niepełnego zrozumienia procesów automatyzacji. Ponadto, stwierdzenie, że układ zasilany jest tylko sprężonym powietrzem, może wynikać z typowego błędu myślowego, polegającego na skupieniu się wyłącznie na jednym aspekcie układu, co w praktyce prowadzi do pominięcia ważnych elementów niezbędnych do jego pełnej operacyjności. W zastosowaniach przemysłowych często zachodzi potrzeba integracji różnych źródeł energii, co pozwala na osiągnięcie większej efektywności i elastyczności w działaniu systemów. Dlatego kluczowe jest zrozumienie, że zarówno zasilanie pneumatyczne, jak i elektryczne są nieodzownymi elementami nowoczesnych systemów automatyki, a ich odpowiednia kombinacja zapewnia optymalne warunki operacyjne.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. wskaźnika napięcia
B. omomierza
C. woltomierza
D. amperomierza
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 11

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 1
B. 4
C. 2
D. 3
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 12

Którą z wymienionych wielkości można zmierzyć za pomocą miernika przedstawionego na zdjęciu?

Ilustracja do pytania
A. Natężenie prądu przemiennego.
B. Rezystancję izolacji.
C. Temperaturę.
D. Napięcie przemienne.
Pomiar napięcia przemiennego za pomocą miernika uniwersalnego, jak ten przedstawiony na zdjęciu, jest fundamentalną funkcją, która znajduje zastosowanie w wielu dziedzinach inżynierii elektrycznej. Użycie skali oznaczonej "ACV" wskazuje, że urządzenie jest przystosowane do pomiarów napięcia w obwodach prądu zmiennego. Napięcie przemienne jest powszechnie spotykane w instalacjach elektrycznych, gdzie dostarczana energia elektryczna ma formę sinusoidalną. Zrozumienie wartości napięcia jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów zasilających. Stosując ten miernik, inżynierowie mogą szybko ocenić, czy napięcie w obwodzie jest zgodne z wymaganiami technicznymi, co jest niezbędne przy projektowaniu i konserwacji instalacji. Standardy takie jak IEC 61010 wskazują na konieczność stosowania odpowiednich narzędzi pomiarowych do pracy w różnych warunkach, co czyni pomiar napięcia przemiennego kluczowym elementem pracy elektryka. Używanie miernika uniwersalnego nie tylko wspiera techniczną dokładność, ale również zmniejsza ryzyko uszkodzeń urządzeń oraz potencjalnych zagrożeń dla użytkownika.

Pytanie 13

Które oprogramowanie należy zainstalować do tworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAQ
B. CAD
C. CAM
D. SCADA
Odpowiedź SCADA jest poprawna, ponieważ oprogramowanie to jest kluczowym narzędziem w obszarze automatyki przemysłowej, stosowanym do nadzorowania oraz kontrolowania procesów technologicznych. SCADA (Supervisory Control and Data Acquisition) umożliwia zbieranie danych z różnych źródeł, takich jak czujniki i urządzenia pomiarowe, co pozwala na bieżąco monitorować stany procesów, w tym poziomy cieczy i przepływy, jak przedstawiono na załączonym rysunku. Przykładem zastosowania SCADA może być przemysł chemiczny, gdzie systemy te są wykorzystywane do monitorowania zbiorników z substancjami chemicznymi oraz kontrolowania ich przepływów, co zapewnia bezpieczeństwo oraz optymalizację procesów. Standardy takie jak ISA-95 i ISA-88 określają najlepsze praktyki dotyczące integracji systemów SCADA z innymi systemami automatyki i rozwoju wizualizacji procesów. SCADA nie tylko wspiera efektywność operacyjną, ale także pozwala na szybkie podejmowanie decyzji dzięki dostępowi do aktualnych danych.

Pytanie 14

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. mechanicznego.
B. elektrycznego.
C. hydraulicznego.
D. pneumatycznego.
Zawór rozdzielający przedstawiony na rysunku jest przeznaczony do systemów pneumatycznych, co można potwierdzić po symbolice oraz oznaczeniach na urządzeniu. W praktyce, zawory pneumatyczne są kluczowymi komponentami w wielu aplikacjach przemysłowych, w tym w automatyce oraz produkcji. Ich główną funkcją jest kontrolowanie przepływu powietrza w systemach, co pozwala na precyzyjne sterowanie napędem pneumatycznym. Zawory te są zaprojektowane do pracy w warunkach, gdzie maksymalne ciśnienie robocze wynosi 10 barów, co jest typowe dla systemów pneumatycznych, a ich konstrukcja musi spełniać odpowiednie normy, takie jak ISO 6431 czy ISO 15744, dotyczące wymagań dla elementów pneumatycznych. Stosowanie zaworów pneumatycznych w aplikacjach takich jak pakowanie, montaż czy manipulacja materiałami przyczynia się do zwiększenia efektywności procesów produkcyjnych. Systemy pneumatyczne są szczególnie cenione za swoją szybkość, niezawodność oraz stosunkowo niskie koszty operacyjne, co czyni je popularnym wyborem w nowoczesnym przemyśle.

Pytanie 15

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. ucinaczki boczne
B. pincety
C. praski ręcznej
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, zawór redukcyjny, manometr
B. manometr, filtr powietrza, smarownica
C. filtr powietrza, zawór redukcyjny z manometrem, smarownica
D. smarownica, filtr powietrza, manometr
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 18

Ile stopni swobody ma manipulator, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 3 stopnie swobody.
B. 4 stopnie swobody.
C. 5 stopni swobody.
D. 6 stopni swobody.
Ten manipulator, co go widzisz na schemacie, ma 4 stopnie swobody. To znaczy, że może się poruszać w czterech różnych kierunkach. Ma trzy obrotowe przeguby, które pozwalają mu na rotację w trzech osiach, a do tego jeden przegub liniowy, który umożliwia przesuwanie wzdłuż jednej osi. Taki układ jest całkiem typowy w przemyśle, zwłaszcza w robotyce, gdzie trzeba precyzyjnie manewrować urządzeniami w różnych warunkach. Myślę, że 4 stopnie swobody to super rozwiązanie do zadań takich jak montaż czy pakowanie. Poza tym, w obróbce materiałów też się przydaje, gdy trzeba przesuwać narzędzia w kilku osiach naraz. W przemyśle warto projektować te maszyny z uwzględnieniem norm ISO, bo bezpieczeństwo operatorów i otoczenia to podstawa. Rozumienie, co to są te stopnie swobody, to kluczowa sprawa dla inżynierów zajmujących się automatyzacją.

Pytanie 19

Na ilustracji przedstawiono sprzęgło

Ilustracja do pytania
A. jednokierunkowe.
B. pierścieniowe.
C. elastyczne palcowe.
D. elastyczne kłowe.
Odpowiedź "elastyczne kłowe" jest prawidłowa, ponieważ na ilustracji rzeczywiście przedstawiono sprzęgło tego typu. Sprzęgła elastyczne kłowe składają się z dwóch elementów, które są połączone za pomocą elastycznych kłów, co umożliwia przenoszenie momentu obrotowego przy zachowaniu zdolności do kompensowania niewielkich przemieszczeń. Czerwony element z tworzywa sztucznego, widoczny na ilustracji, jest kluczowy dla tego mechanizmu, ponieważ jego elastyczność pozwala na zminimalizowanie wstrząsów oraz ochronę przed nadmiernym zużyciem wałów. Te sprzęgła są szeroko stosowane w różnych aplikacjach przemysłowych, w tym w napędach elektrycznych, gdzie konieczna jest elastyczność w przenoszeniu momentu obrotowego, a także w maszynach, które wymagają precyzyjnego pozycjonowania. Standardy ISO oraz dobre praktyki inżynieryjne zalecają ich stosowanie w aplikacjach, gdzie wymagana jest wysoka niezawodność i długowieczność komponentów. Warto pamiętać, że elastyczne sprzęgła kłowe są także istotnym elementem w systemach automatyki, gdzie precyzja i elastyczność są kluczowe dla sprawnego działania.

Pytanie 20

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. światłowodowy
B. symetryczny ekranowany (tzw. skrętka ekranowana)
C. symetryczny nieekranowany (tzw. skrętka nieekranowana)
D. koncentryczny
Kabel światłowodowy to naprawdę świetny wybór do sterowania sieciowego w systemach mechatronicznych. Szczególnie jeśli chodzi o przesył danych na długie odległości i zmniejszenie wpływu zakłóceń elektromagnetycznych. Wiesz, światłowody przesyłają sygnały jako impulsy świetlne, co sprawia, że są mniej podatne na zakłócenia niż tradycyjne kable miedziane. W automatyce przemysłowej, gdzie odległości między sprzętem mogą być naprawdę duże, to się przydaje. Kable te są odporne na zakłócenia elektryczne, więc idealnie nadają się do miejsc, gdzie są mocne pola elektromagnetyczne, jak w pobliżu maszyn elektrycznych. W dodatku mamy standardy komunikacyjne, takie jak 10GBASE-SR, które pokazują, że światłowody są super efektywne i wydajne, zwłaszcza na większych dystansach. Choć koszt zakupu jest wyższy na początku, długofalowo to się opłaca, bo są bardziej niezawodne i tańsze w eksploatacji.

Pytanie 21

Jakie metody wykorzystuje się do produkcji prętów?

A. tłoczenie
B. odlewanie
C. walcowanie
D. wytłaczanie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 22

W co musi być wyposażony tłok siłownika, aby czujnik kontaktronowy umieszczony w sposób przedstawiony na rysunku sygnalizował jego położenie?

Ilustracja do pytania
A. W rdzeń ferrytowy.
B. W element światłoczuły.
C. W magnes.
D. W lustro.
Odpowiedź 'W magnes' jest jak najbardziej trafna! Czujnik kontaktronowy działa właśnie na wykrywaniu pola magnetycznego. Kiedy tłok z magnesem osiąga odpowiednią pozycję, aktywuje czujnik. To rozwiązanie jest szeroko stosowane w automatyce, szczególnie tam, gdzie musimy precyzyjnie pozycjonować różne elementy. Dobrym przykładem mogą być aplikacje pneumatyczne, gdzie używa się siłowników z magnesami do sygnalizacji, że tłok dotarł do swoich krańcowych pozycji. Co ciekawe, czujniki kontaktronowe z magnesami spełniają normy bezpieczeństwa, co jest mega istotne w naszych systemach. Dzięki nim wszystko pracuje sprawniej i jest bezpieczniej. No i nie można zapominać o tym, że czujniki z magnesami są też ekonomiczne, bo są niezawodne i długo działają, co obniża koszty utrzymania. Dlatego warto wiedzieć, jak ważne są magnesy w detekcji pozycji oraz jak wpływają na efektywność systemów automatyki.

Pytanie 23

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
B. wylutowania uszkodzonej diody oraz wlutowania nowej diody
C. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
D. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 24

Na etykiecie rozdzielacza pneumatycznego MEH-5/2-1/8-B zaznaczono średnicę przyłącza

A. 5 mm
B. G5/2
C. 8 mm
D. G 1/8
Oznaczenie G 1/8 na obudowie rozdzielacza pneumatycznego MEH-5/2-1/8-B wskazuje na typ gwintu przyłączeniowego, który jest standardem w branży pneumatycznej. W tym przypadku 'G' oznacza gwint zewnętrzny typu metrycznego, a '1/8' odnosi się do nominalnej średnicy otworu, która wynosi 1/8 cala. Gwinty G są powszechnie stosowane w instalacjach pneumatycznych i hydraulicznych, a ich rozmiary są określane według normy BSP (British Standard Pipe). W praktyce oznacza to, że do tego typu rozdzielacza należy stosować złącza odpowiednie dla gwintu 1/8, co zapewnia kompatybilność i szczelność układu. Znajomość tych oznaczeń jest kluczowa dla inżynierów i techników zajmujących się instalacjami pneumatycznymi, ponieważ niewłaściwe dobieranie złączek może prowadzić do wycieków, awarii systemu oraz zwiększenia kosztów eksploatacyjnych. Przykładem zastosowania mogą być instalacje w automatyzacji przemysłowej, gdzie precyzyjne zarządzanie ciśnieniem i wydajnością jest kluczowe dla efektywności operacyjnej.

Pytanie 25

Który podzespół jest badany pod względem szczelności w układzie przedstawionym na ilustracji?

Ilustracja do pytania
A. Siłownik pneumatyczny.
B. Zespół przygotowania powietrza.
C. Zawór Z3.
D. Zawór Z1.
Siłownik pneumatyczny jest kluczowym elementem układu pneumatycznego, który odpowiada za przekształcanie energii sprężonego powietrza w ruch mechaniczny. Jego szczelność jest niezbędna dla prawidłowego funkcjonowania systemu, ponieważ nieszczelności mogą prowadzić do strat ciśnienia, co z kolei wpływa na siłę i precyzję ruchu. W praktyce, jeśli siłownik nie jest szczelny, może to skutkować nieefektywnym działaniem maszyn, co w konsekwencji prowadzi do awarii lub obniżenia jakości produkcji. W branży automatyzacji standardy takie jak ISO 8573 dotyczące jakości powietrza sprężonego również zwracają uwagę na kwestię szczelności komponentów pneumatycznych. Dobre praktyki wskazują na regularne kontrole szczelności siłowników, co pozwala na wczesne wykrycie problemów i minimalizację kosztów związanych z przestojami produkcyjnymi oraz naprawami.

Pytanie 26

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Żeliwo szare
B. Brąz
C. Mosiądz
D. Stal szybkotnącą
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 27

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 2,0 mm
C. 2,1 mm
D. 1,9 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 28

Sygnał MO w układzie przedstawionym na rysunku jest równy 1, gdy

Ilustracja do pytania
A. S1 = 0 i S2 = 0
B. S1 = 0 i S2 = 1
C. S1 = 1 i S2 = 0
D. S1 = 1 i S2 = 1
Odpowiedź jest prawidłowa, ponieważ w układzie przedstawionym na rysunku, który działa jako przerzutnik typu SR, sygnał MO przyjmuje wartość 1, gdy wejście S jest w stanie wysokim (1), a wejście R, po zanegowaniu, również osiąga stan wysoki. W tej sytuacji, aby stan R był aktywny, S musi mieć wartość 1, co jest zgodne z zasadami działania przerzutników. W praktycznych zastosowaniach przerzutników SR, takie jak w systemach pamięci czy licznikach, zrozumienie działania tych sygnałów jest kluczowe. Umożliwia to projektowanie bardziej złożonych układów cyfrowych, które są fundamentem technologii mikroprocesorowej. Dobrą praktyką w projektowaniu układów cyfrowych jest zawsze uwzględnianie logiki negacji sygnałów, co pozwala na pełne wykorzystanie możliwości przerzutników. Wiedza na temat działania przerzutników jest nieoceniona w kontekście inżynierii elektronicznej oraz automatyzacji, gdzie precyzyjne sterowanie sygnałami jest kluczowe.

Pytanie 29

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Różnicowoprądowy
B. Termiczny
C. Silnikowy
D. Nadprądowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 30

Na rysunku przedstawiono tabliczki znamionowej

Ilustracja do pytania
A. autotransformatora.
B. transformatora
C. silnika prądu stałego.
D. silnik indukcyjnego.
Odpowiedź dotycząca silnika indukcyjnego jest poprawna, ponieważ tabliczka znamionowa zawiera istotne informacje techniczne typowe dla tego rodzaju silników. Silniki indukcyjne, znane również jako asynchroniczne, są powszechnie stosowane w przemyśle i automatyce ze względu na swoją niezawodność i prostotę konstrukcji. Parametry takie jak moc, prędkość obrotowa oraz napięcie zasilania są kluczowe dla ich działania. Dodatkowo, oznaczenie 'Typ SKg 100L-4B' sugeruje specyfikacje silnika, w tym rozmiar oraz liczbę biegunów, co bezpośrednio wpływa na jego charakterystyki operacyjne. W praktyce, silniki indukcyjne są najlepszym wyborem do zastosowań wymagających stałej prędkości obrotowej przy zmiennym obciążeniu, jak np. w pompach, wentylatorach czy przenośnikach taśmowych. Znajomość tych specyfikacji oraz ich poprawne interpretowanie jest kluczowe w procesie doboru silnika do konkretnej aplikacji przemysłowej.

Pytanie 31

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. dioda.
B. rezystor.
C. kondensator.
D. tranzystor.
Tranzystor, który został przedstawiony na zdjęciu, jest kluczowym elementem w nowoczesnej elektronice, szczególnie w układach analogowych i cyfrowych. Posiada on trzy wyprowadzenia: bramkę (G), dren (D) oraz źródło (S), które są charakterystyczne dla tranzystora polowego typu MOSFET. Tranzystory są powszechnie używane do wzmacniania sygnałów oraz jako przełączniki w obwodach elektronicznych. Na przykład, w zastosowaniach audio, tranzystory mogą wzmacniać sygnały, pozwalając na wytwarzanie dźwięku o wyższej mocy. W systemach cyfrowych, tranzystory stanowią podstawę działania układów logicznych, umożliwiając realizację operacji arytmetycznych i logicznych. Dodatkowo, tranzystory są niezbędne w projektach fotowoltaicznych, gdzie kontrolują przepływ prądu z paneli słonecznych do akumulatorów. Warto również podkreślić, że znajomość działania tranzystorów jest niezbędna dla każdego inżyniera elektronika, ponieważ są one fundamentem wielu nowoczesnych technologii.

Pytanie 32

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Zgrzewanie
C. Lutowanie miękkie
D. Sklejanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 33

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. opaski uziemiającej
B. okularów ochronnych
C. bawełnianego fartucha ochronnego
D. butów z izolowaną podeszwą
Użycie opaski uziemiającej podczas wymiany tranzystora wyjściowego w układzie CMOS sterownika PLC jest kluczowe dla zapewnienia bezpieczeństwa i zminimalizowania ryzyka uszkodzenia komponentów. Opaska uziemiająca działa jako środek ochronny, który odprowadza ładunki elektrostatyczne z ciała osoby pracującej, zapobiegając ich nagromadzeniu. W obwodach CMOS, które są bardzo wrażliwe na zjawisko ESD (elektrostatyczne wyładowania), nawet niewielkie ładunki mogą prowadzić do uszkodzenia tranzystorów i innych komponentów. Stosowanie opaski uziemiającej jest zgodne z dobrymi praktykami w branży elektronicznej, które zalecają uziemianie operatorów w celu ochrony delikatnych układów. Dodatkowo, przy wymianie tranzystora, ważne jest, aby pracować w odpowiednim środowisku, które ogranicza ryzyko ESD, na przykład poprzez stosowanie mat antystatycznych oraz unikanie materiałów, które mogą generować ładunki elektrostatyczne. Przykładem dobrych praktyk jest przestrzeganie norm IPC, które definiują standardy dotyczące ochrony przed ESD w procesach produkcyjnych oraz serwisowych.

Pytanie 34

Montaż realizowany według zasady całkowitej zamienności polega na

A. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
B. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
C. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
D. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.

Pytanie 35

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Żyroskop
B. Tachometr
C. Pirometr
D. Tensometr
Tensometr to urządzenie, które służy do pomiaru odkształceń materiałów pod wpływem sił zewnętrznych, w tym ciśnienia cieczy. W kontekście zbiorników, tensometry są wykorzystywane do monitorowania sił działających na ścianki zbiorników, co pozwala na ocenę ciśnienia cieczy wewnętrznej. Przykłady zastosowania to kontrola zbiorników ciśnieniowych w przemyśle chemicznym, gdzie precyzyjny pomiar ciśnienia jest kluczowy dla bezpieczeństwa i efektywności procesów. Tensometry mogą być integrowane z systemami automatyki przemysłowej, co umożliwia zdalne monitorowanie i wczesne wykrywanie nieprawidłowości. Zgodnie z normami branżowymi, stosowanie tensometrów w tych aplikacjach przyczynia się do zwiększenia niezawodności i wydajności operacyjnej. Dodatkowo, dzięki stosowaniu materiałów o wysokiej czułości i precyzji, tensometry zapewniają dokładne i powtarzalne pomiary, co jest niezwykle istotne w kontroli procesów technologicznych.

Pytanie 36

Który typ łożyska należy zastosować w zespole mechanicznym wiedząc, że średnica gniazda wynosi 35 mm, jego wysokość wynosi 11 mm, natomiast średnica zewnętrzna wału wynosi 10 mm?

TYPWymiary
dDB
7200 B10309
7300 B103511
7202 B153511
7302 B154213
7203 B174012
7207 B357217
7307 B358021
Ilustracja do pytania
A. Typ 7202 B
B. Typ 7200 B
C. Typ 7307 B
D. Typ 7300 B
Typ łożyska 7300 B jest odpowiedni do podanych wymiarów, ponieważ jego średnica wewnętrzna wynosi 10 mm, co idealnie pasuje do średnicy zewnętrznej wału, oraz wysokość wynosi 11 mm. W przypadku zastosowań mechanicznych, wybór właściwego łożyska jest kluczowy dla zapewnienia efektywności i trwałości całego zespołu. Wybierając łożysko, warto także zwrócić uwagę na jego zdolność do przenoszenia obciążeń, co w typie 7300 B jest zapewnione dzięki odpowiedniej konstrukcji i zastosowanym materiałom. Takie łożysko znajduje szerokie zastosowanie w maszynach przemysłowych, gdzie wymagana jest precyzja i niezawodność. Należy również pamiętać, że dobór łożyska powinien być zgodny z normami ISO oraz innymi standardami branżowymi, co zapewnia jego funkcjonalność w różnych aplikacjach. W praktyce, stosowanie właściwego typu łożysk pozwala na minimalizację awarii oraz zwiększenie wydajności pracy maszyn.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HFA, HFC, HFD
C. HV, HLP, HLPD
D. HLP, HFA, HTG
Odpowiedź HFA, HFC, HFD jest prawidłowa, ponieważ te oznaczenia odnoszą się do kategorii trudnopalnych cieczy hydraulicznych, które są stosowane w systemach hydraulicznych w warunkach, gdzie istnieje ryzyko eksplozji. Ciecze te charakteryzują się obniżoną palnością, co minimalizuje ryzyko pożaru i eksplozji. HFA to wodne emulsje olejów mineralnych, HFC to wodne roztwory syntetycznych środków smarujących, a HFD to oleje biologiczne lub syntetyczne, które również zawierają wodę. W praktyce, ich zastosowanie znajduje się w różnych branżach, takich jak przemysł chemiczny, rafinacja, czy energetyka, gdzie bezpieczeństwo operacji ma kluczowe znaczenie. Warto podkreślić, że korzystanie z tych ciecze hydraulicznych jest zgodne z normami bezpieczeństwa, takimi jak ISO 6743-4, które regulują klasyfikację i zastosowanie płynów hydraulicznych w kontekście ochrony przeciwpożarowej.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Szeregowy
B. Bezszczotkowy
C. Obcowzbudny
D. Bocznikowy
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.